GABARITO - ANO 2018 OBSERVAÇÃO:

Tamanho: px
Começar a partir da página:

Download "GABARITO - ANO 2018 OBSERVAÇÃO:"

Transcrição

1 GABARITO - ANO 018 OBSERVAÇÃO: Embora as soluções neste gabarito se apresentem sob a forma de um texto explicativo, gostaríamos de salientar que para efeito de contagem dos pontos adquiridos, na avaliação das provas objetivas, para premiação só será levado em consideração a resposta objetiva da questão. Quanto a prova dissertativa, toda a resolução é levada em consideração outras resoluções diferentes da apresentada aqui, terão seus méritos julgados pela banca avaliadora).

2 Problema 1 Qual o resto da divisão de 018 por 0? PARTE OBJETIVA - NÍVEL - ANO 018 Resolver esta questão elevando a 018 e dividindo por 0 é muito trabalhoso. Vamos tentar encontrar um padrão na divisão das potências de por 0. Temos que: 1 = dividido por 0 resulta em quociente zero e resto = 4 dividido por 0 resulta em quociente zero e resto 4 = 8 dividido por 0 resulta em quociente zero e resto 8 4 = 16 dividido por 0 resulta em quociente zero e resto 16 A partir daqui os restos começam a se repetir 5 = dividido por 0 resulta em quociente um e resto 6 = 64 dividido por 0 resulta em quociente dois e resto 4 7 = 18 dividido por 0 resulta em quociente quatro e resto 8 8 = 56 dividido por 0 resulta em quociente oito e resto 16 E assim por diante... Podemos notar que começando de 1 a cada 4 potências de dois a sequência dos resto se repete ordenadamente, podendo ser, 4, 8 e 16. De 1 a 018 temos 018 potência de. Dividindo 018 por 4, obtemos 54 e resto. Logo, mantendo a ordem das potências, conseguimos agrupá-las em 54 grupos de 4, sobrando duas potências, 017 e 018. Isso significa que 016, que é a última potência do 54 o grupo, resulta em resto 16 quando dividido por 0. A partir daí começa-se uma nova repetição de restos. Logo 017 dividido por 0 terá resto e por fim, 018 terá resto 4. De forma geral temos que: Se o expoente da potência de dois pode ser escrito da forma 4k + 1, com k N, o resto da divisão da potência de dois por 0 é 1 =. Se o expoente da potência de dois pode ser escrito da forma 4k +, com k N, o resto da divisão da potência de dois por 0 é = 4. Se o expoente da potência de dois pode ser escrito da forma 4k +, com k N, o resto da divisão da potência de dois por 0 é = 8. Se o expoente da potência de dois pode ser escrito da forma 4k + 4 ou 4k), com k N, o resto da divisão da potência de dois por 0 é 4 = 16. Veja que, 018 = , logo o resto é de fato, = 4. Resposta: O resto é igual a 4 Problema A família de Maria foi a praia e estendeu cinco toalhas de banho idênticas da forma como se mostra na figura. As cinco toalhas estendidas formaram um retângulo cuja área é 540 dm.

3 O lado menor de cada toalha mede, em centímetros: Como as toalhas são idênticas, então a área de cada toalha é = 108 dm. Da forma como estão organizadas, é possível perceber que o comprimento é vezes maior que a largura de cada toalha. Assim, chamando de x o tamanho da largura, em decímetros, então o comprimento será x e a área de cada toalha será dada por x x = 108 x = 108 x = 108 = 6 x = 6 dm Portanto, o lado menor mede 6 dm, o que é equivalente a 60 cm. Problema João Vítor ganhou um Jogo de Dardos e convidou dois amigos, Gabriel e Pedro, para jogar. O jogo é composto por seis dardos, o modelo do tabuleiro está demonstrado na figura a seguir. Gabriel ao jogar acertou dois dardos na cor cinza claro, um dardo na cor cinza escuro e três dardos na cor branca obtendo 8 pontos. Pedro ao jogar acertou um dardos na cor cinza claro, três dardo na cor cinza escuro e dois dardos na cor branca obtendo 54 pontos. João Vítor acertou um dardo na cor cinza claro, dois dardo na cor cinza escuro e três dardos na cor branca obtendo 9 pontos. Sabendo dessas informações, qual a pontuação referente a cada cor presente no tabuleiro? Tabuleiro do Jogo de Dardos Questão anulada! Problema 4 João querendo proteger seus pertences mais valiosos, resolveu comprar um cofre cuja senha numérica deve ser formada com quatro algarismos distintos, incluindo o zero. Porém, uma das condições para a formação dessa senha é que o zero não esteja na primeira casa, ou seja, não fosse o primeiro algarismo da senha. Quantas são as maneiras que João pode criar a senha do cofre, em que o último número seja o algarismo 5? O exercício diz que João irá criar uma senha para o cofre que comprou e, que essa senha precisa ser formada com ALGARISMOS DISTINTOS. Isto é, não há repetição de números na senha que está sendo formada. Outra condição colocada no exercício é que a senha não pode começar com o algarismo 0 zero), isto é, o zero não pode compor como o primeiro número da senha. Uma terceira condição estabelecida no exercício é que o ÚLTIMO ALGARISMO SEJA O 5, ou seja, o último número da senha tem que ser o 5. A senha é formada com 4 algarismos, com 4 números diferentes. Para o 1 o número da senha temos 8 opções, sendo que as opções são: 1,,, 4, 6, 7, 8 e 9. Para o o número da senha também temos 8 opções, pois temos a volta do algarismo zero e de mais 7 opções que restam após o 1 o número escolhido. Para o o número da senha temos 7 opções, que é os números que restam após a escolha do o número da senha. Para o 4 o número, temos somente 1 opção de escolha, pois o exercício estabeleceu que o último algarismo da senha tem que ser o algarismo 5. Assim, pelo princípio multiplicativo, basta multiplicar todos os valores das opções possíveis: = 448. Portanto, há 448 maneiras diferentes que João pode utilizar para criar a senha de seu cofre com as condições impostas.

4 Problema 5 Ao seccionar um cone reto por dois planos paralelos a sua base, de forma que esses planos dividam a altura do cone em três partes iguais, obtemos três sólidos: um cone de volume V 1, um tronco de cone de volume V e um tronco de cone de volume V, com V 1 < V < V. Sabendo que V 1 = k, podemos concluir com relação a V 1 que os volumes V e V são respectivamente: Sendo h a altura do cone menor e r o raio da base então o volume V 1 é: V 1 = π.r.h Por proporção, temos que o volume do cone formado por V 1 e V será: V 1 + V = π r) h E temos que V 1 + V = 8 π r h V 1 + V + V = π r) h V 1 + V + V = 7 π r h V 1 + V = 8 V 1 V = 7 V 1. V V 1 + V = 7 V 1 V = 19 V 1. Problema 6 Na imagem a seguir o comprimento da circunferência é igual a 68 cm. C Considerando π =, 14, determine a área da região sombreada, em cm. Vejamos que, para resolver este problema e achar a área sombreada, podemos calcular o raio da circunferência, levando em conta o comprimento da circunferência C c ) apresentado no enunciado e após calcular a oitava parte dessa área, pois a parte da circunferência interna ao triângulo representa a oitava da área total da circunferência interna ao quadrado. Realizando os cálculos, temos: C c = πr 68 =, 14 r 68 = 6, 8 r r = 68 6, 8 r = 100 cm Ao calcular o raio da circunferência podemos calcular a área da circunferência A c ). Observe que, na figura, a parte referente a circunferência que está no interior do triângulo representa a oitava parte da circunferência, sendo assim calculamos a área da circunferência e multiplicamos por 1 8. A c = πr A c =, A c =, A c = 1400 cm Agora iremos calcular a área do triângulo A t ) no interior do quadrado. A t = b h A t = Calculando a oitava parte circunferência, temos: A t = 5000 cm A c 8 = = 95 cm 8 Subtraindo a oitava parte da área circunferência da área do triângulo, obtemos: Assim, a área sombreada é igual a 1075 cm = 1075 cm

5 PARTE DISSERTATIVA - NÍVEL - ANO 018 Problema 1 Os primeiros membros da Associação de Pitágoras definiram os números poligonais como sendo o número de pontos em determinadas configurações geométricas. Os primeiros números triangulares são 1,, 6 e 10: Qual é a diferença entre o número de segmentos e o número de pontos da configuração geométrica referente ao número triangular 10? Na configuração geométrica do n-ésimo número triangular, a diferença entre o número de segmentos e o número de pontos é uma progressão aritmética PA) de razão r = 1 e primeiro termo 1, ou seja, a sequência das diferenças entre segmentos e pontos na posição n é a n = a 1 + n 1)r = 1 + n 1)1 = n. Como os números triangulares são na verdade a sequência da soma dos n primeiros naturais, o n-ésimo número nn + 1) triangular é. Portanto, basta descobrir qual o posição do número 10 na lista de números triangulares, ou seja, resolver nn + 1) = 10, de onde obtemos que n = 0. Assim, a diferença entre o número de segmentos e o número de pontos da configuração geométrica referente ao número triangular 10 é a 0 = 0 = 18. Problema A calculadora do João tem uma tecla especial com o símbolo. Se o visor mostra um número x diferente de, ao apertar a tecla aparece o valor de x 5 x = a) Se João colocar 4 no visor e apertar, qual número vai aparecer? Se João colocar um número x no visor e apertar, aparece o valor de fx) = x 5. Logo, para x x = 4, o valor que vai aparecer é f4) = 4 5 = = 7. b) João colocou um número no visor e, ao apertar, apareceu o mesmo número. Quais são os números que ele pode ter colocado no visor? Seja b o número que João colocou no visor. Ao apertar, apareceu o número fb) = b 5 b, que o enunciado nos diz que é igual a b. Logo b 5 b = b, donde b 5 = bb ), ou seja, b 6b + 5 = 0. Essa equação tem as raízes b = 1 e b = 5, que são os números que João pode ter colocado no visor.

6 c) João percebeu que, colocando o 4 no visor e apertando duas vezes, aparece de novo o 4; da mesma forma, colocando o 7 e apertando a duas vezes, aparece de novo o 7. O mesmo vai acontecer para qualquer número diferente de? Explique. Seja b o número que João colocou no visor. Ao apertar duas vezes, aparece o número ) b 5 ) 5 9b 15 5b + 15 b 5 b ffb)) = f = ) = b = 4b b b 5 b 5 b = b. b b Ou seja, a função f é inversa de si mesma, isto justifica o fato de ao apertar duas vezes o resultado ser igual ao inicial. É importante notar que João pode apertar uma segunda vez. De fato, a equação fb) = 0 não tem solução, ou seja, o denominador da expressão após o primeiro sinal de igualdade acima é sempre diferente de 0. De fato, se existisse b tal que fb) = 0, teríamos b 5 = e, portanto, 5 = 9, um absurdo. b Logo, ao apertar nunca aparece o no visor, e é sempre possível apertar uma segunda vez. Problema A partir da figura a seguir, considerando r e s paralelas, determine o perímetro e a área do trapézio sombreado. C 4 cm A 5 cm 4 cm B E r D s O triângulo A é retângulo e para determinar a medida do segmento basta utilizar o Teorema de Pitágoras: ) + AE ) = AB ) ) + 4 = 5 ) + 16 = 5 ) = 9 = cm Como as retas r e s são paralelas, utilizando o Teorema de Tales, tiramos as seguintes relações: CD = AB AC 4 = 5 AC CD = AE AD 4 = 4 AD 1) ) Da relação 1) tiramos que AC = 40 cm, donde BC = 5 cm, e da relação ) vem que AD = cm, donde DE = 8 cm. Portanto, o perímetro do trapézio BCDE é BC + CD + DE + = = 90 cm e a área do trapézio A BCDE ) pode ser calculada sem necessariamente conhecer a fórmula da área do trapézio, é possível chegar na resposta através da diferença entre a área do triângulo ACD pela área do triângulo A: A BCDE = A ACD A A = Utilizando a fórmula da área do trapézio temos: A BCDE = B + b) h = ) 8 = = 84 6 = 78 cm. 7 8 = 78 cm.

NÍVEL 3 - Prova da 2ª fase - Soluções

NÍVEL 3 - Prova da 2ª fase - Soluções NÍVEL 3 - Prova da ª fase - Soluções QUESTÃO 1 (a) Se o Dodó colocar um número x no visor e apertar, aparece o valor x 3 4 3 5 de f ( x) =. Logo, para x = 4, o valor que vai aparecer é f (4) = = =,5. x

Leia mais

Soluções do Nível 3 (Ensino Médio) 1 a Fase

Soluções do Nível 3 (Ensino Médio) 1 a Fase Soluções do Nível (Ensino Médio) a Fase. (alternativa C) Como A, B e C são pontos médios, os quatro triângulos rotulados com I na figura ao lado são congruentes, bem como os dois indicados por II. Logo

Leia mais

Matemática E Intensivo V. 1

Matemática E Intensivo V. 1 GABARITO Matemática E Intensivo V. Exercícios 0) 5 0) 5 Seja o termo geral = 3n, então: Par =, temos: a = 3. = 3 = Par =, temos: a = 3. = 6 = 5 Par = 3, temos: a 3 = 3. 3 = 9 = 8 Então a + a + a 3 = +

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Fase

Prova final de MATEMÁTICA - 3o ciclo a Fase Prova final de MATEMÁTICA - o ciclo 015 - a Fase Proposta de resolução Caderno 1 1. Calculando o valor médio das temperaturas registadas, temos Resposta: Opção B 19 + 0 + + + 5 7 0 = 5 0 =,6..1. O triângulo

Leia mais

UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE

UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE www.elitecampinas.com.br Fone: (19) -71 O ELITE RESOLVE IME 004 PORTUGUÊS/INGLÊS Você na elite das universidades! UNICAMP 004 SEGUNDA FASE MATEMÁTICA www.elitecampinas.com.br Fone: (19) 51-101 O ELITE

Leia mais

mínimo. Para tal, basta obtermos o vértice da abcissa x e aplicarmos na função, isto é, xv = - 8/4 = - 2 yv = 2.(- 2) (- 2) + 11 = 3.

mínimo. Para tal, basta obtermos o vértice da abcissa x e aplicarmos na função, isto é, xv = - 8/4 = - 2 yv = 2.(- 2) (- 2) + 11 = 3. Resolução: Repare que os três operadores matemáticos #, Δ e representam potenciação, divisão e soma. Assim, a expressão [(x#) 8 x 3]Δ[(x#) 8 x 11] equivale a: [(x#) 8 x 3]Δ[(x#) 8 x 11] = [x + 8x + 3]

Leia mais

MATEMÁTICA - 3o ciclo Áreas e Volumes (9 o ano) Propostas de resolução

MATEMÁTICA - 3o ciclo Áreas e Volumes (9 o ano) Propostas de resolução MATEMÁTICA - o ciclo Áreas e Volumes (9 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Considerando a expressão para o volume, V, de um tronco de pirâmide quadrangular

Leia mais

Solução do Simulado PROFMAT/UESC 2012

Solução do Simulado PROFMAT/UESC 2012 Solução do Simulado PROFMAT/UESC 01 (1) Encontre uma fração equivalente a 9/5 cuja soma dos termos é igual a 196: (A) 96/100 (B) 106/90 (C) 116/80 (D) 16/70 (E) 136/60 9 5 = 9 5 14 14 = 16 70 () Um grupo

Leia mais

João esqueceu-se do seu código, mas lembra-se que é divisível por 9. Quantos códigos existem nessas condições?

João esqueceu-se do seu código, mas lembra-se que é divisível por 9. Quantos códigos existem nessas condições? 2/09/16 Duração: 4 horas e 0 minutos 1 Para desbloquear o seu celular, João desliza o dedo horizontalmente ou verticalmente por um quadro numérico, semelhante ao representado na figura, descrevendo um

Leia mais

Teste Intermédio de MATEMÁTICA - 9o ano 10 de maio de 2012

Teste Intermédio de MATEMÁTICA - 9o ano 10 de maio de 2012 Teste Intermédio de MATEMÁTICA - 9o ano 10 de maio de 01 Proposta de resolução 1. 1.1. Como, na turma A os alunos com 15 anos são 7% do total, a probabilidade de escolher ao acaso um aluno desta turma

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Fase

Prova final de MATEMÁTICA - 3o ciclo a Fase Prova final de MATEMÁTICA - 3o ciclo 015-1 a Fase Proposta de resolução Caderno 1 1. 1.1. Os alunos que têm uma altura inferior a 155 cm são os que medem 150 cm ou 15 cm. Assim, o número de alunos com

Leia mais

TIPO-A. Matemática. 03. Considere os números naturais a = 25, b = 2, c = 3, d = 4 e analise as afirmações seguintes:

TIPO-A. Matemática. 03. Considere os números naturais a = 25, b = 2, c = 3, d = 4 e analise as afirmações seguintes: 2 Matemática 01. Recorde que uma função f: R R diz-se par quando f( x) = f(x) para todo x real, e que f diz-se ímpar quando f( x) = f(x) para todo x real. Com base nessas definições, analise a veracidade

Leia mais

MATEMÁTICA - 3o ciclo Áreas e Volumes (9 o ano) Propostas de resolução

MATEMÁTICA - 3o ciclo Áreas e Volumes (9 o ano) Propostas de resolução MATEMÁTICA - o ciclo Áreas e Volumes (9 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Como planificação da superfície lateral de cilindro é um retângulo, cujas medidas

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Chamada

Prova final de MATEMÁTICA - 3o ciclo a Chamada Prova final de MATEMÁTICA - 3o ciclo 013-1 a Chamada Proposta de resolução 1. Como o João escolhe 1 de entre 9 bolas, o número de casos possíveis para as escolhas do João são 9. Como os números, 3, 5 e

Leia mais

Assinale as proposições verdadeiras some os resultados e marque na Folha de Respostas.

Assinale as proposições verdadeiras some os resultados e marque na Folha de Respostas. PROVA DE MATEMÁTICA a AVALIAÇÃO UNIDADE 8 a SÉRIE E M _ COLÉGIO ANCHIETA-A ELAORAÇÃO DA PROVA: PROF OCTAMAR MARQUES PROFA MARIA ANTÔNIA CONCEIÇÃO GOUVEIA QUESTÕES DE A 8 Assinale as proposições verdadeiras

Leia mais

r O GABARITO - QUALIFICAÇÃO - Março de 2013

r O GABARITO - QUALIFICAÇÃO - Março de 2013 GABARITO - QUALIFICAÇÃO - Março de 013 Questão 1. (pontuação: 1,5) É dado um retângulo ABCD tal que em seu interior estão duas circunferências tangentes exteriormente no ponto T, como mostra a figura abaixo.

Leia mais

GABARITO - ANO 2018 OBSERVAÇÃO:

GABARITO - ANO 2018 OBSERVAÇÃO: GABARITO - ANO 018 OBSERVAÇÃO: Embora as soluções neste gabarito se apresentem sob a forma de um texto explicativo, gostaríamos de salientar que para efeito de contagem dos pontos adquiridos, na avaliação

Leia mais

Grupo 1 - PIC OBMEP 2011 Módulo 2 - Geometria. Resumo do Encontro 6, 22 de setembro de Questões de geometria das provas da OBMEP

Grupo 1 - PIC OBMEP 2011 Módulo 2 - Geometria. Resumo do Encontro 6, 22 de setembro de Questões de geometria das provas da OBMEP Grupo 1 - PIC OBMEP 2011 Módulo 2 - Geometria Resumo do Encontro 6, 22 de setembro de 2012 Questões de geometria das provas da OBMEP http://www.obmep.org.br/provas.htm 1. Área: conceito e áreas do quadrado

Leia mais

Soluções Comentadas Matemática Curso Mentor Aprendizes-Marinheiros. Barbosa, L.S.

Soluções Comentadas Matemática Curso Mentor Aprendizes-Marinheiros. Barbosa, L.S. Soluções Comentadas Matemática Curso Mentor Aprendizes-Marinheiros Barbosa, L.S. leonardosantos.inf@gmail.com 4 de janeiro de 2014 2 Sumário I Provas 5 1 Matemática 2013/2014 7 II Soluções 11 2 Matemática

Leia mais

Soluções Comentadas Matemática Curso Mentor Aprendizes-Marinheiros. Barbosa, L.S.

Soluções Comentadas Matemática Curso Mentor Aprendizes-Marinheiros. Barbosa, L.S. Soluções Comentadas Matemática Curso Mentor Aprendizes-Marinheiros Barbosa, L.S. leonardosantos.inf@gmail.com 6 de dezembro de 2014 2 Sumário I Provas 5 1 Matemática 2013/2014 7 2 Matemática 2014/2015

Leia mais

π y 2 6 π 8 3 (2,42 + 3, ,4 3,6) y ,22 ( ) y 2 0,64 19 y 2 12,16cm. Tomando π = 3, o volume do cone será dado por: Vcilindro

π y 2 6 π 8 3 (2,42 + 3, ,4 3,6) y ,22 ( ) y 2 0,64 19 y 2 12,16cm. Tomando π = 3, o volume do cone será dado por: Vcilindro Resposta da questão 1: [B] π.5.6 olume do cone = = 50 π cm olume do líquido do cilindro da figura : 65π - 50π = 575π Altura do líquido do cilindro da figura : π.5.h = 575π h = cm. Na figura, temos: = 0

Leia mais

Questão 2. Questão 1. Questão 3. Resposta. Resposta. Resposta

Questão 2. Questão 1. Questão 3. Resposta. Resposta. Resposta ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço a ela reservado. Não basta escrever apenas o resultado final: é necessário mostrar os cálculos ou o raciocínio utilizado. Questão Emumasalaháumalâmpada,umatelevisão

Leia mais

Prova final de MATEMÁTICA - 3o ciclo Época especial

Prova final de MATEMÁTICA - 3o ciclo Época especial Prova final de MATEMÁTICA - 3o ciclo 017 - Época especial Proposta de resolução Caderno 1 1. Como 3π 9,7 então vem que 9, < 3π < 9,3, pelo que, de entre as opções apresentadas, o número 9,3 é a única aproximação

Leia mais

,12 2, = , ,12 = = (2012) 2.

,12 2, = , ,12 = = (2012) 2. 1 QUESTÃO 1 Usando a comutatividade da multiplicação, podemos escrever 1000 0,1,01 100 = 1000,01 00 0,1 = 01 01 = (01). QUESTÃO Observe que para obter o primeiro retângulo foi necessário escrever quatro

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Chamada

Prova final de MATEMÁTICA - 3o ciclo a Chamada Prova final de MTMÁTI - o ciclo 014-1 a hamada Proposta de resolução aderno 1 1. omo as grandezas x e y são inversamente proporcionais, sabemos que x y é um valor constante. ntão temos que 15 0 = 1 a 00

Leia mais

Exercícios de Aprofundamento Mat Geom Espacial

Exercícios de Aprofundamento Mat Geom Espacial 1. (Fuvest 015) No cubo ABCDEFGH, representado na figura abaixo, cada aresta tem medida 1. Seja M um ponto na semirreta de origem A que passa por E. Denote por θ o ângulo BMH e por x a medida do segmento

Leia mais

Simulado enem. Matemática e suas Tecnologias. Volume 2. distribuição gratuita

Simulado enem. Matemática e suas Tecnologias. Volume 2. distribuição gratuita Simulado 015 enem G a b a r i t o ạ série Matemática e suas Tecnologias Volume distribuição gratuita Simulado Enem 015 Questão 1 Matemática e suas Tecnologias Gabarito: Alternativa D ( A ) Incorreta. O

Leia mais

1. Na figura está representada uma pavimentação feita apenas com trapézios isósceles, geometricamente iguais. Os trapézios têm cores diferentes.

1. Na figura está representada uma pavimentação feita apenas com trapézios isósceles, geometricamente iguais. Os trapézios têm cores diferentes. Nome: Ano / Turma: N. o : Data - - 1. Na figura está representada uma pavimentação feita apenas com trapézios isósceles, geometricamente iguais. Os trapézios têm cores diferentes. 1.1. Determina, em graus,

Leia mais

8º ANO ENSINO FUNDAMENTAL Matemática. 1º Trimestre 45 questões 26 de abril (Sexta-feira)

8º ANO ENSINO FUNDAMENTAL Matemática. 1º Trimestre 45 questões 26 de abril (Sexta-feira) 8º ANO ENSINO FUNDAMENTAL Matemática S º Trimestre 5 questões 6 de abril (Sexta-feir 09 SIMULADO OBJETIVO 8º ANO º TRIMESTRE. O número, corresponde à fração 0. 00. 000.. 99. MATEMÁTICA COMENTÁRIO/RESOLUÇÃO:

Leia mais

ADA 1º BIMESTRE CICLO I MATEMÁTICA 9º ANO DO ENSINO FUNDAMENTAL 2018

ADA 1º BIMESTRE CICLO I MATEMÁTICA 9º ANO DO ENSINO FUNDAMENTAL 2018 ADA 1º BIMESTRE CICLO I MATEMÁTICA 9º ANO DO ENSINO FUNDAMENTAL 018 ITEM 1 DA ADA Observe potência a seguir: ( ) O resultado dessa potenciação é igual a (A) 8 1. (B) 1 8. (C) 1 81 81 (D) 1 Dada uma potência

Leia mais

05) 3 03) 5 01) 9 04) 5 02) 9 RESOLUÇÃO: Determinado o valor de x, o diagrama passa a apresentar os seguintes dados

05) 3 03) 5 01) 9 04) 5 02) 9 RESOLUÇÃO: Determinado o valor de x, o diagrama passa a apresentar os seguintes dados COLÉGIO ANCHIETA = BA AVALIAÇÃO FINAL DE MATEMÁTICA _00 ª SÉRIE DO ENSINO MÉDIO ELABORAÇÃO: PROFESSOR OCTAMAR MARQUES. RESOLUÇÃO E COMENTÁRIO: PROFA. MARIA ANTÔNIA GOUVEIA. 0. Numa classe de 7 alunos verificamos

Leia mais

Caderno 1: (É permitido o uso de calculadora.) Não é permitido o uso de corretor. Deves riscar aquilo que pretendes que não seja classificado.

Caderno 1: (É permitido o uso de calculadora.) Não é permitido o uso de corretor. Deves riscar aquilo que pretendes que não seja classificado. Proposta de Resolução [dezembro - 017] Caderno 1: (É permitido o uso de calculadora.) O teste é constituído por dois cadernos (Caderno 1 e Caderno ). Utiliza apenas caneta ou esferográfica, de tinta azul

Leia mais

OBMEP ª fase Soluções - Nível 1

OBMEP ª fase Soluções - Nível 1 OBMEP 009 ª fase Soluções - Nível 1 Nível 1 questão 1 a) Há apenas três maneiras de escrever 1 como soma de três números naturais: 1 = 1+ 0 + 0, 1 = 0 + 1+ 0 e 1 = 0 + 0 + 1, que nos dão as possibilidades

Leia mais

XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO

XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (Ensino Médio) GABARITO GABARITO NÍVEL ) D 6) C ) D 6) C ) B ) A 7) B ) B 7) B ) C ) D 8) C ) E 8) B ) B 4) D 9) E 4) D 9) C 4) D ) D 0) A ou

Leia mais

Matemática E Intensivo V. 1

Matemática E Intensivo V. 1 Intensivo V. Exercícios 0) 0) Seja o termo geral n, então: Par, temos: a.. Par, temos: a.. Par, temos: a. 9 8. Então a + a + a + + 8. Sabemos que para uma sequência ser denominada P.A. a diferença entre

Leia mais

Grupo 1 - N1M2 - PIC OBMEP 2011 Módulo 2 - Geometria. Resumo do Encontro 6, 22 de setembro de Questões de geometria das provas da OBMEP

Grupo 1 - N1M2 - PIC OBMEP 2011 Módulo 2 - Geometria. Resumo do Encontro 6, 22 de setembro de Questões de geometria das provas da OBMEP Grupo 1 - N1M2 - PIC OBMEP 2011 Módulo 2 - Geometria Resumo do Encontro 6, 22 de setembro de 2012 Questões de geometria das provas da OBMEP http://www.obmep.org.br/provas.htm 1. Áreas - capítulo 2 da apostila

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Fase

Prova final de MATEMÁTICA - 3o ciclo a Fase Prova final de MATEMÁTICA - 3o ciclo 2016-2 a Fase Proposta de resolução Caderno 1 1. Calculando a diferença entre 3 1 e cada uma das opções apresentadas, arredondada às centésimas, temos que: 3 1 2,2

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - 2o Ano 207-2 a Fase Proposta de resolução GRUPO I. Temos que os algarismos pares, ficando juntos podem ocupar 4 grupos de duas posições adjacentes e trocando entre si, podem

Leia mais

26 A 30 D 27 C 31 C 28 B 29 B

26 A 30 D 27 C 31 C 28 B 29 B 26 A O total de transplantes até julho de 2015 é de 912 transplantes. Destes, 487 são de córnea. Logo 487/912 53,39% transplantes são de córnea. 27 C O número de subnutridos caiu de 1,03 bilhões de pessoas

Leia mais

Matemática. x : módulo do número x. 29. Com base nos dados do gráfico, que fração das mulheres viviam na zona rural do Brasil em 1996?

Matemática. x : módulo do número x. 29. Com base nos dados do gráfico, que fração das mulheres viviam na zona rural do Brasil em 1996? Matemática Nesta prova serão utilizados os seguintes símbolos com seus respectivos significados: x : módulo do número x i: unidade imaginária sen x: seno de x 9. Com base nos dados do gráfico, que fração

Leia mais

MATEMÁTICA - 3o ciclo Áreas e Volumes (9 o ano) Propostas de resolução

MATEMÁTICA - 3o ciclo Áreas e Volumes (9 o ano) Propostas de resolução MATEMÁTICA - o ciclo Áreas e Volumes (9 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Como a água no reservatório ocupa o cilindro, cuja base é o círculo de diâmetro

Leia mais

Caderno 1: (É permitido o uso de calculadora.) Não é permitido o uso de corretor. Deves riscar aquilo que pretendes que não seja classificado.

Caderno 1: (É permitido o uso de calculadora.) Não é permitido o uso de corretor. Deves riscar aquilo que pretendes que não seja classificado. Proposta de Resolução [maio - 018] Caderno 1: (É permitido o uso de calculadora.) O teste é constituído por dois cadernos (Caderno 1 e Caderno ). Utiliza apenas caneta ou esferográfica, de tinta azul ou

Leia mais

a) b) 5 3 sen 60 o = x. 2 2 = 5. 3 x = x = No triângulo da figura abaixo, o valor do x é igual a: a) 7 c) 2 31 e) 7 3 b) 31 d) 31 3

a) b) 5 3 sen 60 o = x. 2 2 = 5. 3 x = x = No triângulo da figura abaixo, o valor do x é igual a: a) 7 c) 2 31 e) 7 3 b) 31 d) 31 3 Matemática a. série do Ensino Médio Frentes e Eercícios propostos AULA FRENTE Num triângulo ABC em que AB = 5, B^ = º e C^ = 5º, a medida do lado AC é: a) 5 b) 5 c) 5 d) 5 e) 5 Sabendo-se que um dos lados

Leia mais

MATEMÁTICA - CEFET2013 Professor Marcelo QUESTÃO 01

MATEMÁTICA - CEFET2013 Professor Marcelo QUESTÃO 01 MATEMÁTICA - CEFET013 Professor Marcelo QUESTÃO 01 Em um plano, uma reta que passa pelo ponto P(8,10) tangencia a circunferência x +y 4x 6y 3 = 0 no ponto A. A medida do segmento PA, em unidades de comprimento,

Leia mais

BANCO DE EXERCÍCIOS - 24 HORAS

BANCO DE EXERCÍCIOS - 24 HORAS BANCO DE EXERCÍCIOS - HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº GABARITO COMENTADO ) A função será y,5x +, onde y (preço a ser pago) está em função de x (número de quilômetros

Leia mais

XXVII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO

XXVII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO XXVII OLIPÍADA BRASILEIRA DE ATEÁTICA PRIEIRA FASE NÍVEL 3 (Ensino édio) GABARITO GABARITO NÍVEL 3 1) D 6) C 11) C 16) D 1) C ) C 7) B 1) C 17) C ) Anulada 3) Anulada 8) D 13) B 18) A 3) B ) B 9) B 1)

Leia mais

Módulo Tópicos Adicionais. Recorrências

Módulo Tópicos Adicionais. Recorrências Módulo Tópicos Adicionais Recorrências Módulo Tópico Adicionais Recorrências 1 Exercícios Introdutórios Exercício 1 Considere a sequência definida por x 1 d e x n r + x n 1, para n > 1 Trata-se de uma

Leia mais

RESOLUÇÃO SIMULADO 2ª SÉRIE B7 2º BIMESTRE 2016

RESOLUÇÃO SIMULADO 2ª SÉRIE B7 2º BIMESTRE 2016 Resposta da questão 1: Resposta da questão : Resposta da questão 3: Resposta da questão : Resposta da questão 5: Resposta da questão 6: Resposta da questão 7: Resposta da questão 8: Resposta da questão

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Chamada

Prova final de MATEMÁTICA - 3o ciclo a Chamada Prova final de MATEMÁTICA - o ciclo 006-1 a Chamada Proposta de resolução 1. 1.1. Como a Marta pesa 45 kg, e para evitar lesões na coluna vertebral, o peso de uma mochila e o do material que se transporta

Leia mais

Matemática E Extensivo V. 6

Matemática E Extensivo V. 6 Etensivo V. 6 Eercícios ) a) P() é sempre igual à soma dos coeficientes de P(). b) P() é sempre igual ao termo independente de P(). c) P() é a raiz de P(), pois P() =. ) D a) P() = ³ + 7. ² 7. P() = +

Leia mais

NÚCLEO EDUCAFRO KALUNGA DISCIPLINA DE MATEMÁTICA PROFESSOR DEREK PAIVA

NÚCLEO EDUCAFRO KALUNGA DISCIPLINA DE MATEMÁTICA PROFESSOR DEREK PAIVA NÚCLEO EDUCAFRO KALUNGA DISCIPLINA DE MATEMÁTICA PROFESSOR DEREK PAIVA NOTAS DE AULA: REPRESENTAÇÕES DECIMAIS A representação decimal é a forma como escrevemos um número em uma única base, e como essa

Leia mais

Área e Teorema Fundamental do Cálculo

Área e Teorema Fundamental do Cálculo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Área e Teorema Fundamental

Leia mais

UFRGS MATEMÁTICA

UFRGS MATEMÁTICA - MATEMÁTICA 6) O Estádio Nacional de Pequim, construído para a realização dos Jogos Olímpicos de 008, teve um custo de 500 milhões de dólares, o que representa 1,5% do investimento total feito pelo país

Leia mais

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução MTEMÁTI - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. omo a reta T P é tangente à circunferência no ponto T é perpendicular ao

Leia mais

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução MTEMÁTI - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. omo a base do prisma é um quadrado, os lados adjacentes são perpendiculares,

Leia mais

Seja AB = BC = CA = 4a. Sendo D o ponto de interseção da reta s com o lado AC temos, pelo teorema de Tales, AD = 3a e DC = a.

Seja AB = BC = CA = 4a. Sendo D o ponto de interseção da reta s com o lado AC temos, pelo teorema de Tales, AD = 3a e DC = a. GABARITO MA1 Geometria I - Avaliação 2-201/2 Questão 1. (pontuação: 2) As retas r, s e t são paralelas, como mostra a figura abaixo. A distância entre r e s é igual a e a distância entre s e t é igual

Leia mais

BANCO DE EXERCÍCIOS - 24 HORAS

BANCO DE EXERCÍCIOS - 24 HORAS BANCO DE EXERCÍCIOS - 24 HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº 17 GABARITO COMENTADO 1) O valor, em reais, pago pelo contribuinte é 0,15. (34000 26000) = 0,15. 000 = 1200

Leia mais

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito. a(x x 0) = b(y 0 y).

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito. a(x x 0) = b(y 0 y). MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 016.1 Gabarito Questão 01 [ 1,00 ::: (a)=0,50; (b)=0,50 ] (a) Seja x 0, y 0 uma solução da equação diofantina ax + by = c, onde a, b são inteiros

Leia mais

PROVA 3 conhecimentos específicos

PROVA 3 conhecimentos específicos PROVA conhecimentos específicos MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Central do Vestibular Unificado GABARITO

Leia mais

OPEMAT. Olimpíada Pernambucana de Matemática

OPEMAT. Olimpíada Pernambucana de Matemática OPEMAT Olimpíada Pernambucana de Matemática - 206 Nível. O ano de 206 está acabando, vamos ver se você conhece bem esse número. Para isso, julgue os itens a seguir: (V) (F) A maior potência de 2 que divide

Leia mais

A equação da circunferência

A equação da circunferência A UA UL LA A equação da circunferência Introdução Nas duas últimas aulas você estudou a equação da reta. Nesta aula, veremos que uma circunferência desenhada no plano cartesiano também pode ser representada

Leia mais

GABARITO DO CADERNO DE QUESTÕES

GABARITO DO CADERNO DE QUESTÕES OLÍMPIADAS DE MATEMÁTICA DO OESTE CATARINENSE GABARITO DO CADERNO DE QUESTÕES NÍVEL 3 Ensino Médio Universidade Federal da Fronteira Sul Campus Chapecó 017 OLIMPÍADA REGIONAL DE MATEMÁTICA GABARITO: 1.

Leia mais

Teste Intermédio de MATEMÁTICA - 8o ano 11 de maio de 2011

Teste Intermédio de MATEMÁTICA - 8o ano 11 de maio de 2011 Teste Intermédio de MATEMÁTICA - 8o ano de maio de 20 Proposta de resolução. Analisando exclusivamente os votos, da população de negros, nos três candidatos, podemos verificar que o candidato Q foi mais

Leia mais

PROVA DE MATEMÁTICA. Marque no cartão-resposta anexo, a única opção correta correspondente a cada questão.

PROVA DE MATEMÁTICA. Marque no cartão-resposta anexo, a única opção correta correspondente a cada questão. PÁG0 PROVA DE MATEMÁTICA Marque no cartão-resposta anexo, a única opção correta correspondente a cada questão 1 Daniel tem ração suficiente para alimentar quatro galinhas durante 18 dias No fim do 6 o

Leia mais

(b) Em quantos destes anagramas as letras CI aparecem juntas e nesta ordem? (c) Em quantos anagramas a letra A aparece antes (a esquerda) da letra E?

(b) Em quantos destes anagramas as letras CI aparecem juntas e nesta ordem? (c) Em quantos anagramas a letra A aparece antes (a esquerda) da letra E? Exercício 1. (a) Quantos são os anagramas da palavra CINEMA. (b) Em quantos destes anagramas as letras CI aparecem juntas e nesta ordem? (c) Em quantos anagramas a letra A aparece antes (a esquerda) da

Leia mais

Encontro 6: Áreas e perímetros - resolução de exercícios

Encontro 6: Áreas e perímetros - resolução de exercícios Encontro 6: Áreas e perímetros - resolução de exercícios Recapitulando... Área de um triângulo retângulo Área de um paralelogramo Á. 2 Á. Todos os paralelogramos de mesma base e mesma altura possuem áreas

Leia mais

PROVA 3 conhecimentos específicos

PROVA 3 conhecimentos específicos PROVA conhecimentos específicos MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Central do Vestibular Unificado GABARITO

Leia mais

3º TRIMESTRE DE 2016

3º TRIMESTRE DE 2016 COLÉGIO MILITAR DO RIO E JANEIRO LISTA DE EXERCÍCIOS COMPLEMENTARES GEOMETRIA ESPACIAL º ANO DO ENSINO MÉDIO Equipe: Prof. Cap Boente, Prof Magda, Prof Fernando e Prof Zamboti 3º TRIMESTRE DE 06 PRISMAS

Leia mais

Colégio RESOLUÇÃO. Dessa maneira, a média geométrica entre, 8 e 9 é: Portanto, a média geométrica entre, 8, é um número maior que zero e menor que 1.

Colégio RESOLUÇÃO. Dessa maneira, a média geométrica entre, 8 e 9 é: Portanto, a média geométrica entre, 8, é um número maior que zero e menor que 1. Colégio Nome: N.º: Endereço: Data: Telefone: E-mail: Disciplina: MATEMÁTICA Prova: DESAFIO PARA QUEM CURSA O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 2019 QUESTÃO 16 1 1 1 1. Determinando a média geométrica entre

Leia mais

PROVA 3 conhecimentos específicos

PROVA 3 conhecimentos específicos PROVA conhecimentos específicos MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Central do Vestibular Unificado GABARITO

Leia mais

COLEÇÃO DARLAN MOUTINHO VOL. 04 RESOLUÇÕES. com. voce

COLEÇÃO DARLAN MOUTINHO VOL. 04 RESOLUÇÕES. com. voce COLEÇÃO DARLAN MOUTINHO VOL. 04 RESOLUÇÕES e com voce GEOMETRIA ESPACIAL RESOLUÇÃO e com voce 1 [C] 2 [D] As medidas das aress do prisma são, em centímetros, x, 2x e 4x. Daí, como sua área tol é 28cm 2,

Leia mais

PROVA 3 conhecimentos específicos

PROVA 3 conhecimentos específicos PROVA conhecimentos específicos MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Central do Vestibular Unificado GABARITO

Leia mais

PROVA FINAL DE MATEMÁTICA 9.º ano de escolaridade

PROVA FINAL DE MATEMÁTICA 9.º ano de escolaridade Nome: N.º Turma Data: / / Avaliação Professor Encarregado Educação Parte 1: 35 minutos. (é permitido o uso de calculadora) 1 2 1. Sabe-se que A ]3, 21 21 ] = ] 2, ]. 2 2 Qual dos conjuntos seguintes poderá

Leia mais

Prova 3 Matemática. N ọ DE INSCRIÇÃO:

Prova 3 Matemática. N ọ DE INSCRIÇÃO: Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta

Leia mais

Prova 3 Matemática. N ọ DE INSCRIÇÃO:

Prova 3 Matemática. N ọ DE INSCRIÇÃO: Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta

Leia mais

Prova 3 Matemática. N ọ DE INSCRIÇÃO:

Prova 3 Matemática. N ọ DE INSCRIÇÃO: Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta

Leia mais

1. A imagem da função real f definida por f(x) = é a) R {1} b) R {2} c) R {-1} d) R {-2}

1. A imagem da função real f definida por f(x) = é a) R {1} b) R {2} c) R {-1} d) R {-2} 1. A imagem da função real f definida por f(x) = é R {1} R {2} R {-1} R {-2} 2. Dadas f e g, duas funções reais definidas por f(x) = x 3 x e g(x) = sen x, pode-se afirmar que a expressão de (f o g)(x)

Leia mais

Matemática Unidade I Álgebra Série 15 - Progressão geométrica. a 4 = a 1 q 3 54 = 2 q 3 q 3 = 27 q = 3. a 5 = a 1 q 4 a 5 = a 5 = 162

Matemática Unidade I Álgebra Série 15 - Progressão geométrica. a 4 = a 1 q 3 54 = 2 q 3 q 3 = 27 q = 3. a 5 = a 1 q 4 a 5 = a 5 = 162 0 a 4 = a q 3 54 = q 3 q 3 = 7 q = 3 a 5 = a q 4 a 5 = 3 4 a 5 = 6 Resposta: C 0 a 8 = a q 4 43 = 3 q6 3 5 3 = q 6 q 6 = 3 6 Como os termos são positivos, q > 0; assim: q = 3 a 5 = a q 3 a 5 = 3 33 a 5

Leia mais

Prova 3 Matemática. N ọ DE INSCRIÇÃO:

Prova 3 Matemática. N ọ DE INSCRIÇÃO: Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta

Leia mais

Componente Curricular: Professor(a): PAULO CEZAR Turno: Data: Matemática Matutino / /2015 Aluno(a): Nº do Aluno: Série: Turma: 9º Ano

Componente Curricular: Professor(a): PAULO CEZAR Turno: Data: Matemática Matutino / /2015 Aluno(a): Nº do Aluno: Série: Turma: 9º Ano Componente Curricular: Professor(a): PAULO CEZAR Turno: Data: Matemática Matutino / /015 Aluno(a): Nº do Aluno: Série: Turma: 9º Ano Esta lista de exercícios possui pontuação extra e portanto é facultativa

Leia mais

Prova Faetec- nível médio - vestibular ISEs e ISTs 1º semestre

Prova Faetec- nível médio - vestibular ISEs e ISTs 1º semestre Prof Tiago Machado www.professortiagomachado.blogspot.com PROFESSOR TIAGO MACHADO PROVAS DE COLÉGIOS TÉCNICOS NÍVEL MÉDIO ISTS E ISES E SUBSEQUENTE COMENTADA QUESTÃO POR QUESTÃO FAETEC-RJ CADERNO DE MATEMÁTICA

Leia mais

ESCOLA TÉCNICA ESTADUAL FREDERICO GUILHERME SCHMIDT

ESCOLA TÉCNICA ESTADUAL FREDERICO GUILHERME SCHMIDT PRODUTOS NOTÁVEIS Quadrado da soma de dois termos (a + b) 2 = a 2 + 2ab + b 2 quadrado do segundo termo primeiro termo 2 x (primeiro termo) x (segundo termo) quadrado do primeiro termo segundo termo Quadrado

Leia mais

OS PRISMAS. 1) Conceito :

OS PRISMAS. 1) Conceito : 1 SÍNTESE DE CONTEÚDO MATEMÁTICA SEGUNDA SÉRIE - ENSINO MÉDIO ASSUNTO : OS PRISMAS NOME :...NÚMERO :... TURMA :... ============================================================ OS PRISMAS 1) Conceito :

Leia mais

1. O retângulo da figura a seguir está dividido em 7 quadrados. Se a área do menor quadrado é igual a 1, a área do retângulo é igual a:

1. O retângulo da figura a seguir está dividido em 7 quadrados. Se a área do menor quadrado é igual a 1, a área do retângulo é igual a: XXV OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase Nível - A duração da prova é de horas. - Não é permitido o uso de calculadoras nem consultas a notas ou livros. - Você pode solicitar papel para rascunho.

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Fase

Prova final de MATEMÁTICA - 3o ciclo a Fase Prova final de MATEMÁTICA - 3o ciclo 017-1 a Fase Proposta de resolução Caderno 1 1. Como 9 =,5 e 5,, temos que 5 < 9 indicados na definição do conjunto, vem que: e assim, representando na reta real os

Leia mais

Prova final de MATEMÁTICA - 3o ciclo Época especial

Prova final de MATEMÁTICA - 3o ciclo Época especial Prova final de MATEMÁTICA - o ciclo 016 - Época especial Proposta de resolução Caderno 1 1. Como os triângulos [OAB] e [OCD] são semelhantes (porque têm um ângulo comum e os lados opostos a este ângulo

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 07/08/10 PROFESSORES: CARIBÉ E ROBERTO CIDREIRA

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 07/08/10 PROFESSORES: CARIBÉ E ROBERTO CIDREIRA RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: 07/08/10 PROFESSORES: CARIBÉ E ROBERTO CIDREIRA Observe a tabela abaixo. Seja n o número da quadrícula em que, pela primeira vez, o número

Leia mais

A origem das fórmulas das áreas de Figuras Planas

A origem das fórmulas das áreas de Figuras Planas A origem das fórmulas das áreas de Figuras Planas Dentro da geometria quando nos é requerido o cálculo que envolve a área de uma figura plana, primeiro é preciso reconhecer qual a figura estamos trabalhando

Leia mais

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução MTEMÁTI - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. omo o triângulo [] é um triângulo retângulo em, (porque [EF GH] é paralelepípedo

Leia mais

MATEMÁTICA SARGENTO DA FAB

MATEMÁTICA SARGENTO DA FAB MATEMÁTICA BRUNA PAULA 1 COLETÂNEA DE QUESTÕES DE MATEMÁTICA DA EEAr (QUESTÕES RESOLVIDAS) QUESTÃO 1 (EEAr 2013) Se x é um arco do 1º quadrante, com sen x a e cosx b, então é RESPOSTA: d QUESTÃO 2 (EEAr

Leia mais

36ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO

36ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO 6ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (Ensino Médio) GABARITO GABARITO NÍVEL ) C 6) A ) D 6) A ) D ) A 7) A ) E 7) B ) E ) A 8) E ) B 8) E ) A ) C 9) C ) D 9) E ) B ) A 0) B ) A 0)

Leia mais

Prova Vestibular ITA 2000

Prova Vestibular ITA 2000 Prova Vestibular ITA Versão. ITA - (ITA ) Sejam f, g : R R definidas por f ( ) = e g cos 5 ( ) =. Podemos afirmar que: f é injetora e par e g é ímpar. g é sobrejetora e f é bijetora e g é par e f é ímpar

Leia mais

Instruções para a realização da Prova Leia com muita atenção

Instruções para a realização da Prova Leia com muita atenção Nível 3 Instruções para a realização da Prova Leia com muita atenção Prova da segunda fase Caro Aluno, Parabéns pela sua participação na décima segunda edição da Olimpíada de Matemática de São José do

Leia mais

Colégio Naval 2008/2009 (PROVA VERDE)

Colégio Naval 2008/2009 (PROVA VERDE) Colégio Naval 008/009 (PROVA VERDE) 01) Um triângulo retângulo, de lados expressos por números inteiros consecutivos, está inscrito em um triângulo eqüilátero T de lado x. Se o maior cateto é paralelo

Leia mais

Escola Secundária com 3º Ciclo D. Dinis Curso Profissional de Técnico de Informática de Gestão Teste Diagnóstico do módulo A1

Escola Secundária com 3º Ciclo D. Dinis Curso Profissional de Técnico de Informática de Gestão Teste Diagnóstico do módulo A1 Nome: Nº 10º IG 1ª Parte 1. Qual é o perímetro da estrela representada na figura ao lado, sabendo que é formada por quatro circunferências, cada uma com 5 cm de raio, um quadrado e quatro triângulos equiláteros?

Leia mais

REVISÃO 9º ANO - MATEMÁTICA MATEMÁTICA - PROF: JOICE

REVISÃO 9º ANO - MATEMÁTICA MATEMÁTICA - PROF: JOICE MATEMÁTICA - PROF: JOICE 1- Resolva, em R, as equações do º grau: 7x 11x = 0. x² - 1 = 0 x² - 5x + 6 = 0 - A equação do º grau x² kx + 9 = 0, assume as seguintes condições de existência dependendo do valor

Leia mais

EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE

EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE 1ª. SÉRIE Exercícios de PA e PG 1. Determinar o 61º termo da PA ( 9,13,17,21,...) Resp. 249 2. Determinar a razão da PA ( a 1,a 2, a 3,...) em que o primeiro

Leia mais

Prova de Aferição de MATEMÁTICA - 8o Ano 2018

Prova de Aferição de MATEMÁTICA - 8o Ano 2018 Prova de Aferição de MATMÁTICA - 8o Ano 2018 Proposta de resolução 1. 1.1. Como os dados se reportam a um conjunto de 6 dados, podemos escrever os dados numa lista ordenada e dividi-la em duas com dados

Leia mais

Exercícios de Revisão

Exercícios de Revisão Professor: Cassio Kiechaloski Mello Disciplina: Matemática Exercícios de Revisão Geometria Analítica Geometria Plana Geometria Espacial Números Complexos Polinômios Na prova de recuperação final, não será

Leia mais

Objetivos. em termos de produtos internos de vetores.

Objetivos. em termos de produtos internos de vetores. Aula 5 Produto interno - Aplicações MÓDULO 1 - AULA 5 Objetivos Calcular áreas de paralelogramos e triângulos. Calcular a distância de um ponto a uma reta e entre duas retas. Determinar as bissetrizes

Leia mais