Funções de Uma Variável - 1 a Avaliação - Turma B3 31 de outubro de Prof. Armando Caputi

Tamanho: px
Começar a partir da página:

Download "Funções de Uma Variável - 1 a Avaliação - Turma B3 31 de outubro de Prof. Armando Caputi"

Transcrição

1 Funções de Uma Variável - 1 a Avaliação - Turma B 1 de outubro de Prof. Armando Caputi 1 Determine o domínio da função g(x) = arctan ( ln(x x + ) ) (justifique) e a equação da reta tangente ao seu gráfico x =. Solução: Domínio. Devemos ter x x + > 0 e ln(x x + ) Dom(arctan). Como Dom(arctan) = R, a última condição é claramente satisfeita. Para analisar a primeira, observemos que o discriminante de x x + é = 9 1 < 0. Como o coeficiente do termo quadrático é positivo (corresponde a uma parábola "para cima"), resulta x x + > 0 para todo x. Logo Dom g = R Reta tangente. Para determinar a equação da reta, precisamos de um ponto e do coeficiente angular da reta. Ponto. Quando x =, g(x) = arctan (ln(4 6 + )) = arctan 0 = 0. Logo, um ponto da reta é (, 0). Coeficiente angular. Este é dado pela derivada de g (x) no ponto x =. Usando a Regra da Cadeia para efetuar esse cálculo: t = x x + ( = [ln(x x + )] Assim, para x =, resulta g (x) = dy dx = dy du ) ( g (1) = u = ln t y = arctan u du dt dt dx = 1 x x + ( u ) (x ) = ) ( ) 1 (x ) = t 4 (1 + [ln(4 6 + )] )(4 6 + ) = 1 x (1 + [ln(x x + )] )(x x + ) Juntando os resultados, temos que a equação da reta tangente ao gráfico de g(x) em x = é dada por y = x

2 Seja dada a função f(x) = 4(x + ) (x + 1) Esboce o gráfico de f(x), considerando: domínio da função, interceptos, simetrias, assíntotas, monotonicidade, extremos locais e globais e seus valores, concavidade, pontos de inflexão e os valores de f(x) e f (x) em tais pontos. ATENÇÃO: o gráfico deve ser compatível com os dados obtidos na análise prévia. Solução: Domínio. Para que a função f(x) esteja definida, é necessário que x + 1 0, isto é, x 1. Assim, Interceptos. Com o eixo y: f(0) = 8 = 5. Dom f = R\{ 1} Com o eixo x: f(x) = 0 se e somente se 4(x + ) (x + 1) = 0, isto é, x x + 5 = 0, o que equivale a x + x 5 = 0. As raízes são x 1 = 1 e x = 5 Logo, os interceptos são: (0, 5), ( 5, 0), (1, 0) Simetrias. Não há. Assíntotas. Verticais. Como 1 / Dom f, a reta x = 1 é uma candidata a assíntota vertical. Calculando os ites laterais (ambos, simultaneamente): Tendo em mente que ( ) ( 4(x + ) x 1 ± (x + 1) = 4(x + ) x 1 ± (x + 1) ) x + = 1 e x 1 ± x 1 ±(x + 1) = 0 + resulta ( ) 4(x + ) x 1 ± (x + 1) = + Assim, a reta x = 1 é uma assíntota vertical. Horizontais ou Oblíquas. Calculando os ites no infinito (ambos, simultaneamente): ( ) ( 4(x + ) x ± (x + 1) = x ± ) 4(x + ) (x + 1) Observando que o ite na última expressão é uma indeterminação do tipo [ ], podemos usar a Regra de L Hopital para calculá-lo. Obtemos: Logo, 4(x + ) x ± (x + 1) = 4 x ± (x + 1) = 0 f(x) = x ±

3 e a reta y = é uma assíntota horizontal, de ambos os lados. Monotonicidade e extremos ( (x + 1) f ) (x + 1)(x + ) (x) = 4 (x + 1) 4 = Estudo de sinal e monotonicidade: Temos então que a função f(x) é: decrescente, se x ; crescente, se x < 1; decrescente, se x > 1 4 (x + ) ((x + 1) (x + )) = 4 (x + 1) (x + 1) x < x < 1 1 < x (x + 1) + (x + ) + f (x) + Pontos críticos e extremos: Pelos dados acima, o único ponto crítico é x =. Como f(x) "chega" decrescendo em x = e "sai" crescendo, x = é um ponto de mínimo local (a ver ainda se é global). O valor mínimo local é f( ) = 4. Como a função tende a para x e 4 <, o ponto x = é, na verdade, um ponto de mínimo global. E pelo que vimos ao estudar as assíntotas verticais, a função não possui máximo global. Concavidade e pontos de inflexão: ( (x + 1) f (x + 1) ) (x + ) 4 8 (x + 4) (x) = 4 (x + 1) 6 = (x + 1 x 9) = (x + 1) 4 (x + 1) 4 Estudo de sinal e concavidade: Observando que o sinal de f (x) é o mesmo sinal de x + 4 (e que 1 / Dom f), temos que f(x) tem concavidade: para baixo, se x < 4 para cima, se 4 < x < 1 para cima, se x > 1 Pontos de inflexão e valores de f(x) e f (x) em tais pontos: O único possível ponto de inflexão é x = 4. Observando que a concavidade muda em x = 4, este é um ponto de inflexão. Além disso, temos: f( 4) = 5 9 f ( 4) = 4 7

4 Gráfico Detalhe da parte central do gráfico de f(x) 4

5 A elipse abaixo tem equação 4x + y = 4. a) Dado um ponto (a, b) da elipse, situado no primeiro quadrante (mas não nos eixos), a reta tangente à elipse pelo ponto (a, b) forma com os eixos x e y um triângulo. Escreva a expressão da área de tal triângulo em função de a e b. [Se quiser - é opcional - tente antes achar a área do triângulo no caso em que (a, b) = (, 1) e depois vá ao caso geral.] b) Com base no item anterior, considere a função área A(x) do triângulo determinado pela reta tangente à elipse num ponto (x, y) e pelos eixos coordenados, e determine os pontos críticos da função A(x) para x (0, 1). c) Tomando a função A(x) para x 1 e y 1, determine seu máximo e mínimo globais nesse arco da elipse. Solução: Item (a) Para determinar a área do triângulo, devemos achar as medidas dos catetos (que estão nos eixos), pois estes fornecem a base e a altura do triângulo. Para isso, devemos achar as intersecções da reta tangente com os eixos coordenados. Equação da reta tangente: Para determinar a equação da reta tangente, precisamos de um ponto (o ponto dado (a, b) ) e do seu coeficiente angular. Considerando que a equação 4x + y = 4 define implicitamente y em função de x, o coeficiente da reta tangente é dado por y, calculado em x = a. Assim, derivando implicitamente a equação da elipse em relação a x, obtemos: 8x + yy = 0 4x + yy = 0 Quando x = a, tem-se y = b, logo 4a + by = 0 y = 4a b Assim, a equação da reta tangente à elipse no ponto (a, b) é y b = 4a b (x a) Intersecções da reta tangente com os eixos: 5

6 Para x = 0, temos y b = 4a b ( a) y = b + 4a b y = 4a + b b Tendo em mente que o ponto (a, b) pertence à elipse, suas coordenadas devem satisfazer a equação desta última, ou seja, 4a + b = 4. Assim, y = 4a + b b e a reta tangente encontra o eixo y no ponto (0, 4 b ). = 4 b Para y = 0, temos b = 4a b (x a) b 4a = x a x = a + b 4a x = 4a + b 4a = 4 4a = 1 a Assim, a reta tangente encontra o eixo x no ponto ( 1 a, 0). Área do triângulo: os catetos formam a base e a altura do triângulo, logo Item (b) Expressão da função A(x): A = 1 1 a 4 b = ab Pelos cálculos do item anterior, podemos afirmar que a função área é dada por em que y é visto aqui como função de x. Pontos críticos de A(x) em (0, 1): A(x) = xy Os pontos críticos de A(x) são aqueles em que A (x) = 0 ou A (x). Derivando (implicitamente), temos A (x) = (xy) x y = (y + xy ) x y Primeiro, observamos que A (x) existe para todo x (0, 1). Logo, os pontos críticos de A(x) são aqueles em que A (x) = 0, isto é y + xy = 0 y = y x 6

7 Lembremos, pelos cálculos feitos no item (a), que em cada ponto do primeiro quadrante, temos Portanto, devemos ter y = 4x y y x = 4x y y = 4x Substituindo y por 4x na equação da elipse, resulta 4x + 4x = 4 x = 1 x = (lembre que x > 0) Portanto, A(x) possui um único ponto crítico em (0, 1): x =. Item (c) Antes de mais nada, como estamos estudando a função área A(x) como função da variável x, vamos identificar para qual intervalo dessa variável temos as condições dadas no enunciado, a saber, x 1/ e y 1. Um dos extremos do intervalo já está dado, pois x 1/. Para identificar o outro, observemos que quando y = 1 o valor correspondente de x (no primeiro quadrante) é obtido por: 4x + y = 4 4x + 1 = 4 4x = x = Observando a elipse (ou mesmo a equação dela), fica claro que para termos y 1, devemos ter x /. Logo, devemos estudar a função A(x) no intervalo [ 1, ]. A função A(x) é contínua (note que y é uma função contínua de x, pois é derivável), logo admite máximo e mínimo absoluto no intervalo considerado. Tais extremos absolutos podem ser atingidos nas extremidades do intervalo ou em pontos críticos no interior do intervalo. O ponto crítico que achamos, x =, está em ( 1, ). Devemos então comparar os valores A( 1 ), A( ), A( ). Antes, observe que a partir da equação 4x + y = 4, temos: x = 1 y = y = x = x = y = y = y = 1 y = 1 7

8 Assim, A( 1 ) = 4 A( ) = Como 4 >, temos que: A( ) = 4 O máximo global ocorre em x = 1 e em x =, e o valor máximo é 4. O mínimo global ocorre em x = e o valor mínimo é. 8

Funções de Uma Variável - 1 a Avaliação - Turma B3 31 de outubro de Prof. Armando Caputi

Funções de Uma Variável - 1 a Avaliação - Turma B3 31 de outubro de Prof. Armando Caputi Funções de Uma Variável - 1 a Avaliação - Turma B 1 de outubro de 017 - Prof. Armando Caputi 1 Determine o domínio da função f(x) = arctan x x + 1 (justifique) e a equação da reta tangente ao seu gráfico

Leia mais

Instituto de Matemática - IM/UFRJ Cálculo I - MAC118 1 a Prova - Gabarito - 13/10/2016

Instituto de Matemática - IM/UFRJ Cálculo I - MAC118 1 a Prova - Gabarito - 13/10/2016 Instituto de Matemática - IM/UFRJ Cálculo I - MAC118 1 a Prova - Gabarito - 13/10/2016 Questão 1: (2 pontos) x (a) (0.4 ponto) Calcule o ite: 2 + 3 2. x 1 x 1 ( πx + 5 ) (b) (0.4 ponto) Calcule o ite:

Leia mais

Universidade Federal do Rio de Janeiro

Universidade Federal do Rio de Janeiro Å INSTITUTO DE MATEMÁTICA Universidade Federal do Rio de Janeiro Gabarito da a Prova Unificada de Cálculo I a Questão: Calcule ou justifique caso não exista, cada um dos ite abaixo: ( (a) x + (+x )e x,

Leia mais

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Instituto de Matemática PRIMEIRA PROVA UNIFICADA CÁLCULO I POLITÉCNICA E ENGENHARIA QUÍMICA 13/12/2012.

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Instituto de Matemática PRIMEIRA PROVA UNIFICADA CÁLCULO I POLITÉCNICA E ENGENHARIA QUÍMICA 13/12/2012. UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Instituto de Matemática PRIMEIRA PROVA UNIFICADA CÁLCULO I POLITÉCNICA E ENGENHARIA QUÍMICA 13/12/2012. GABARITO 1 a Questão. (3.0 pontos). (a) Calcule: lim x 0 +

Leia mais

Universidade Federal de Juiz de Fora Departamento de Matemática

Universidade Federal de Juiz de Fora Departamento de Matemática Universidade Federal de Juiz de Fora Departamento de Matemática Cálculo I - Prova Opcional - Primeiro Semestre Letivo de 016-03/08/016 - FILA A Aluno(a): Matrícula: Turma: Instruções Gerais: 1- A prova

Leia mais

Universidade Federal de Juiz de Fora Departamento de Matemática

Universidade Federal de Juiz de Fora Departamento de Matemática Universidade Federal de Juiz de Fora Departamento de Matemática Cálculo I - Prova Opcional - Segundo Semestre Letivo de 2016-17/01/2017 - FILA A Aluno(a): Matrícula: Turma: Instruções Gerais: 1- A prova

Leia mais

LISTA DE EXERCÍCIOS Cálculo I -A- Humberto José Bortolossi

LISTA DE EXERCÍCIOS Cálculo I -A- Humberto José Bortolossi LISTA DE EXERCÍCIOS Cálculo I -A- Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ 18 Esboço de gráficos de funções [01] Verdadeiro ou falso? Se f : R R é uma função de classe C e f (p)

Leia mais

Aula 22 O teste da derivada segunda para extremos relativos.

Aula 22 O teste da derivada segunda para extremos relativos. O teste da derivada segunda para extremos relativos. MÓDULO 2 - AULA 22 Aula 22 O teste da derivada segunda para extremos relativos. Objetivo: Utilizar a derivada segunda para determinar pontos de máximo

Leia mais

AULA 30/05/2017 MÁXIMOS E MÍNIMOS, ESTUDO COMPLETO DE FUNÇÕES, APLICAÇÃO DE DERIVADA

AULA 30/05/2017 MÁXIMOS E MÍNIMOS, ESTUDO COMPLETO DE FUNÇÕES, APLICAÇÃO DE DERIVADA AULA 30/05/2017 MÁXIMOS E MÍNIMOS, ESTUDO COMPLETO DE FUNÇÕES, APLICAÇÃO DE DERIVADA As derivadas têm inúmeras aplicações. Com o estudo da primeira e da segunda derivada podemos esboçar o gráfico de uma

Leia mais

Universidade Federal de Juiz de Fora Departamento de Matemática

Universidade Federal de Juiz de Fora Departamento de Matemática Universidade Federal de Juiz de Fora Departamento de Matemática Cálculo I - Segunda Avaliação - Segundo Semestre Letivo de 2016-03/12/2016 - FILA A Aluno(a): Matrícula: Turma: Instruções Gerais: 1- A prova

Leia mais

Respostas sem justificativas não serão aceitas. Além disso, não é permitido o uso de aparelhos eletrônicos. f(x) = 3x 3 x 2

Respostas sem justificativas não serão aceitas. Além disso, não é permitido o uso de aparelhos eletrônicos. f(x) = 3x 3 x 2 UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL - 07. A VERIFICAÇÃO DE APRENDIZAGEM - TURMA ME Nome Legível RG CPF Respostas sem justificativas

Leia mais

x 2 + (x 2 5) 2, x 0, (1) 5 + y + y 2, y 5. (2) e é positiva em ( 2 3 , + ), logo x = 3

x 2 + (x 2 5) 2, x 0, (1) 5 + y + y 2, y 5. (2) e é positiva em ( 2 3 , + ), logo x = 3 Página 1 de 4 Instituto de Matemática - IM/UFRJ Cálculo Diferencial e Integral I - MAC 118 Gabarito segunda prova - Escola Politécnica / Escola de Química - 13/06/2017 Questão 1: (2 pontos) Determinar

Leia mais

MAT146 - Cálculo I - Esboço de Gráficos. Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira

MAT146 - Cálculo I - Esboço de Gráficos. Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira Nas aulas anteriores, estudamos várias ferramentas (Teste da Derivada Primeira, Teste da Derivada Segunda, Existência de Pontos Críticos,

Leia mais

ANEXOS Anexo A: Esboço de Curvas Anexo B: Exemplos Extras Anexo C: Aplicação do Software SLD

ANEXOS Anexo A: Esboço de Curvas Anexo B: Exemplos Extras Anexo C: Aplicação do Software SLD ANEXOS Anexo A: Esboço de Curvas Anexo B: Exemplos Extras Anexo C: Aplicação do Software SLD ANEXO A Critérios para determinar o comportamento de uma função através do estudo da derivada. Vamos relembrar

Leia mais

Instituto de Matemática - IM/UFRJ Gabarito da Primeira Prova Unificada de Cálculo I Politécnica e Engenharia Química

Instituto de Matemática - IM/UFRJ Gabarito da Primeira Prova Unificada de Cálculo I Politécnica e Engenharia Química Página de 5 Questão : (3.5 pontos) Calcule: + Instituto de Matemática - IM/UFRJ Politécnica e Engenharia Química 3 2 + (a) 3 + 2 + + ; + (b) ; + (c) 0 +(sen )sen ; (d) f (), onde f() = e sen(3 + +). (a)

Leia mais

Derivação Impĺıcita e Derivadas de Ordem Superior - Aula 19

Derivação Impĺıcita e Derivadas de Ordem Superior - Aula 19 Máximos e Mínimos - Continuação Derivação Impĺıcita e Derivadas de Ordem Superior - Aula 19 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 11 de Abril de 2014 Primeiro Semestre

Leia mais

MATEMÁTICA A - 11o Ano Funções - Derivada (extremos, monotonia e retas tangentes) Propostas de resolução

MATEMÁTICA A - 11o Ano Funções - Derivada (extremos, monotonia e retas tangentes) Propostas de resolução MATEMÁTICA A - o Ano Funções - Derivada extremos, monotonia e retas tangentes) Propostas de resolução Exercícios de exames e testes intermédios. Temos que, pela definição de derivada num ponto, f ) fx)

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática Universidade Federal de Viçosa Centro de Ciências Eatas e Tecnológicas Departamento de Matemática MAT 040 Estudo Dirigido de Cálculo I 07/II Encontro 5 - /09/07: Eercício : Seja f a função cujo gráfico

Leia mais

UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL

UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL -. EXAME FINAL Nome Legível RG CPF Respostas sem justificativas não serão aceitas. Além

Leia mais

Concavidade e pontos de inflexão Aula 20

Concavidade e pontos de inflexão Aula 20 Concavidade e pontos de inflexão Aula 20 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 22 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica

Leia mais

Instituto Federal de Educação, Ciência e Tecnologia de Mato Grosso - IFMT Campus Várzea Grande

Instituto Federal de Educação, Ciência e Tecnologia de Mato Grosso - IFMT Campus Várzea Grande Instituto Federal de Educação, Ciência e Tecnologia de Mato Grosso - IFMT Campus Várzea Grande Curso: Técnico em Des. Construção Civil Turma: DCC01A 2017/2 Disciplina: Matemática I Professor: Emerson Dutra

Leia mais

Gráficos. Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html

Gráficos. Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html Gráficos Material online: h-p://www.im.ufal.br/professor/thales/calc12010_2.html O que f nos diz sobre f? O que f nos diz sobre f? f (x) < 0 f (x) > 0 f(x) =x 2 f (x) =2x x>0 f (x) > 0 x

Leia mais

Prova de Conhecimentos Específicos 1 a QUESTÃO: (2,0 pontos)

Prova de Conhecimentos Específicos 1 a QUESTÃO: (2,0 pontos) Prova de Conhecimentos Específicos 1 a QUESTÃO: (,0 pontos) 5x Considere a função f(x)=. Determine, se existirem: x +7 (i) os pontos de descontinuidade de f; (ii) as assíntotas horizontais e verticais

Leia mais

Gabarito da Prova Final Unificada de Cálculo I- 2015/2, 08/03/2016. ln(ax. cos (

Gabarito da Prova Final Unificada de Cálculo I- 2015/2, 08/03/2016. ln(ax. cos ( Gabarito da Prova Final Unificada de Cálculo I- 05/, 08/03/06. Considere a função f : (0, ) R definida por ln(ax ), se x, f(x) = 6 ln cos ( π, x 3 se 0 < x

Leia mais

Para identificar intervalos de crescimento e decrescimento de uma função analisamos o comportamento de sua primeira derivada.

Para identificar intervalos de crescimento e decrescimento de uma função analisamos o comportamento de sua primeira derivada. O CONCEITO DE DERIVADA (continuação) Funções Crescentes e Decrescentes Existe uma relação direta entre a derivada de uma função e o crescimento desta função. Em geral, temos: Se, para todo x ]a, b[ tivermos

Leia mais

BANCO DE EXERCÍCIOS - 24 HORAS

BANCO DE EXERCÍCIOS - 24 HORAS BANCO DE EXERCÍCIOS - HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº GABARITO COMENTADO ) A função será y,5x +, onde y (preço a ser pago) está em função de x (número de quilômetros

Leia mais

Lista 2 - Cálculo. 17 de maio de Se f e g são funções cujos grácos estão representados abaixo, sejam u(x) = f(x)g(x),

Lista 2 - Cálculo. 17 de maio de Se f e g são funções cujos grácos estão representados abaixo, sejam u(x) = f(x)g(x), Lista 2 - Cálculo 17 de maio de 2019 1. Se f e g são funções cujos grácos estão representados abaixo, sejam u(x) = f(x)g(x), h(x) = f(g(x)) e k(x) = g(f(x)). Encontre as seguintes derivadas: (a) u (1)

Leia mais

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1 UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1 PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR - 16/10/2016 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES: 1.

Leia mais

Nome: Gabarito Data: 28/10/2015. Questão 01. Calcule a derivada da função f(x) = sen x pela definição e confirme o resultado

Nome: Gabarito Data: 28/10/2015. Questão 01. Calcule a derivada da função f(x) = sen x pela definição e confirme o resultado Fundação Universidade Federal de Pelotas Departamento de Matemática e Estatística Curso de Licenciatura em Matemática - Diurno Segunda Prova de Cálculo I Prof. Dr. Maurício Zan Nome: Gabarito Data: 8/0/05.

Leia mais

Concavidade. Universidade de Brasília Departamento de Matemática

Concavidade. Universidade de Brasília Departamento de Matemática Universidade de Brasília Departamento de Matemática Cálculo 1 Concavidade Conforme vimos anteriormente, o sinal da derivada de uma função em um intervalo nos dá informação sobre crescimento ou decrescimento

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática a Lista MAT 146 - Cálculo I 018/I DERIVADAS Para este tópico considera-se uma função f : D R R, definida num domínio

Leia mais

Conjuntos Numéricos. I) Números Naturais N = { 0, 1, 2, 3,... }

Conjuntos Numéricos. I) Números Naturais N = { 0, 1, 2, 3,... } Conjuntos Numéricos I) Números Naturais N = { 0, 1, 2, 3,... } II) Números Inteiros Z = {..., -2, -1, 0, 1, 2,... } Todo número natural é inteiro, isto é, N é um subconjunto de Z III) Números Racionais

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, veremos que o sinal da derivada segunda de uma função dá informações

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, veremos que o sinal da derivada segunda de uma função dá informações CÁLCULO L NOTAS DA DÉCIMA SEGUNDA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, veremos que o sinal da derivada segunda de uma função dá informações sobre a concavidade do gráfico desta função.

Leia mais

Resolução dos Exercícios sobre Derivadas

Resolução dos Exercícios sobre Derivadas Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva = 0 e = y = nos pontos onde Vamos determinar a reta tangente à curva y = nos pontos

Leia mais

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo LCE0130 Cálculo Diferencial e Integral

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo LCE0130 Cálculo Diferencial e Integral Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo LCE0130 Cálculo Diferencial e Integral Profa. Dra. Andreia Adami deiaadami@terra.com.br Limite Limites infinitos: resultado é +

Leia mais

Resumo Matemática Ensino Médio - 1º ano/série -3º bimestre provão - frentes 1 e 2

Resumo Matemática Ensino Médio - 1º ano/série -3º bimestre provão - frentes 1 e 2 Frente 1 Algumas coisas retiradas de: http://www.brasilescola.com/matematica/funcao-segundo-grau.htm Critério 01: Função Quadrática: Introdução: Toda função estabelecida pela lei de formação f(x) = ax²

Leia mais

Plano de Recuperação 1º Semestre EF2-2011

Plano de Recuperação 1º Semestre EF2-2011 Professor: Marcelo, Cebola e Natália Ano: 9º Objetivos: Proporcionar ao aluno a oportunidade de resgatar os conteúdos trabalhados em Matemática nos quais apresentou defasagens e os quais lhe servirão como

Leia mais

Índice. AULA 5 Derivação implícita 3. AULA 6 Aplicações de derivadas 4. AULA 7 Aplicações de derivadas 6. AULA 8 Esboço de gráficos 9

Índice. AULA 5 Derivação implícita 3. AULA 6 Aplicações de derivadas 4. AULA 7 Aplicações de derivadas 6. AULA 8 Esboço de gráficos 9 www.matematicaemexercicios.com Derivadas Vol. 2 1 Índice AULA 5 Derivação implícita 3 AULA 6 Aplicações de derivadas 4 AULA 7 Aplicações de derivadas 6 AULA 8 Esboço de gráficos 9 www.matematicaemexercicios.com

Leia mais

Notas de Aula Disciplina Matemática Tópico 05 Licenciatura em Matemática Osasco -2010

Notas de Aula Disciplina Matemática Tópico 05 Licenciatura em Matemática Osasco -2010 1. Função Afim Uma função f: R R definida por uma expressão do tipo f x = a. x + b com a e b números reais constantes é denominada função afim ou função polinomial do primeiro grau. A função afim está

Leia mais

Aula 21 Máximos e mínimos relativos.

Aula 21 Máximos e mínimos relativos. Aula 21 Objetivo Utilizar o conceito de derivada para determinar pontos de máximo e mínimo relativos de funções. Quando olhamos uma montanha, identificamos facilmente os picos da montanha e os fundos dos

Leia mais

Derivadas Parciais Capítulo 14

Derivadas Parciais Capítulo 14 Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS Como vimos no Capítulo 4, no Volume I, um dos principais usos da derivada ordinária é na determinação dos valores máximo e mínimo. DERIVADAS PARCIAIS 14.7

Leia mais

Cálculo 2. Guia de Estudos P1

Cálculo 2. Guia de Estudos P1 Cálculo 2 Guia de Estudos P1 Resuminho Teórico e Fórmulas Parte 1 Cônicas Conceito: Cônicas são formas desenhadas em duas dimensões, considerando apenas os eixos x (horizontal) e y (vertical). Tipos de

Leia mais

Exercício 1 Dê o valor, caso exista, que a função deveria assumir no ponto dado para. em p = 9

Exercício 1 Dê o valor, caso exista, que a função deveria assumir no ponto dado para. em p = 9 Exercícios - Limite e Continuidade-1 Exercício 1 Dê o valor, caso exista, que a função deveria assumir no ponto dado para ser contínua: (a) f(x) = x2 16 x 4 (b) f(x) = x3 x x em p = 4 em p = 0 (c) f(x)

Leia mais

Exercícios de Cálculo - Prof. Ademir

Exercícios de Cálculo - Prof. Ademir Exercícios de Cálculo - Prof. Ademir Funções, limites e continuidade. Considere f : IR IR definida por f(x) = x 4x + 3. (a) Faça um esboço do gráfico de f. (b) Determine os valores de x para os quais f(x)..

Leia mais

LTDA APES PROF. RANILDO LOPES SITE:

LTDA APES PROF. RANILDO LOPES SITE: Matemática Aplicada - https://ranildolopes.wordpress.com/ - Prof. Ranildo Lopes - FACET 1 Faculdade de Ciências e Tecnologia de Teresina Associação Piauiense de Ensino Superior LTDA APES PROF. RANILDO

Leia mais

= 6 lim. = lim. 2x + 2 sin(x) cos(x) 4 sin(4x) 2 x cos(x) = lim. x + ln(x) cos ) ] 3x. 3 ln. = lim x 1 x +

= 6 lim. = lim. 2x + 2 sin(x) cos(x) 4 sin(4x) 2 x cos(x) = lim. x + ln(x) cos ) ] 3x. 3 ln. = lim x 1 x + UFRGS - PAG Cálculo - MAT05-0/ Lista 5-04/05/0 - Soluções.a ln + 0 + ln = + + 0 =.b sin8 0 sin4 = 0 8 cos8 4 cos4 =.c.d + sin 0 cos4 = 0 + sin cos 4 sin4 = 0 + cos sin 6 cos4 = 4 0 + sin e cos = 0 + e

Leia mais

Cálculo 1 - Fórmula de Taylor

Cálculo 1 - Fórmula de Taylor Cálculo - Fórmula de Taylor e Esboço do Gráfico de Funções Reais Prof. Fabio Silva Botelho October 20, 207 Fórmula de Taylor, o caso geral. Derivadas de ordem mais alta Definition.. Seja f : (a,b R tal

Leia mais

Cálculo Diferencial e Integral I 1 o Sem. 2016/17 - LEAN, MEMat, MEQ

Cálculo Diferencial e Integral I 1 o Sem. 2016/17 - LEAN, MEMat, MEQ Instituto Superior Técnico Departamento de Matemática Cálculo Diferencial e Integral I o Sem. 06/7 - LEAN, MEMat, MEQ FICHA 8 - SOLUÇÕES Regra de Cauchy. Estudo de funções.. a) 0; b) ln ; c) ln ; d) +

Leia mais

de h(x) = f(x) no sistema de coordenadas dado abaixo. Indique as intersecções com os eixos x e y, bem como assíntotas. b) Idem para g(x) = f(2x).

de h(x) = f(x) no sistema de coordenadas dado abaixo. Indique as intersecções com os eixos x e y, bem como assíntotas. b) Idem para g(x) = f(2x). UFRGS Instituto de Matemática DMPA - Depto. de Matemática Pura e Aplicada MAT 01 353 Cálculo e Geometria Analítica I A Gabarito da 1 a PROVA fila A de setembro de 005 Questão 1 (1,5 pontos). Seja f uma

Leia mais

Resoluções de Algumas Questões Prova da AMAN 1997

Resoluções de Algumas Questões Prova da AMAN 1997 Resoluções de Algumas Questões Prova da AMAN 997. (AMAN- 997, qcod_) Considere o triângulo ABC de área S, baricentro G e medianas CM e BN. A área do quadrilátero AMGN é igual a S S S S S ) os triângulos

Leia mais

Instituto de Matemática - IM/UFRJ Cálculo Diferencial e Integral I - MAC238 Respostas da Prova de Final - 20/12/2013

Instituto de Matemática - IM/UFRJ Cálculo Diferencial e Integral I - MAC238 Respostas da Prova de Final - 20/12/2013 Página de 8 Instituto de Matemática - IM/UFRJ Cálculo Diferencial e Integral I - MAC38 Respostas da Prova de Final - 0//03 Questão : ( pontos) (a) Dado o gráfico da função f, esboce o gráfico da função

Leia mais

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari MATEMÁTICA II Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari amanda@fcav.unesp.br CONSIDERAÇÕES INICIAIS Considere a função f x : R R tal que y = f(x). Então: Derivada: Mede a taxa de variação de

Leia mais

Demonstração. Sabemos que o volume de um cone reto com base circular de raio r e altura h é dado por

Demonstração. Sabemos que o volume de um cone reto com base circular de raio r e altura h é dado por UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL 1-018.1 1A VERIFICAÇÃO DE APRENDIZAGEM - PARTE Nome Legível RG CPF Respostas sem justificativas

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO QUADRÁTICA PARTE 2

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO QUADRÁTICA PARTE 2 EIXO DE SIMETRIA... COEFICIENTES a, b E c NO GRÁFICO... SINAL DA FUNÇÃO QUADRÁTICA...4 INEQUAÇÕES DO º GRAU...9 INEQUAÇÕES PRODUTO E QUOCIENTE... 4 SISTEMA DE INEQUAÇÕES DO º GRAU... 8 REFERÊNCIA BIBLIOGRÁFICA...

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ano 0 - a Fase Proposta de resolução GRUPO I. Temos que P A B) P A) + P B) P A B) P A B) P A) + P B) P A B) Como A e B são independentes, então P A) P B) P A B), pelo

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA MAT A02 CÁLCULO A ª LISTA ( QUESTÕES DE PROVAS )

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA MAT A02 CÁLCULO A ª LISTA ( QUESTÕES DE PROVAS ) UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA MAT A0 CÁLCULO A 009 ª LISTA ( QUESTÕES DE PROVAS ) Regra da cadeia ( f ( g( h(( t( )))))) f ( g( h(( t( ))))) g ( h(( t(

Leia mais

UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática Mestrado em Ensino de Matemática

UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática  Mestrado em Ensino de Matemática UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática www.pg.im.ufrj.br/pemat Mestrado em Ensino de Matemática Seleção 0 Etapa Questão. Considere f : [, ] R a função cujo gráfico

Leia mais

Aula 25. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

Aula 25. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil Assíntotas, Esboço de Gráfico e Aplicações Aula 25 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 09 de Maio de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia

Leia mais

CURSO de MATEMÁTICA (Niterói) - Gabarito

CURSO de MATEMÁTICA (Niterói) - Gabarito UNIVERSIDADE FEDERAL FLUMINENSE TRANSFERÊNCIA o semestre letivo de 006 e 1 o semestre letivo de 007 CURSO de MATEMÁTICA (Niterói) - Gabarito Verifique se este caderno contém: INSTRUÇÕES AO CANDIDATO PROVA

Leia mais

Respostas sem justificativas não serão aceitas. Além disso, não é permitido o uso de aparelhos eletrônicos. x 1 x 1. 1 sen x 1 (x 2 1) 2 (x 2 1) 2 sen

Respostas sem justificativas não serão aceitas. Além disso, não é permitido o uso de aparelhos eletrônicos. x 1 x 1. 1 sen x 1 (x 2 1) 2 (x 2 1) 2 sen UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL - 07. A VERIFICAÇÃO DE APRENDIZAGEM - TURMA EL Nome Legível RG CPF Respostas sem justificativas

Leia mais

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1 UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1 PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR - 16/10/2016 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES: 1.

Leia mais

ALUNO(A): Prof.: André Luiz Acesse: 02/05/2012

ALUNO(A): Prof.: André Luiz Acesse:  02/05/2012 1. FUNÇÃO 1.1. DEFINIÇÃO Uma função é um conjunto de pares ordenados de números (x,y) no qual duas duplas ordenadas distintas não podem ter o mesmo primeiro número, ou seja, garante que y seja único para

Leia mais

Respostas sem justificativas não serão aceitas. Além disso, não é permitido o uso de aparelhos eletrônicos. x x = lim.

Respostas sem justificativas não serão aceitas. Além disso, não é permitido o uso de aparelhos eletrônicos. x x = lim. UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL 1-2017.2 1A VERIFICAÇÃO DE APRENDIZAGEM - TURMA GEA Nome Legível RG CPF Respostas sem

Leia mais

Cálculo I -A- Humberto José Bortolossi. Departamento de Matemática Aplicada Universidade Federal Fluminense. Parte de novembro de 2013

Cálculo I -A- Humberto José Bortolossi. Departamento de Matemática Aplicada Universidade Federal Fluminense. Parte de novembro de 2013 Folha 1 Cálculo I -A- Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Parte 16 13 de novembro de 2013 Parte 16 Cálculo I -A- 1 Aproximações lineares (afins)

Leia mais

CÁLCULO I. 1 Concavidade. Objetivos da Aula. Aula n o 16: Máximos e Mínimos - 2 a Parte

CÁLCULO I. 1 Concavidade. Objetivos da Aula. Aula n o 16: Máximos e Mínimos - 2 a Parte CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 16: Máximos e Mínimos - 2 a Parte Objetivos da Aula Denir e discutir a concavidade de uma função em um intervalo do domínio; Denir e calcular

Leia mais

Aplicações de Derivadas

Aplicações de Derivadas Capítulo 6 Aplicações de Derivadas 6.1 Acréscimos e Diferenciais Seja y = f(x) uma função. Em muitas aplicações a variável independente x está sujeita à pequenas variações e é necessário encontrar a correspondente

Leia mais

Matemática B Extensivo v. 8

Matemática B Extensivo v. 8 Etensivo v. 8 Eercícios 0) 9 6 = ; e = 3 centro Note que C = (0, 0). Também, c = e a = 3. Então, da equação c = b + a temos = b + 3 b = 4. Assim, a equação dessa hipérbole fica: = = 3 4 9 6 A ecentricidade

Leia mais

CÁLCULO I - MAT Estude a função dada com relação à concavidade e pontos de inflexão. Faça o esboço do gráfico de cada uma das funções.

CÁLCULO I - MAT Estude a função dada com relação à concavidade e pontos de inflexão. Faça o esboço do gráfico de cada uma das funções. UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e da Natureza Centro Interdisciplinar de Ciências da Natureza CÁLCULO I - MAT0009 9 a Lista de eercícios.

Leia mais

UFRJ - Instituto de Matemática

UFRJ - Instituto de Matemática UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática www.pg.im.ufrj.br/pemat Mestrado em Ensino de Matemática Seleção 9 Etapa Questão. Determine se as afirmações abaio são verdadeiras

Leia mais

c) R 2 e f é decrescente no intervalo 1,. , e f é crescente no intervalo 2, 2

c) R 2 e f é decrescente no intervalo 1,. , e f é crescente no intervalo 2, 2 UFJF ICE Departamento de Matemática CÁLCULO I - LISTA DE EXERCÍCIOS Nº As questões de números a 9 referem-se à função f ( ). - O domínio da função f é o conjunto: a) R b) R c) R R, 0 e) R 0 - A derivada

Leia mais

Proposta de Exame Final Nacional do Ensino Secundário

Proposta de Exame Final Nacional do Ensino Secundário Proposta de Exame Final Nacional do Ensino Secundário Prova Escrita de Matemática A. O ANO DE ESCOLARIDADE Duração da Prova: 50 minutos Tolerância: 0 minutos Data: Grupo I Na resposta aos itens deste grupo,

Leia mais

MAT Poli Cônicas - Parte I

MAT Poli Cônicas - Parte I MAT2454 - Poli - 2011 Cônicas - Parte I Uma equação quadrática em duas variáveis, x e y, é uma equação da forma ax 2 +by 2 +cxy +dx+ey +f = 0, em que pelo menos um doscoeficientes a, b oucénão nulo 1.

Leia mais

3 A Reta Tangente Definição: Seja y = f(x) uma curva definida no intervalo. curva y = f(x). A reta secante s é a reta que passa pelos pontos

3 A Reta Tangente Definição: Seja y = f(x) uma curva definida no intervalo. curva y = f(x). A reta secante s é a reta que passa pelos pontos 3 A Reta Tangente Definição: Seja y = f(x) uma curva definida no intervalo (a, b) Sejam P(p, f(p)) e Q(x, f(x)) dois pontos distintos da curva y = f(x). A reta secante s é a reta que passa pelos pontos

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - 1o Ano 01-1 a Fase Proposta de resolução GRUPO I 1. Sabemos que P B A P B A P A P B A P B A P A Como P A 0,, temos que P A 1 P A 1 0, 0,6 Como P B A 0,8 e P A 0,6, temos

Leia mais

Plano cartesiano, Retas e. Alex Oliveira. Circunferência

Plano cartesiano, Retas e. Alex Oliveira. Circunferência Plano cartesiano, Retas e Alex Oliveira Circunferência Sistema cartesiano ortogonal O sistema cartesiano ortogonal é formado por dois eixos ortogonais(eixo x e eixo y). A intersecção dos eixos x e y é

Leia mais

MAT 111 Cálculo Diferencial e Integral I. Prova 2 14 de Junho de 2012

MAT 111 Cálculo Diferencial e Integral I. Prova 2 14 de Junho de 2012 MAT 111 Cálculo Diferencial e Integral I Prof. Paolo Piccione Prova 2 14 de Junho de 2012 Nome: Número USP: Assinatura: Instruções A duração da prova é de duas horas. Assinale as alternativas corretas

Leia mais

MAT 111 Cálculo Diferencial e Integral I. Prova 2 14 de Junho de 2012

MAT 111 Cálculo Diferencial e Integral I. Prova 2 14 de Junho de 2012 MAT 111 Cálculo Diferencial e Integral I Prof. Paolo Piccione Prova 2 14 de Junho de 2012 Nome: Número USP: Assinatura: Instruções A duração da prova é de duas horas. Assinale as alternativas corretas

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ano 06 - a Fase Proposta de resolução GRUPO I. Como P (A B) P (A B) P (B) P (A B) P (A B) P (B) vem que: P (A B) 6 0 60 0 Como P (A B) P (A) + P (B) P (A B), temos que:

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Provas e listas: Cálculo Diferencial e Integral I Período 204.2 Sérgio de Albuquerque Souza 4 de maio de 205 UNIVERSIDADE FEDERAL DA PARAÍBA CCEN - Departamento de Matemática http://www.mat.ufpb.br/sergio

Leia mais

Estudo de funções. Universidade Portucalense Departamento de Inovação, Ciência e Tecnologia Curso Satélite - Módulo I - Matemática.

Estudo de funções. Universidade Portucalense Departamento de Inovação, Ciência e Tecnologia Curso Satélite - Módulo I - Matemática. Universidade Portucalense Departamento de Inovação, Ciência e Tecnologia Curso Satélite - Módulo I - Matemática Estudo de funções Continuidade Consideremos as funções: f : R R g : R R x x + x x +, x 1

Leia mais

Capítulo 2. f : A B. 3. A regra em (3) não define uma função de A em B porque 4 A está associado a mais de um. elemento de B.

Capítulo 2. f : A B. 3. A regra em (3) não define uma função de A em B porque 4 A está associado a mais de um. elemento de B. Departamento de Matemática Disciplina MAT154 - Cálculo 1 Capítulo 2 Funções 2.1 Definição Sejam A e B conjuntos não vazios. Uma função com domínio A e contradomínio B é uma regra f que a cada elemento

Leia mais

Capítulo 3. Função afim. ANOTAÇÕES EM AULA Capítulo 3 Função afim 1.5 CONEXÕES COM A MATEMÁTICA

Capítulo 3. Função afim. ANOTAÇÕES EM AULA Capítulo 3 Função afim 1.5 CONEXÕES COM A MATEMÁTICA Capítulo 3 Função afim 1.5 Função afim Uma função f: R R é função afim quando existem os números reais a e b tais que f(x) = ax + b para todo x R. Exemplos f(x) =, em que: a = e b = 6 g(x) = 7x, em que:

Leia mais

Capítulo 2. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas.

Capítulo 2. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas. Capítulo 2 Funções Sejam A e B conjuntos não vazios. Uma função com domínio A e contradomínio B é uma regra f que a cada elemento em A associa um único elemento em B. A notação usual para uma função f

Leia mais

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo Módulo I: Cálculo Diferencial e Integral Derivada e Diferencial de uma Função Professora Renata Alcarde Sermarini Notas de aula

Leia mais

x 3 x3 dx = 1 + x2 u = 1 + x 2 5u 1 (u + 1)(u 1) du = A x ln xdx = x2 2 (ln x)2 x2 x2

x 3 x3 dx = 1 + x2 u = 1 + x 2 5u 1 (u + 1)(u 1) du = A x ln xdx = x2 2 (ln x)2 x2 x2 Questão -A. (, pontos) Calcule a) arctg d = arctg() 1 d = 1 + arctg() 1 u 1 6 u du = u = arctg() du = 1 dv = d v = 1+ d u = 1 + du = d = arctg() 1 1 + [u ln u ] + k = arctg() + ln(1 + ) + k. 6 6 6 b) 5e

Leia mais

Universidade Federal de Alagoas Instituto de Matemática Curso de Graduação em Matemática. Banco de Questões

Universidade Federal de Alagoas Instituto de Matemática Curso de Graduação em Matemática. Banco de Questões Universidade Federal de Alagoas Instituto de Matemática Curso de Graduação em Matemática Banco de Questões Cálculo 1 Maceió, Brasil 11 de Março de 2010 Sumário 1 2005 3 1.1 1 a Avaliação-21 de fevereiro

Leia mais

Cálculo 1 A Turma F1 Prova VS

Cálculo 1 A Turma F1 Prova VS Cálculo 1 A 017. Turma F1 Prova VS Nome (MAIÚSCULO): Matrícula: O IMPORTANTE É O RACIOCÍNIO, PORTANTO DEIXE-O TODO NA PROVA. RESPOSTAS SEM AS DEVIDAS JUSTIFICATIVAS SERÃO DESCONSIDERADAS. (1) Encontre

Leia mais

Esboço de Gráfico - Exemplos e Regras de L Hospital Aula 23

Esboço de Gráfico - Exemplos e Regras de L Hospital Aula 23 Esboço de Gráfico - s e Regras de L Hospital Aula 23 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 06 de Maio de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática 3 a Lista MAT 146 - Cálculo I 218/I APLICAÇÃO DE DERIVADAS: OTIMIZAÇÃO Otimização é outra aplicação de derivadas. Em

Leia mais

f(x)=g(h(x)), logo sua derivada é g (h(x)).h (x), sendo h(x)=x^2 e g(x)= int(sqrt(1+t^4)/t,t=1..x).

f(x)=g(h(x)), logo sua derivada é g (h(x)).h (x), sendo h(x)=x^2 e g(x)= int(sqrt(1+t^4)/t,t=1..x). P4 de MAT1104 2008.2 1ª parte, sem maple. 1.Seja f(x)= int(sqrt(1+t^4)/t,t=1..x^2). a) calcule a derivada de f(x). f(x)=g(h(x)), logo sua derivada é g (h(x)).h (x), sendo h(x)=x^2 e g(x)= int(sqrt(1+t^4)/t,t=1..x).

Leia mais

Cálculo 1 Fuja do Nabo. Resumo e Exercícios P2

Cálculo 1 Fuja do Nabo. Resumo e Exercícios P2 Cálculo 1 Fuja do Nabo Resumo e Exercícios P2 Fórmulas e Resumo Teórico Limites Exponenciais e Logarítmicos lim $ &' 1 + 1 x $ = e ou lim $ 0 1 + h 2 3 = e a $ 1 lim $ 0 x = ln a, a > 0 Derivadas Exponenciais

Leia mais

Matemática I Tecnólogo em Construção de Edifícios e Tecnólogo em Refrigeração e Climatização. y = ax² + bx + c

Matemática I Tecnólogo em Construção de Edifícios e Tecnólogo em Refrigeração e Climatização. y = ax² + bx + c 47 6. Função Quadrática É todo função que pode ser escrita na forma: f: R R y = ax² + bx + c Em que a, b e c são constantes reais e a 0, caso contrário a função seria afim. Já estudamos um tipo de função

Leia mais

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A Funções e Gráficos Generalidades. Funções polinomiais. Função módulo.

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A Funções e Gráficos Generalidades. Funções polinomiais. Função módulo. Escola Secundária com 3º ciclo D. Dinis 0º Ano de Matemática A Funções e Gráficos Generalidades. Funções polinomiais. Função módulo. Resolver os exercícios 45, 4, 47, 46 e 49 das páginas 5 a 57 45. Considere

Leia mais

Capítulo 6 Aplicações de Derivadas

Capítulo 6 Aplicações de Derivadas Departamento de Matemática - ICE - UFJF Disciplina MAT154 - Cálculo 1 Capítulo 6 Aplicações de Derivadas 5.1 Acréscimos e Diferenciais Seja y = f(x) uma função. Em muitas aplicações a variável independente

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 65) ª FASE DE JUNHO 06 GRUPO I. Como P ( A B ) P A B P B temos que: P 6, ( A B ) 6 P( B ) P ( A B ) 6 0 P ( A B ) 0

Leia mais

AT3-1 - Unidade 3. Derivadas e Aplicações 1. Cálculo Diferencial e Integral. UAB - UFSCar. Bacharelado em Sistemas de Informação

AT3-1 - Unidade 3. Derivadas e Aplicações 1. Cálculo Diferencial e Integral. UAB - UFSCar. Bacharelado em Sistemas de Informação AT3-1 - Unidade 3 1 Cálculo Diferencial e Integral Bacharelado em Sistemas de Informação UAB - UFSCar 1 Versão com 34 páginas 1 / 34 Tópicos de AT3-1 1 Uma noção intuitiva Caracterização da derivada Regras

Leia mais

CÁLCULO I. 1 Concavidade. Objetivos da Aula. Aula n o 19: Concavidade. Teste da Segunda Derivada. Denir concavidade de uma função;

CÁLCULO I. 1 Concavidade. Objetivos da Aula. Aula n o 19: Concavidade. Teste da Segunda Derivada. Denir concavidade de uma função; CÁLCULO I Prof. Marcos Diniz Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 19: Concavidade. Teste da Segunda Derivada. Objetivos da Aula Denir concavidade de uma função; Denir ponto de inexão;

Leia mais

RESUMO - GRÁFICOS. O coeficiente de x, a, é chamado coeficiente angular da reta e está ligado à inclinação da reta

RESUMO - GRÁFICOS. O coeficiente de x, a, é chamado coeficiente angular da reta e está ligado à inclinação da reta RESUMO - GRÁFICOS Função do Primeiro Grau - f(x) = ax + b O gráfico de uma função do 1 o grau, y = ax + b, é uma reta. O coeficiente de x, a, é chamado coeficiente angular da reta e está ligado à inclinação

Leia mais