Introdução à Teoria dos Números - Notas 4 Tópicos Adicionais II

Tamanho: px
Começar a partir da página:

Download "Introdução à Teoria dos Números - Notas 4 Tópicos Adicionais II"

Transcrição

1 1 Introdução à Teoria dos Números - Notas 4 Tópicos Adicionais II. 1 O Anel dos Inteiros Módulo n Consideremos um número natural n 2 fixado. Para cada número inteiro a definimos a = {x Z; x a mod n}. Como para todo n e a Z temos a a mod n, teremos que a a. Exemplo 1. Para n = 2, temos: 1 = {x Z; x 1 mod 2}; 0 = {x Z; x 0 mod 2}. É simples ver que 1 = {x Z; x 1 mod 2} = conjunto dos números ímpares e 0 = {x Z; x 0 mod 2} = conjunto dos números pares. Exemplo 2. Para n = 5, temos 0 = {x Z; x 0 mod 5} = {x Z; x = 5k; k Z} 5 = {x Z; x 5 mod 5} = {x Z; x 5 = 5k; k Z} = {x Z; x = 5(k + 1)} = 0 É simples ver que 1 = {5k + 1; k z}, 2 = {5k + 2; k z}, 3 = {5k + 3; k z} e 4 = {5k + 4; k z}, logo Z = Proposição 3. Para cada n 2 fixado teremos a = b a b mod n. Demonstração. ( ) a = b a b a b mod n ( ) a b mod n x a mod n x b mod n x a x b. Proposição 4. Para cada n 2 fixado teremos a b = ou a = b

2 2 Demonstração. Se a b, existe x tal que x a e x b, isto é, x a mod n e x b mod n, o que nos leva a a b mod n e, pela proposição acima, teremos a = b. Sabemos que a b mod n se, e somente se, a e b deixam o mesmo resto quando divididos por n e, portanto, temos que a = b se, e somente se, a e b deixam o mesmo resto quando divididos por n. Como temos n possíveis restos na divisão de um número inteiro por n teremos que, fixado um número natural n, o conjunto {a; a Z} possui n elementos, quais sejam 0, 1,..., n 1. Somos levados à definição.. Definição 5. Seja n > 1 um número natural fixado. O anel Z n (ou Z/nZ) dos inteiros módulo n é definido por Z n = {0, 1,..., n 1} juntamente com as operações de soma e produto definidas, respectivamente, por a+b = a + b e a.b = a.b 1. Para m N definimos, ainda, ma = a+a+...+a e a m = a.a.....a(ambos m vezes). Exemplo 6. Z 2 = {0, 1}; Z 3 = {0, 1, 2} Exemplo 7. Construir as tabelas de soma e produto em Z 4 Solução Proposição 8. Sendo a, b e c, temos: (a) a + b = b + a(comutatividade da soma) (b) a + (c + b) = (a + c) + b(associatividade da soma) (c) a + 0 = a (0 (o elemento neutro da soma) d) Existe a Z tal que a + a = 0( existência do elemento simétrico ) e) a.(c.b) = (a.c).b (associatividade do produto) f) a.(c + b) = a.c) + a.b 2 g) 1.a = a(1 ( elemento neutro do produto) Demonstração. Deixaremos para exercício! Definição 9. Diremos que a Z n possui inverso(ou é invertível) se existe b Z n satisfazendo Neste caso, diremos que a e b são inversos. a.b = 1. 1 É simples mostrar que estas operações estão bem definidas! 2 um conjunto no qual estão definidas duas operações satisfazendo a b, c, d, e, f acima é chamando um anel!

3 3 Exemplo 10. Em Z 5 temos que 2 e 3 são inversos, pois 2.3 = 6 = 1. Em Z 10 temos que 3 e 7 são inversos pois 3.7 = 21 = 1. A proposição abaixo caracteriza os elementos invertíveis em Z n. Proposição 11. Em Z n um elemento a possui inverso se, e somente, mdc(a, n) = 1. Demonstração. Temos mdc(a, n) = 1 ax + ny = 1 ax 1 = ny ax 1 mod n a x = 1. Corolário 12. Em Z p, com p um número primo, todo elemento a 0 possui inverso. Demonstração. Consequência imediata da proposição anterior. Definição 13. Diremos que a 0 em Z n é um divisor de zero se existe b 0 em Z n satisfazendo a.b = 0. Exemplo é um divisor de zero em Z 8 pois 2.4 = 8 = é um divisor de zero em Z 12 pois 10.6 = 60 = 0. A proposição abaixo caracteriza os divsores de zero em Z n. Proposição 15. a será um divisor de zero em Z n se, e somente se, mdc(a, n) = d > 1. Demonstração. ( ) Suponhamos mdc(a, n) = d > 1. Então, existem x, y tais que Daí, vem com x 0. a = dy; n = xd com 1 < x < n. ax = xdy = ny ax = ny a.x = 0 ( ) Suponhamos existir b 0 tal que a.b = 0, Neste caso, temos que n ab. Se mdc(n, a) = 1, teríamos que n b e, portanto, b = 0. Corolário 16. Em Z p, com p primo, não temos divisores de zero. Demonstração. Consequência imediata da proposição anterior. Proposição 17. Sendo p um número primo, em Z p temos Demonstração. Deixamos para exercício! (a + b) p = a p + b p.

4 4 Exercício 18. 1) A equação x 2 + x + 1 = 0 possui raízes em Z 2? Justifique! E em Z 3? 2) A equação x 2 = 5 possui solução em Z 7? Quantas? Justifique! 3) Mostre que sendo p um número primo a equação x 2 1 = 0 possui exatamente duas soluções em Z p. 4) O resultado acima continua verdadeiro se p não é primo? Justifique! 5) Construa as tabelas de soma e produto para Z 6 e Z 7. 6) Mostre que se a e b possuem inverso em Z n, então ab possui inverso em Z n. 7) Mostre que em Z p com primo primo a equação ax = b com b 0 possui solução única. 8) Exiba um exemplo mostrando que a condiçao p primo é essencial para a condição acima. 2 Sistemas de Numeração Dado um número natural n, com certeza, estamos familiarizados com sua representação na base 10, isto é, o sistema decimal. Nesta seção mostramos que qualquer número natural b > 1 pode ser usado como base para um sistema de numeração. Lema 19. Seja b um número natural. Para qualquer número natural k e números naturais a 0, a 1,..., a k menores que b teremos a k b k + a k 1 b k a 1 b + a 0 < (a k + 1)b k b k+1. Teorema 20. Dados n, b N com b > 1, existem únicos números inteiros não-negativos k, a 0, a 1,..., a k, com k > 0, a i < b i = 0, 1, 2,..., k e a k > 0 tais que n = a k b k + a k 1 b k a 1 b + a 0. Observação 21. a k a k 1... a 1 a 0 é chamada a representação de n na base b e anotamos [n] b = a k a k 1... a 1 a 0. Quando a base não é indicada estamos trabalhando na base 10. Exemplo 22. Representar o número 711 na base 5. Solução. Em sala!

5 5 Exercício 23. 1) Seja dado o número 4783 na base 10; escreva-o nas bases: 2, 3, 4, 7, 12 e 15. 2) O número 3416 está na base 7, escreva-o nas bases 5 e 12. 3) Um número na base 10 escreve-se 37; em que base escrever-se-á 52? Justifique! 4) Considere 73 na base 10; em que base ele se escreverá 243? Justifique! 3 Alguns Critérios de Divisibilidade Nesta seção estaremos interessados em reconhecer se um dado número natural n, cuja representação decimal conhecemos é ou não divisível por certos números. No que se segue estaremos sempre supondo que a representaçãod ecimal de um número natural n é dada por n = a k a k 1... a 1 a 0. Proposição 24. Seja N um número natural. n será divisível por 2 se, e somente se, 2 a 0. Demonstração. Através da prova desta proposição ilustraremos como utlizar congruências para concluir certos fatos sobre divisibilidade. Seja n = a k a k 1... a 1 a 0. Então, a 0 a 0 mod, 2 e para todo j > 1, temos que 10 j 0 mod 2 e, portanto, a j 10 j 0 mod 2 o que nos leva a e, daí, o resultado segue. n = a k 10 k + a k 1 10 k a a 0 a 0 mod 2 Podemos demonstrar, de maneira análoga, critérios para 3, 4, 5, 8 ou 9. Proposição 25. Seja n um número natural. n será divisível por 3 se, e somente se, 3 a 0 + a a k 1 + a k. Demonstração. Seja n = a k a k 1... a 1 a 0. Então, a 0 a 0 mod, 2 e para todo j > 1, temos que 10 j 1 mod 2 e, portanto, a j 10 j a j mod 3 o que nos leva a e, daí, o resultado segue. n = a k 10 k + a k 1 10 k a a 0 a 0 + a a k mod 3 Proposição 26. Seja n um número natural. n será divisível por 9 se, e somente se, 9 a 0 + a a k 1 + a k. Proposição 27. Seja n um número natural. n será divisível por 4 se, e somente se, 4 a 0 +10a 1, isto é, se, e somente se, 4 a 1 a 0.

6 6 Proposição 28. Seja n um número natural. n será divisível por 5 se, e somente se, a 0 = 0 ou 5, isto é, se, e somente se, 5 a 0. Proposição 29. Seja n um número natural. n será divisível por 8 se, e somente se, 8 a a a 2, isto é, se, e somente se, 8 a 2 a 1 a 0. Proposição 30. Seja n um número natural. n será divisível por 11 se, e somente se, 11 a 0 a ( 1) k 1 a k 1 + ( 1) k a k. Demonstração. Seja n = a k a k 1... a 1 a 0. Então, a 0 a 0 mod, 11 e para todo j > 1, temos que 10 j ( 1) j mod 11 e, portanto, a j 10 j ( 1) j a j mod 11 o que nos leva a n = a k 10 k + a k 1 10 k a a 0 a 0 a ( 1) k a k mod 11 e, daí, o resultado segue. Proposição 31. Seja n = a k a k 1... a 1 a 0 um número natural. 7 n se, e somente se, 7 a k a k 1... a 1 2a 0. A proposição acima pode ser útil para verificarmos se um número é ou não divisível por 7. Vejamos um exemplo. Exemplo 32. Verificar se o número é divisível por 7. O critério abaixo é interessante, pois vale para os números 7, 11 ou 13 Proposição 33. Seja n = a k a k 1... a 1 a 0 um número natural onde supomos k + 1 um número múltiplo de 3(Se não for o caso, acrescentamos alguns zeros à presentação decimal de n). n será divisível por 7, 11 ou 13, se e somente se, a 2 a 1 a 0 a 5 a 4 a 3 +a 8 a 7 a 6...+( 1) k 2 a k a k 1 a k é divisível, respectivamente, por 7, 11 ou 13. Exemplo 34. Verifique se o número é divisível por 7, 11 ou 13. Solução. Em sala!

Introdução à Teoria dos Números - Notas 4 Tópicos Adicionais II

Introdução à Teoria dos Números - Notas 4 Tópicos Adicionais II 1 Introdução à Teoria dos Números - Notas 4 Tópicos Adicionais II 1 O Anel dos Inteiros Módulo n Consideremos um número natural n 2 fixado Para cada número inteiro a definimos a = {x Z; x a mod n} Como

Leia mais

Introdução à Teoria dos Números Notas de Aulas 3 Prof Carlos Alberto S Soares

Introdução à Teoria dos Números Notas de Aulas 3 Prof Carlos Alberto S Soares Introdução à Teoria dos Números 2018 - Notas de Aulas 3 Prof Carlos Alberto S Soares 1 Números Primos e o Teorema Fundamental da Aritmética Em notas anteriores já definimos os números primos, isto é, números

Leia mais

Introdução à Teoria dos Números Notas de Aulas 3 Prof Carlos Alberto S Soares

Introdução à Teoria dos Números Notas de Aulas 3 Prof Carlos Alberto S Soares Introdução à Teoria dos Números 2018 - Notas de Aulas 3 Prof Carlos Alberto S Soares 1 Números Primos e o Teorema Fundamental da Aritmética Em notas anteriores já definimos os números primos, isto é, números

Leia mais

Este material é apenas um resumo de parte do conteúdo da disciplina.

Este material é apenas um resumo de parte do conteúdo da disciplina. Aviso Este material é apenas um resumo de parte do conteúdo da disciplina. O material completo a ser estudado encontra-se no Capítulo 11 - Seção 1.3 do livro texto da disciplina: Aritmética, A. Hefez,

Leia mais

Introdução à Teoria dos Números - Notas 4 Máximo Divisor Comum e Algoritmo de Euclides

Introdução à Teoria dos Números - Notas 4 Máximo Divisor Comum e Algoritmo de Euclides Introdução à Teoria dos Números - Notas 4 Máximo Divisor Comum e Algoritmo de Euclides 1 Máximo Divisor Comum Definição 1.1 Sendo a um número inteiro, D a indicará o conjunto de seus divisores positivos,

Leia mais

, com k 1, p 1, p 2,..., p k números primos e α i, β i 0 inteiros, as factorizações de dois números inteiros a, b maiores do que 1.

, com k 1, p 1, p 2,..., p k números primos e α i, β i 0 inteiros, as factorizações de dois números inteiros a, b maiores do que 1. Como seria de esperar, o Teorema Fundamental da Aritmética tem imensas consequências importantes. Por exemplo, dadas factorizações em potências primas de dois inteiros, é imediato reconhecer se um deles

Leia mais

MA14 - Aritmética Unidade 22 Resumo. Aritmética das Classes Residuais

MA14 - Aritmética Unidade 22 Resumo. Aritmética das Classes Residuais MA14 - Aritmética Unidade 22 Resumo Aritmética das Classes Residuais Abramo Hefez PROFMAT - SBM Aviso Este material é apenas um resumo de parte do conteúdo da disciplina e o seu estudo não garante o domínio

Leia mais

MA14 - Aritmética Lista 1. Unidades 1 e 2

MA14 - Aritmética Lista 1. Unidades 1 e 2 MA14 - Aritmética Lista 1 Unidades 1 e 2 Abramo Hefez PROFMAT - SBM 05 a 11 de agosto 2013 Unidade 1 1. Mostre, por indução matemática, que, para todo n N {0}, a) 8 3 2n + 7 b) 9 10 n + 3.4 n+2 + 5 2.

Leia mais

Lista 2 - Álgebra I para Computação - IME -USP -2011

Lista 2 - Álgebra I para Computação - IME -USP -2011 Lista 2 - Álgebra I para Computação - IME -USP -2011 (A) Relações de Equivalência e Quocientes 1. Seja N = {0, 1, 2,...} o conjunto dos números naturais e considere em X = N N a seguinte relação: (a, b)

Leia mais

MATEMÁTICA MÓDULO 8 DIVISIBILIDADE E CONGRUÊNCIA. Professor Matheus Secco

MATEMÁTICA MÓDULO 8 DIVISIBILIDADE E CONGRUÊNCIA. Professor Matheus Secco MATEMÁTICA Professor Matheus Secco MÓDULO 8 DIVISIBILIDADE E CONGRUÊNCIA 1. DIVISIBILIDADE Definição: Sejam a, b inteiros com a 0. Diz-se que a divide b (denota-se por a b) se existe c inteiro tal que

Leia mais

XIX Semana Olímpica de Matemática. Nível 3. Polinômios Ciclotômicos e Congruência Módulo p. Samuel Feitosa

XIX Semana Olímpica de Matemática. Nível 3. Polinômios Ciclotômicos e Congruência Módulo p. Samuel Feitosa XIX Semana Olímpica de Matemática Nível 3 Polinômios Ciclotômicos e Congruência Módulo p Samuel Feitosa O projeto da XIX Semana Olímpica de Matemática foi patrocinado por: Semana Olímpica 2016 Polinômios

Leia mais

Matemática Discreta. Fundamentos e Conceitos da Teoria dos Números. Universidade do Estado de Mato Grosso. 4 de setembro de 2017

Matemática Discreta. Fundamentos e Conceitos da Teoria dos Números. Universidade do Estado de Mato Grosso. 4 de setembro de 2017 Matemática Discreta Fundamentos e Conceitos da Teoria dos Números Professora Dr. a Donizete Ritter Universidade do Estado de Mato Grosso 4 de setembro de 2017 Ritter, D. (UNEMAT) Matemática Discreta 4

Leia mais

NÚMEROS INTEIROS. Álgebra Abstrata - Verão 2012

NÚMEROS INTEIROS. Álgebra Abstrata - Verão 2012 NÚMEROS INTEIROS PROF. FRANCISCO MEDEIROS Álgebra Abstrata - Verão 2012 Faremos, nessas notas, uma breve discussão sobre o conjunto dos números inteiros. O texto é basicamente a seção 3 do capítulo 1 de

Leia mais

Se mdc(a,m) = 1, como a é invertível módulo m, a equação. ax b (mod m)

Se mdc(a,m) = 1, como a é invertível módulo m, a equação. ax b (mod m) Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 3 Carlos Gustavo Moreira Aula 8 Equações lineares módulo n e o teorema chinês dos restos 1 Equações Lineares Módulo m Se mdc(a,m) = 1,

Leia mais

ax + by 347 = 0 k = text UNIDADE CURRICULAR: Matemática Finita CÓDIGO: DOCENTES: Gilda Ferreira e Ana Nunes

ax + by 347 = 0 k = text UNIDADE CURRICULAR: Matemática Finita CÓDIGO: DOCENTES: Gilda Ferreira e Ana Nunes text UNIDADE CURRICULAR: Matemática Finita CÓDIGO: 21082 DOCENTES: Gilda Ferreira e Ana Nunes Resolução e Critérios de Correção 1. Sejam a, b Z tais que mdc(a, b) = 12. Relativamente à equação ax + by

Leia mais

a = bq + r e 0 r < b.

a = bq + r e 0 r < b. 1 Aritmética dos Inteiros 1.1 Lema da Divisão e o Algoritmo de Euclides Recorde-se que a, o módulo ou valor absoluto de a, designa a se a N a = a se a / N Dados a, b, c Z denotamos por a b : a divide b

Leia mais

Aritmética dos Restos. Problemas com Congruências. Tópicos Adicionais

Aritmética dos Restos. Problemas com Congruências. Tópicos Adicionais Aritmética dos Restos Problemas com Congruências Tópicos Adicionais Aritmética dos Restos Problemas com Congruências 1 Exercícios Introdutórios Exercício 1. inteiro n Prove que n 5 + 4n é divisível por

Leia mais

Álgebra A - Aula 12 Sistemas de congruências

Álgebra A - Aula 12 Sistemas de congruências Álgebra A - Aula 12 Sistemas de congruências Elaine Pimentel Departamento de Matemática, UFMG, Brazil 2 o Semestre - 2010 Equações lineares ax b (mod n) Se a possui um inverso α em Z n, então: α(ax) αb

Leia mais

Primeiro Desao Mestre Kame

Primeiro Desao Mestre Kame Primeiro Desao Mestre Kame Alan Anderson 8 de julho de 2017 O propósito dessa lista é gerar uma intuição numérica das demonstrações abstratas do teoremas famosos de Teoria dos números, de modo que alguns

Leia mais

O REI MALIGNO E A PRINCESA GENEROSA: SOBRE BASES NUMÉRICAS E CRITÉRIOS DE DIVISIBILIDADE

O REI MALIGNO E A PRINCESA GENEROSA: SOBRE BASES NUMÉRICAS E CRITÉRIOS DE DIVISIBILIDADE O REI MALIGNO E A PRINCESA GENEROSA: SOBRE BASES NUMÉRICAS E CRITÉRIOS DE DIVISIBILIDADE ANA PAULA CHAVES AND THIAGO PORTO 1. Introdução Os temas centrais deste texto - bases numéricas e critérios de divisibilidade

Leia mais

(Ciência de Computadores) 2005/ Diga quais dos conjuntos seguintes satisfazem o Princípio de Boa Ordenação

(Ciência de Computadores) 2005/ Diga quais dos conjuntos seguintes satisfazem o Princípio de Boa Ordenação Álgebra (Ciência de Computadores) 2005/2006 Números inteiros 1. Diga quais dos conjuntos seguintes satisfazem o Princípio de Boa Ordenação (a) {inteiros positivos impares}; (b) {inteiros negativos pares};

Leia mais

DIVISÃO NOS INTEIROS. Luciana Santos da Silva Martino. lulismartino.wordpress.com PROFMAT - Colégio Pedro II

DIVISÃO NOS INTEIROS. Luciana Santos da Silva Martino. lulismartino.wordpress.com PROFMAT - Colégio Pedro II Sumário DIVISÃO NOS INTEIROS Luciana Santos da Silva Martino lulismartino.wordpress.com lulismartino@gmail.com PROFMAT - Colégio Pedro II 18 de agosto de 2017 Sumário 1 Divisibilidade 2 Divisão Euclidiana

Leia mais

Roteiro da segunda aula presencial - ME

Roteiro da segunda aula presencial - ME PIF Enumerabilidade Teoria dos Números Congruência Matemática Elementar Departamento de Matemática Universidade Federal da Paraíba 29 de outubro de 2014 PIF Enumerabilidade Teoria dos Números Congruência

Leia mais

Teorema Chinês dos Restos. Tópicos Adicionais

Teorema Chinês dos Restos. Tópicos Adicionais Teorema Chinês dos Restos Teorema Chinês dos Restos Tópicos Adicionais Tópicos Adicionais Teorema Chinês dos Restos 1 Exercícios Introdutórios Exercício 1. Para cada um dos itens abaixo, encontre o menor

Leia mais

Definição. Diremos que um número inteiro d é um divisor de outro inteiro a, se a é múltiplo de d; ou seja, se a = d c, para algum inteiro c.

Definição. Diremos que um número inteiro d é um divisor de outro inteiro a, se a é múltiplo de d; ou seja, se a = d c, para algum inteiro c. Divisores Definição. Diremos que um número inteiro d é um divisor de outro inteiro a, se a é múltiplo de d; ou seja, se a = d c, para algum inteiro c. Quando a é múltiplo de d dizemos também que a é divisível

Leia mais

1 Congruências e aritmética modular

1 Congruências e aritmética modular 1 Congruências e aritmética modular Vamos considerar alguns exemplos de problemas sobre números inteiros como motivação para o que se segue. 1. O que podemos dizer sobre a imagem da função f : Z Z, f(x)

Leia mais

MAT Álgebra I para Licenciatura 2 a Lista de exercícios

MAT Álgebra I para Licenciatura 2 a Lista de exercícios MAT0120 - Álgebra I para Licenciatura 2 a Lista de exercícios 1. Quais são os números de cifras iguais que são divisíveis por 3? Idem, por 9? Idem por 11? 2. Determinar mmc (56, 72) e mmc (119, 272). 3.

Leia mais

Aritmética Racional MATEMÁTICA DISCRETA. Patrícia Ribeiro. Departamento de Matemática, ESTSetúbal 2018/ / 42

Aritmética Racional MATEMÁTICA DISCRETA. Patrícia Ribeiro. Departamento de Matemática, ESTSetúbal 2018/ / 42 1 / 42 MATEMÁTICA DISCRETA Patrícia Ribeiro Departamento de Matemática, ESTSetúbal 2018/2019 2 / 42 1 Combinatória 2 3 Grafos 3 / 42 Capítulo 2 4 / 42 Axiomática dos Inteiros Sejam a e b inteiros. Designaremos

Leia mais

Congruências e bases. a b (mod n) 4. (Compatibilidade com a soma e diferença) Podemos somar e subtrair membro a membro :

Congruências e bases. a b (mod n) 4. (Compatibilidade com a soma e diferença) Podemos somar e subtrair membro a membro : Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 3 Carlos Gustavo Moreira Aula 6 Congruências e bases 1 Congruências Sejam a,b,n Z. Dizemos que a é congruente a b módulo n, e escrevemos

Leia mais

Matemática para Ciência de Computadores

Matemática para Ciência de Computadores Matemática para Ciência de Computadores 1 o Ano - LCC & ERSI Luís Antunes lfa@ncc.up.pt DCC-FCUP Complexidade 2002/03 1 Inteiros e divisão Definição: Se a e b são inteiros com a 0, dizemos que a divide

Leia mais

Módulo: aritmética dos restos. Divisibilidade e Resto. Tópicos Adicionais

Módulo: aritmética dos restos. Divisibilidade e Resto. Tópicos Adicionais Módulo: aritmética dos restos Divisibilidade e Resto Tópicos Adicionais Módulo: aritmética dos restos Divisibilidade e resto 1 Exercícios Introdutórios Exercício 1. Encontre os inteiros que, na divisão

Leia mais

Note-se que pelo Teorema de Euler. a φ(n) 1 (mod n) logo existe k nas condições da definição acima e. Raízes Primitivas. Ordem de um elemento

Note-se que pelo Teorema de Euler. a φ(n) 1 (mod n) logo existe k nas condições da definição acima e. Raízes Primitivas. Ordem de um elemento Ordem de um elemento Definição Sejam a e n inteiros tais que m.d.c.(a, n) = 1. O menor inteiro positivo k tal que tal que a k 1 (mod n) diz-se a ordem de a módulo n e representa-se por ord n (a). Note-se

Leia mais

a = bq + r e 0 r < b.

a = bq + r e 0 r < b. 1 Aritmética dos Inteiros 1.1 Lema da Divisão e o Algoritmo de Euclides Recorde-se que a, o módulo ou valor absoluto de a, designa a se a N a = a se a / N Dados a, b Z denotamos por a b : a divide b ou

Leia mais

MA14 - Aritmética Unidade 1 Resumo. Divisibilidade

MA14 - Aritmética Unidade 1 Resumo. Divisibilidade MA14 - Aritmética Unidade 1 Resumo Divisibilidade Abramo Hefez PROFMAT - SBM Julho 2013 Aviso Este material é apenas um resumo de parte do conteúdo da disciplina e o seu estudo não garante o domínio do

Leia mais

Tópicos de Matemática Elementar

Tópicos de Matemática Elementar Tópicos de Matemática Elementar 2 a série de exercícios 2004/05. A seguinte prova por indução parece correcta, mas para n = 6 o lado esquerdo é igual a 2 + 6 + 2 + 20 + 30 = 5 6, enquanto o direito é igual

Leia mais

ALGORITMO DE EUCLIDES

ALGORITMO DE EUCLIDES Sumário ALGORITMO DE EUCLIDES Luciana Santos da Silva Martino lulismartino.wordpress.com lulismartino@gmail.com PROFMAT - Colégio Pedro II 25 de agosto de 2017 Sumário 1 Máximo Divisor Comum 2 Algoritmo

Leia mais

4.1 Preliminares. No exemplo acima: Dom(R 1 ) = e Im(R 1 ) = Dom(R 2 ) = e Im(R 2 ) = Dom(R 3 ) = e Im(R 3 ) = Diagrama de Venn

4.1 Preliminares. No exemplo acima: Dom(R 1 ) = e Im(R 1 ) = Dom(R 2 ) = e Im(R 2 ) = Dom(R 3 ) = e Im(R 3 ) = Diagrama de Venn 4 Relações 4.1 Preliminares Definição 4.1. Sejam A e B conjuntos. Uma relação binária, R, de A em B é um subconjunto de A B. (R A B) Dizemos que a A está relacionado com b B sss (a, b) R. Notação: arb.

Leia mais

Existem infinitos números de Carmichael, mas não provaremos isso neste curso.

Existem infinitos números de Carmichael, mas não provaremos isso neste curso. 6 Pseudoprimos 6.1 O Pequeno Teorema de Fermat nos diz que, se n é primo, então temos b n b (mod n) para todo b Z. Portanto, a contrapositiva diz que se temos b n b (mod n) ( ) para algum b Z, então n

Leia mais

Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão Lista 1. Números Naturais

Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão Lista 1. Números Naturais Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão 01 Lista 1 Números Naturais 1. Demonstre por indução as seguintes fórmulas: (a) (b) n (j 1) = n (soma dos n primeiros ímpares).

Leia mais

é uma proposição verdadeira. tal que: 2 n N k, Φ(n) = Φ(n + 1) é uma proposição verdadeira. com n N k, tal que:

é uma proposição verdadeira. tal que: 2 n N k, Φ(n) = Φ(n + 1) é uma proposição verdadeira. com n N k, tal que: Matemática Discreta 2008/09 Vítor Hugo Fernandes Departamento de Matemática FCT/UNL Axioma (Princípio da Boa Ordenação dos Números Naturais) O conjunto parcialmente (totalmente) ordenado (N, ), em que

Leia mais

Notas de Aula - Espaços Vetoriais I

Notas de Aula - Espaços Vetoriais I Notas de Aula - Espaços Vetoriais I 1 O espaço vetorial R 2 A definição de espaço vetorial que veremos adiante faz uso da ideia de operações definidas sobre um conjunto. Iniciaremos nosso estudo explorando

Leia mais

Definição 3.1: Seja x um número real. O módulo de x, denotado por x, é definido como: { x se x 0 x se x < 0

Definição 3.1: Seja x um número real. O módulo de x, denotado por x, é definido como: { x se x 0 x se x < 0 Capítulo 3 Módulo e Função Módular A função modular é uma função que apresenta o módulo na sua lei de formação. No entanto, antes de falarmos sobre funções modulares devemos definir o conceito de módulo,

Leia mais

CENTRO EDUCACIONAL GIRASSOL TD de Matemática Prof.: Tiago Rodrigues

CENTRO EDUCACIONAL GIRASSOL TD de Matemática Prof.: Tiago Rodrigues CENTRO EUCACIONAL GIRASSOL T de Matemática Prof.: Tiago Rodrigues proftiagorodrigues@gmail.com IVISIBILIAE E RESTO. Introdução O assunto divisibilidade no Conjunto dos Inteiros ( ) é extremamente importante

Leia mais

MA14 - Aritmética Unidade 3. Divisão nos Inteiros (Divisibilidade)

MA14 - Aritmética Unidade 3. Divisão nos Inteiros (Divisibilidade) MA14 - Aritmética Unidade 3 Divisão nos Inteiros (Divisibilidade) Abramo Hefez PROFMAT - SBM Aviso Este material é apenas um resumo de parte do conteúdo da disciplina e o seu estudo não garante o domínio

Leia mais

DE MATEMÁTICA I. Prof. ADRIANO CATTAI. Corpos Numéricos (Atualizada em 8 de março de 2016)

DE MATEMÁTICA I. Prof. ADRIANO CATTAI. Corpos Numéricos (Atualizada em 8 de março de 2016) ac COMPLEMENTOS DE MATEMÁTICA I Prof. ADRIANO CATTAI Corpos Numéricos (Atualizada em 8 de março de 2016) NOME: DATA: / / Não há ciência que fale das harmonias da natureza com mais clareza do que a matemática

Leia mais

Números inteiros. Sandro Marcos Guzzo

Números inteiros. Sandro Marcos Guzzo Números inteiros Sandro Marcos Guzzo Cascavel - Pr Agosto de 2013 1 Construção do conjunto dos números inteiros O conjunto dos números inteiros, designado por Z será aqui construído a partir do conjunto

Leia mais

Proposição 0 (Divisão Euclidiana): Dados a b, b b * existem q, r b unicamente determinados tais que 0 r < b e a = bq + r

Proposição 0 (Divisão Euclidiana): Dados a b, b b * existem q, r b unicamente determinados tais que 0 r < b e a = bq + r "!$#%& '!)( * +-,/.10 2/3"456387,:9;2 .1?/@.1, ACB DFEHG IJDLK8MHNLK8OHP Q RTSVUVWYXVZ\[^]_W Este artigo se roõe a ser uma referência sobre os temas citados no título, que aarecem naturalmente em diversos

Leia mais

MA14 - Unidade 1 Divisibilidade Semana de 08/08 a 14/08

MA14 - Unidade 1 Divisibilidade Semana de 08/08 a 14/08 MA14 - Unidade 1 Divisibilidade Semana de 08/08 a 14/08 Neste curso, consideraremos o conjunto dos números naturais como sendo o conjunto N = {0, 1, 2, 3,... }, denotando por N o conjunto N \ {0}. Como

Leia mais

Notas sobre teoria dos números (2)

Notas sobre teoria dos números (2) 1 / 29 Notas sobre teoria dos números (2) Fonte: livros do L. Lóvasz e Kenneth Rosen (ref. completa na página) Centro de Informática Universidade Federal de Pernambuco 2007.1 / CIn-UFPE 2 / 29 Maior divisor

Leia mais

Matemática Discreta. Introdução à Teoria de Números - Exercícios 1 o ano /2011

Matemática Discreta. Introdução à Teoria de Números - Exercícios 1 o ano /2011 Lic. em Ciências da Computação Matemática Discreta Introdução à Teoria de Números - Exercícios 1 o ano - 2010/2011 1. Determine o quociente e o resto na divisão de: (a) 310156 por 197; (b) 32 por 45; (c)

Leia mais

Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 8 ano E.F.

Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 8 ano E.F. Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 8 ano E.F. Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 1 Exercícios Introdutórios Exercício 1.

Leia mais

Aula 14 DOMÍNIOS FATORIAIS META. Estabelecer o conceito de domínio fatorial. OBJETIVOS

Aula 14 DOMÍNIOS FATORIAIS META. Estabelecer o conceito de domínio fatorial. OBJETIVOS Aula 14 DOMÍNIOS FATORIAIS META Estabelecer o conceito de domínio fatorial. OBJETIVOS Aplicar a definição de domínio fatorial na resolução de problemas. Estabelecer a definição de máximo divisor comum

Leia mais

Exponenciais e Logaritmos - Notas de Aulas 3(2016) Prof Carlos Alberto S Soares

Exponenciais e Logaritmos - Notas de Aulas 3(2016) Prof Carlos Alberto S Soares Exponenciais e Logaritmos - Notas de Aulas 3(206) Prof Carlos Alberto S Soares Função Logarítmica Iniciamos estas propondo um exercício que evidenciará a relação entre uma função e sua inversa quanto ao

Leia mais

Polos Olímpicos de Treinamento. Aula 6. Curso de Teoria dos Números - Nível 2. Congruências II. Prof. Samuel Feitosa

Polos Olímpicos de Treinamento. Aula 6. Curso de Teoria dos Números - Nível 2. Congruências II. Prof. Samuel Feitosa Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 2 Prof. Samuel Feitosa Aula 6 Congruências II Na aula de hoje, aprenderemos um dos teoremas mais importantes do curso: o pequeno teorema

Leia mais

1. O que podemos dizer sobre a imagem da função. f : Z Z, f(x) = x 2 + x + 1?

1. O que podemos dizer sobre a imagem da função. f : Z Z, f(x) = x 2 + x + 1? 1 Congruências e aritmética modular Vamos considerar alguns exemplos de problemas sobre números inteiros como motivação para o que se segue. 1. O que podemos dizer sobre a imagem da função f : Z Z, f(x)

Leia mais

1 Conjuntos, Números e Demonstrações

1 Conjuntos, Números e Demonstrações 1 Conjuntos, Números e Demonstrações Definição 1. Um conjunto é qualquer coleção bem especificada de elementos. Para qualquer conjunto A, escrevemos a A para indicar que a é um elemento de A e a / A para

Leia mais

Soma de Quadrados. Faculdade de Matemática, UFU, MG

Soma de Quadrados. Faculdade de Matemática, UFU, MG Soma de Quadrados Stela Zumerle Soares 1 Antônio Carlos Nogueira (stelazs@gmailcom (anogueira@ufubr Faculdade de Matemática, UFU, MG 1 Resultados Preliminares Historicamente, um problema que tem recebido

Leia mais

Notas sobre teoria dos números - Aritmática Modular (2) Anjolina Grisi de Oliveira

Notas sobre teoria dos números - Aritmática Modular (2) Anjolina Grisi de Oliveira Notas sobre teoria dos números - Aritmática Modular (2) Anjolina Grisi de Oliveira 1 Introdução à Aritmética modular Definição 1 Sejam a e b inteiros positivos. Nós denotamos a mod m como o resto quando

Leia mais

Teorema Chinês dos Restos. Sistema de Congruências. Tópicos Adicionais

Teorema Chinês dos Restos. Sistema de Congruências. Tópicos Adicionais Teorema Chinês dos Restos Sistema de Congruências Tópicos Adicionais Teorema Chinês dos Restos Sistema de Congruências 1 Exercícios Introdutórios Exercício 1. Para cada um dos itens abaixo, encontre todos

Leia mais

MA14 - Aritmética Unidade 15 - Parte 1 Resumo. Congruências

MA14 - Aritmética Unidade 15 - Parte 1 Resumo. Congruências MA14 - Aritmética Unidade 15 - Parte 1 Resumo Congruências Abramo Hefez PROFMAT - SBM Aviso Este material é apenas um resumo de parte do conteúdo da disciplina e o seu estudo não garante o domínio do assunto.

Leia mais

Polos Olímpicos de Treinamento. Aula 9. Curso de Teoria dos Números - Nível 2. O Teorema de Euler. Prof. Samuel Feitosa

Polos Olímpicos de Treinamento. Aula 9. Curso de Teoria dos Números - Nível 2. O Teorema de Euler. Prof. Samuel Feitosa Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 2 Prof. Samuel Feitosa Aula 9 O Teorema de Euler Nesta aula, obteremos uma generalização do teorema de Fermat. Definição 1. Dado n N,

Leia mais

Ordens e raízes primitivas

Ordens e raízes primitivas Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 3 Carlos Gustavo Moreira Aula 7 Ordens e raízes primitivas 1 Polinômios Dado um anel comutativo K, definimos o anel comutativo K[x] como

Leia mais

1 Congruência. 2. m mmc(n, m) m a b. De 1) e 2) segue que: a b mod n e a b mod m.

1 Congruência. 2. m mmc(n, m) m a b. De 1) e 2) segue que: a b mod n e a b mod m. 1 Congruência Exercício 1.1. Proposição 23. (7) a b mod n e a b mod m a b mod mmc(n, m) De fato, ( ) Se a b mod n n a b, se a b mod n m a b. nm a b, como mmc(n, m) nm então mmc(n, m) a b a b mod mmc(n,

Leia mais

Primos, LTE e Outras Histórias

Primos, LTE e Outras Histórias Primos, LTE e Outras Histórias Semana Olímpica 09 Rafael Filipe - rafaelfilipedoss@gmailcom O objetivo desse material é apresentar algumas ideias recentes que tem aparecido nos problemas de Teoria dos

Leia mais

Errata da lista 1: Na página 4 (respostas), a resposta da letra e da questão 13 é {2, 3, 5, 7, 11, 13, 17} (faltou o número 17)

Errata da lista 1: Na página 4 (respostas), a resposta da letra e da questão 13 é {2, 3, 5, 7, 11, 13, 17} (faltou o número 17) Errata da lista 1: Na página 4 (respostas), a resposta da letra e da questão 13 é {2, 3, 5, 7, 11, 13, 17} (faltou o número 17) Lista 1 - Bases Matemáticas Elementos de Lógica e Linguagem Matemática 1

Leia mais

A DEFINIÇÃO AXIOMÁTICA DO CONJUNTO DOS NÚMEROS NATURAIS.

A DEFINIÇÃO AXIOMÁTICA DO CONJUNTO DOS NÚMEROS NATURAIS. A DEFINIÇÃO AXIOMÁTICA DO CONJUNTO DOS NÚMEROS NATURAIS. SANDRO MARCOS GUZZO RESUMO. A construção dos conjuntos numéricos é um assunto clássico na matemática, bem como o estudo das propriedades das operações

Leia mais

11.1) Noções Elementares 11.2) MDCs e algoritmos de Euclides 11.3) Aritmética modular 11.4) Aplics da MD: O sistema criptográfico RSA

11.1) Noções Elementares 11.2) MDCs e algoritmos de Euclides 11.3) Aritmética modular 11.4) Aplics da MD: O sistema criptográfico RSA Teoria de Números 11.1) Noções Elementares 11.2) MDCs e algoritmos de Euclides 11.3) Aritmética modular 11.4) Aplics da MD: O sistema criptográfico RSA Material extraído dos livros-textos (Cormen( Cormen)

Leia mais

UDESC - Universidade do Estado de Santa Catarina CCT - Centro de Ciências Tecnológicas DMAT - Departamento de Matemática

UDESC - Universidade do Estado de Santa Catarina CCT - Centro de Ciências Tecnológicas DMAT - Departamento de Matemática UDESC - Universidade do Estado de Santa Catarina CCT - Centro de Ciências Tecnológicas DMAT - Departamento de Matemática Segunda Lista de Exercícios de ITN: Números Inteiros Prof. Marnei Luis Mandler Segundo

Leia mais

13 AULA. Relações de Equivalência LIVRO. META: Introduzir o conceito de relações de equivalência e suas propriedades.

13 AULA. Relações de Equivalência LIVRO. META: Introduzir o conceito de relações de equivalência e suas propriedades. 2 LIVRO Relações de Equivalência META: Introduzir o conceito de relações de equivalência e suas propriedades. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Identificar se uma dada relação

Leia mais

Resolução dos Exercícios Propostos no Livro

Resolução dos Exercícios Propostos no Livro Resolução dos Eercícios Propostos no Livro Eercício : Considere agora uma função f cujo gráfico é dado por y 0 O que ocorre com f() quando se aproima de por valores maiores que? E quando se aproima de

Leia mais

Polos Olímpicos de Treinamento. Aula 1. Curso de Teoria dos Números - Nível 2. Divisibilidade I. Samuel Barbosa Feitosa

Polos Olímpicos de Treinamento. Aula 1. Curso de Teoria dos Números - Nível 2. Divisibilidade I. Samuel Barbosa Feitosa Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 2 Samuel Barbosa Feitosa Aula 1 Divisibilidade I Teorema 1. (Algoritmo da Divisão) Para quaisquer inteiros positivos a e b, existe um

Leia mais

1. Prove que (a+b) c = a c+b c para todo a, b, c em ZZ /mzz. (Explique cada passo).

1. Prove que (a+b) c = a c+b c para todo a, b, c em ZZ /mzz. (Explique cada passo). 1 a Lista de Exercícios de Álgebra II - MAT 231 1. Prove que (a+b) c = a c+b c para todo a, b, c em ZZ /mzz. (Explique cada passo). 2. Seja A um anel associativo. Dado a A, como você definiria a m, m IN?

Leia mais

5 Congruências lineares. Programa. 1 Parte 1 - Conjuntos e Aplicações. 1 Conjuntos. 4 Indução matemática e divisibilidade

5 Congruências lineares. Programa. 1 Parte 1 - Conjuntos e Aplicações. 1 Conjuntos. 4 Indução matemática e divisibilidade Matemática Discreta 2008/09 Jorge André & Vítor Hugo Fernandes Departamento de Matemática FCT/UNL Programa 1 Parte 1 - Conjuntos e Aplicações 1 Conjuntos 2 Relações Binárias 3 Aplicações 4 Indução matemática

Leia mais

Congruências I. Por exemplo, 7 2 (mod 5), 9 3 (mod 6), 37 7 (mod 10) mas 5 3 (mod 4). Veja que a b (mod m) se, e somente se, m a b.

Congruências I. Por exemplo, 7 2 (mod 5), 9 3 (mod 6), 37 7 (mod 10) mas 5 3 (mod 4). Veja que a b (mod m) se, e somente se, m a b. Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 2 Prof. Samuel Feitosa Aula 6 Congruências I Definição 1. Dizemos que os inteiros a e b são congrentes módulo m se eles deixam o mesmo

Leia mais

MATEMÁTICA 1 MÓDULO 2. Divisibilidade. Professor Matheus Secco

MATEMÁTICA 1 MÓDULO 2. Divisibilidade. Professor Matheus Secco MATEMÁTICA 1 Professor Matheus Secco MÓDULO 2 Divisibilidade 1. DIVISIBILIDADE 1.1 DEFINIÇÃO: Dizemos que o inteiro a é divisível pelo inteiro b (ou ainda que a é múltiplo de b) se existe um inteiro c

Leia mais

Aritmética dos Restos. Pequeno Teorema de Fermat. Tópicos Adicionais

Aritmética dos Restos. Pequeno Teorema de Fermat. Tópicos Adicionais Aritmética dos Restos Pequeno Teorema de Fermat Tópicos Adicionais Aritmética dos Restos Pequeno Teorema de Fermat 1 Exercícios Introdutórios Exercício 1. Encontre os restos da divisão de 2 24 por a) 5

Leia mais

MA14 - Aritmética Unidade 15 - Parte 2 Resumo

MA14 - Aritmética Unidade 15 - Parte 2 Resumo MA14 - Aritmética Unidade 15 - Parte 2 Resumo Aplicações de Congruências Abramo Hefez PROFMAT - SBM Aviso Este material é apenas um resumo de parte do conteúdo da disciplina e o seu estudo não garante

Leia mais

objetivos Teoria dos anéis 2 a parte 4 Meta da aula Pré-requisito

objetivos Teoria dos anéis 2 a parte 4 Meta da aula Pré-requisito A U L A Teoria dos anéis 2 a parte 4 Meta da aula Apresentar algumas propriedades operatórias básicas dos anéis e descrever tipos especiais de anéis, chamados domínios de integridade e corpos. objetivos

Leia mais

Dado um inteiro positivo n, definimos U(n) como sendo o conjunto dos inteiros positivos menores que n e primos com n. Não é difícil ver que a

Dado um inteiro positivo n, definimos U(n) como sendo o conjunto dos inteiros positivos menores que n e primos com n. Não é difícil ver que a Exemplo (U(n)) Dado um inteiro positivo n, definimos U(n) como sendo o conjunto dos inteiros positivos menores que n e primos com n. Não é difícil ver que a multiplicação módulo n é uma operação binária

Leia mais

MATEMÁTICA DISCRETA ARITMÉTICA RACIONAL (6/6) Carlos Luz. EST Setúbal / IPS Maio 2012

MATEMÁTICA DISCRETA ARITMÉTICA RACIONAL (6/6) Carlos Luz. EST Setúbal / IPS Maio 2012 MATEMÁTICA DISCRETA ARITMÉTICA RACIONAL (6/6) Carlos Luz EST Setúbal / IPS 21 27 Maio 2012 Carlos Luz (EST Setúbal / IPS) Aritmética Racional (6/6) 21 27 Maio 2012 1 / 15 Congruências Lineares De nição

Leia mais

Volume único. Hernando Bedoya Ricardo Camelier. Álgebra II

Volume único. Hernando Bedoya Ricardo Camelier. Álgebra II Volume único Hernando Bedoya Ricardo Camelier Álgebra II Álgebra II Volume único Hernando Bedoya Ricardo Camelier Apoio: Fundação Cecierj / Consórcio Cederj Rua Visconde de Niterói, 1364 Mangueira Rio

Leia mais

Funções do Plano Complexo(MAT162) Notas de Aulas Prof Carlos Alberto S Soares

Funções do Plano Complexo(MAT162) Notas de Aulas Prof Carlos Alberto S Soares Funções do Plano Complexo(MAT62) Notas de Aulas 2-209 Prof Carlos Alberto S Soares O Plano Complexo Considerando a nossa definição de número complexo, é claro que existe uma correspondênca biunívoca entre

Leia mais

Curso Satélite de. Matemática. Sessão n.º 1. Universidade Portucalense

Curso Satélite de. Matemática. Sessão n.º 1. Universidade Portucalense Curso Satélite de Matemática Sessão n.º 1 Universidade Portucalense Conceitos Algébricos Propriedades das operações de números reais Considerem-se três números reais quaisquer, a, b e c. 1. A adição de

Leia mais

Polos Olímpicos de Treinamento. Aula 11. Curso de Teoria dos Números - Nível 2. O Teorema Chinês dos Restos. Prof. Samuel Feitosa

Polos Olímpicos de Treinamento. Aula 11. Curso de Teoria dos Números - Nível 2. O Teorema Chinês dos Restos. Prof. Samuel Feitosa Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 2 Prof. Samuel Feitosa Aula 11 O Teorema Chinês dos Restos Iremos estudar um antigo teorema descoberto pelos chineses no início século

Leia mais

1 Congruências de Grau Superior. Dado um polinômio f(x) Z[x] e um número natural n, vamos estudar condições para que a congruência. f(x) 0 (mod n).

1 Congruências de Grau Superior. Dado um polinômio f(x) Z[x] e um número natural n, vamos estudar condições para que a congruência. f(x) 0 (mod n). Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 3 Carlos Gustavo Moreira Aula 10 Congruências de Grau Superior 1 Congruências de Grau Superior Dado um polinômio f(x Z[x] e um número

Leia mais

n=1 a n converge e escreveremos a n = s n=1 n=1 a n. Se a sequência das reduzidas diverge, diremos que a série

n=1 a n converge e escreveremos a n = s n=1 n=1 a n. Se a sequência das reduzidas diverge, diremos que a série Séries Numéricas Nosso maior objetivo agora é dar um sentido a uma soma de infinitas parcelas, isto é, estudar a convergência das chamadas séries numéricas. Inicialmente, seja (a n ) uma sequência e formemos

Leia mais

Notas Sobre Sequências e Séries Alexandre Fernandes

Notas Sobre Sequências e Séries Alexandre Fernandes Notas Sobre Sequências e Séries 2015 Alexandre Fernandes Limite de seqüências Definição. Uma seq. (s n ) converge para a R, ou a R é limite de (s n ), se para cada ɛ > 0 existe n 0 N tal que s n a < ɛ

Leia mais

Semana Olímpica 2019

Semana Olímpica 2019 Semana Olímpica 2019 Prof a Ana Paula Chaves apchaves.math@gmail.com Nível 1 Congruência 1. Divisibilidade e Aritmética Modular Um dos tópicos mais fundamentais da teoria dos números é, sem dúvidas, a

Leia mais

Inteiros. Inteiros. Congruência. Discrete Mathematics with Graph Theory Edgar Goodaire e Michael Parmenter, 3rd ed 2006.

Inteiros. Inteiros. Congruência. Discrete Mathematics with Graph Theory Edgar Goodaire e Michael Parmenter, 3rd ed 2006. Inteiros Inteiros. Congruência. Referência: Capítulo: 4 Discrete Mathematics with Graph Theory Edgar Goodaire e Michael Parmenter, 3rd ed 2006 1 Números reais A relação binária em R é uma ordem parcial

Leia mais

Triângulos retângulos com lados inteiros: Procurando as hipotenusas

Triângulos retângulos com lados inteiros: Procurando as hipotenusas MATEMÁTICA UNIVERSITÁRIA n o 41 Dezembro/2006 pp. 1 10 Triângulos retângulos com lados inteiros: Procurando as hipotenusas José F. Andrade 1 Introdução O objetivo principal deste artigo é determinar os

Leia mais

XIX Semana Olímpica de Matemática. Nível 2. Equações Diofantinas Lineares e o Teorema Chinês dos Restos. Samuel Feitosa

XIX Semana Olímpica de Matemática. Nível 2. Equações Diofantinas Lineares e o Teorema Chinês dos Restos. Samuel Feitosa XIX Semana Olímpica de Matemática Nível Equações Diofantinas Lineares e o Teorema Chinês dos Restos Samuel Feitosa O projeto da XIX Semana Olímpica de Matemática foi patrocinado por: Semana Olímpica 016

Leia mais

XXXIV OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º. e 9º. anos) GABARITO

XXXIV OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º. e 9º. anos) GABARITO XXXIV OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (8º. e 9º. anos) GABARITO GABARITO NÍVEL 1) B 6) D 11) B 16) C 1) A ) E 7) E 1) B 17) D ) D 3) B 8) B 13) D 18) C 3) D 4) B 9) E 14) D 19) C

Leia mais

1 Grupos (23/04) Sim(R 2 ) T T

1 Grupos (23/04) Sim(R 2 ) T T 1 Grupos (23/04) Definição 1.1. Um grupo é um conjunto G não-vazio com uma operação binária : G G G que satisfaz as seguintes condições: 1. (associatividade) g (h k) = (g h) k para todos g, h, k G; 2.

Leia mais

Teorema 1.1 (Teorema de divisão de Euclides). Dados n Z e d N, existe uma única dupla q Z, r. n = qd + r

Teorema 1.1 (Teorema de divisão de Euclides). Dados n Z e d N, existe uma única dupla q Z, r. n = qd + r Matemática Discreta September 18, 2018 1 1 Divisão de inteiros Teorema 1.1 (Teorema de divisão de Euclides). Dados n Z e d N, existe uma única dupla q Z, r {0,..., d 1} tal que n = qd + r Dizemos que a

Leia mais

Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Oitavo Ano. Prof. Ulisses Lima Parente

Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Oitavo Ano. Prof. Ulisses Lima Parente Material Teórico - Módulo de Potenciação e Dízimas Periódicas Potenciação Oitavo Ano Prof Ulisses Lima Parente 1 Potência de expoente inteiro positivo Antes de estudar potências, é conveniente relembrar

Leia mais

Gabarito Lista 2, Álgebra I

Gabarito Lista 2, Álgebra I Gabarito Lista 2, Álgebra I Os seguintes dois Exercicio são muito uteis para mostrar os outros. Exercicio 1. Seja k Z positivo. Assim k divide o produto de q.q. k inteiros consecutivos. Demonstração: È

Leia mais

Polos Olímpicos de Treinamento (POT) Curso de Teoria dos Números - Nível 2. Aula 1 - Divisibilidade I

Polos Olímpicos de Treinamento (POT) Curso de Teoria dos Números - Nível 2. Aula 1 - Divisibilidade I Polos Olímpicos de Treinamento (POT) Curso de Teoria dos Números - Nível 2 Aula 1 - Divisibilidade I Samuel Barbosa Feitosa Arquivo Original 1 1 Documento:...gaia/educacional/matematica/teoria numeros2/aula01-divisibilidadei.pdf.

Leia mais

1 A Álgebra do corpo dos números complexos

1 A Álgebra do corpo dos números complexos Números Complexos - Notas de Aulas 1 1 A Álgebra do corpo dos números complexos 1.1 Preliminares Suponhamos fixado no plano um sistema retangular de coordenadas. Como usual, designaremos os pontos do planos

Leia mais

Portal da OBMEP. Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Oitavo Ano

Portal da OBMEP. Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Oitavo Ano Material Teórico - Módulo de Potenciação e Dízimas Periódicas Potenciação Oitavo Ano Autor: Prof Angelo Papa Neto Revisor: Prof Antonio Caminha M Neto 1 Potência de expoente inteiro positivo Antes de estudar

Leia mais