Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Tamanho: px
Começar a partir da página:

Download "Prova Escrita de MATEMÁTICA A - 12o Ano a Fase"

Transcrição

1 Prova Escrita de MATEMÁTICA A - 1o Ano 01 - a Fase Proposta de resolução GRUPO I 1. A escolha pode ser feita selecionando, 9 dos 1 quadrados para colocar os discos brancos não considerando a ordem relevante porque os discos são iguais. Ou seja, 1 C 9 são as diferentes formas de dispor os discos brancos no tabuleiro. Depois, selecionamos quadrados, de entre os 7 que permanecem sem qualquer disco. Ou seja 7 C são as diferentes formas de dispor os discos pretos no tabuleiro, depois de termos colocado os 9 discos brancos. Assim, o número de formas diferentes de colocar os 1 discos no tabuleiro, de acordo com as condições definidas é 1 C 9 7 C Resposta: Opção B. O segundo e o penúltimo números de qualquer linha do triângulo de Pascal são iguais. Assim, se o produto do segundo elemento pelo penúltimo elemento de um linha é 484, podemos calcular o valor de ambos: a a 484 a 484 a 484 a Assim, temos que a linha em causa tem elementos da forma C n. Logo só existem elementos desta linha que são inferiores a 1000: C 0 C 1; C 1 C 1 e ainda C C 0 1 Porque C C e todos os restantes são superiores a estes. Logo, sabemos que existem 17 elementos superiores a 1000 num total de, ou seja, o valor da probabilidade é 17 Resposta: Opção C. Usando as propriedades dos logaritmos, temos que log a a 5 b + a log a b log a a 5 + log a b + b 5 + log a b 1 + b Resposta: Opção A log a b + b b b + b Página 1 de 9

2 4. Como, a função f é contínua em [ e, 1], e como 1 < e < e, ou seja, f e < e < f1, então, podemos concluir, pelo Teorema de Bolzano, que existe c ] e, 1[ tal que fc e, ou seja, que a equação fx e tem, pelo menos, uma solução em ] e, 1[ Resposta: Opção D fx fa 5. Sabemos que a é um zero da primeira derivada porque lim 0 x a x a f a 0 e que tem uma mudança de sinal associada, porque f x < 0, ou seja, f é decrescente: x a f x f x f x + 0 fx Máx Logo podemos concluir que a é um maximizante, e por isso fa é um máximo relativo da função f. Resposta: Opção B Não existem dados suficientes para rejeitar ou validar a afirmação da opção A. A afirmação C é falsa, porque se a fosse um minimizante, então f a > 0. A afirmação D é falsa, porque se P fosse um ponto de inflexão, então f a 0. Podemos descrever a monotonia da função g pela análise do gráfico, e relacionar com a variação do sinal da derivada: x a b + gx Máx min g x Pela observação do gráfico de g podemos ainda afirmar que < a < 0 e 0 < b <. Como fx gx, o gráfico de f resulta de uma translação horizontal do gráfico de g, de unidades para a direita. Assim, temos que os extremos da função f têm abcissas a + e b +, e a variação do sinal é dado por: x a + b + + fx Máx min f x Como < a < 0, temos que 1 < a + < ; e como 0 < b <, sabemos que < b + < 5, pelo que o gráfico da opção A é o único compatível com as condições. Resposta: Opção A Página de 9

3 7. Se z + bi, então z bi Assim temos Re z > 0 e como b < 0, Im z > 0, pelo que sabemos que representação geométrica de z pertence ao primeiro quadrante, logo Arg z não pode ser α Por outro lado z + b, como b > 0, temos que z >, logo z não pode ser Resposta: Opção C 8. Podemos reescrever a condição dada na forma: z + i π argz + i π Imz z--i π argz--i π Assim, sendo o ponto P a representação geométrica do número complexo i, a condição define o conjunto de pontos do plano complexo que: estão a uma distância do ponto P compreendida entre e definem com a semirreta paralela ao eixo real com origem no ponto P e que se prolonga no sentido positivo do eixo, um ângulo compreendido entre π rad 0 π P π Rez e π rad Resposta: Opção A Página de 9

4 GRUPO II Como i i 4 5+ i 1, temos que: z i + i 1 + i i Escrevendo z 1 na f.t. temos z 1 ρ cis θ, onde: ρ z tg θ θ π i i i 1 ; como sen θ > 0 e cos θ < 0, θ é um ângulo do o quadrante, logo Assim z 1 cis π E como cis π e i cis π, temos que: cis π cis π z iz 1 cis π cis π cis π Assim temos que z n cis π + π cis π n n cis n π cis π π cis + 4π cis π cis 7π cis π 7π E para que z n seja um número real negativo, arg z n π + kπ, k Z; ou seja: n π π + kπ, k Z n π + kπ π, k Z n n 1k, k Z π + 1kπ, k Z π Como, n 1k n + 1 k n k 1 logo, para que k Z, o menor valor natural que n pode tomar é, ficando k 1 k Fazendo a simplificação temos: π cosπ α + i cos α cos α + i sen α cosπ α + i sen α cos α + i sen α cosπ α + i sen π α cos α + i sen α π Porque cos α sen α Porque sen α sen π α cis π α cis α cis π α α Fazendo a divisão na forma trigonométrica cis π α Como queriamos mostrar Página 4 de 9

5 . Pelas leis de De Morgan, e pelo teorema do acontecimento contrário, temos que: P A B P A B 1 P A B Assim, vem que: P A B P A B P A B P A B P A B P A B 4 9 P A B P A B 9 Como P B A P B A P A P A P B A P B A ; P B A 9 e P B A, temos que 7 P A P B A P B A Logo, temos que P A 1 P A E que P A B 1 P A B Se repararmos que A B, ou seja que A e B são acontecimentos incompatíveis porque não existem números pares iguais ou maiores que, temos que: P A B P A + P B P A B P A P B E assim a probabilidade de sair o número, ou seja ocorrer o acontecimento B, é, P B Como P X 1 5, sabemos que 5 dos jornalistas são do sexo feminino, ou seja, jornalistas so sexo feminino num total de 0, e por isso, 8 jornalistas do sexo masculino. Escolhendo, ao acaso, jornalistas, de entre os 0, podemos selecionar grupos, com 0, 1 ou jornalistas do sexo feminino, e as probabilidades são: 1 C 0 8 C P Y C C 1 8 C 1 P Y C C 8 C 0 P Y 1 0 C Logo a tabela de distribuição de probabilidades da variável aleatória Y é: i 0 1 P Y i Página 5 de 9

6 .. A Resposta I 0 C 1 1! 8 A 4 pode ser interpretada como: Selecionando, de entre os 0 jornalistas 1 para ocupar as duas filas da frente, temos 0 C 1 grupos diferentes de 1 jornalistas. Como em cada um destes grupos, existem 1! maneiras diferentes de os sentar, correspondentes a todas as trocas de lugar entre eles que podem ser feitas, multiplicamos os dois números. E, por cada uma das situações diferentes antes consideradas, existem ainda 8 A 4 hipóteses a considerar, decorrentes de selecionar 4 cadeiras, ou posições, de entre as 8 existentes na terceira fila considerando a ordem relevante para fazer a atribuição de cada uma delas a um dos 4 jornalistas que se senta nesta fila. Como consideramos a ordem relevante, ficam já consideradas as trocas possíveis entre eles. A Resposta II 0 A 8 1 A 8 8 A 4 pode ser interpretada como: Existem 0 A 8 formas de ocupar a primeira fila, selecionam-se 8 de entre os 0 jornalistas considera-se a ordem relevante para considerar as trocas possíveis entre cada grupo de 8 selecionados. Por cada uma das hipóteses anteriores, existem 1 A 8 formas de ocupar a segunda fila, correspondentes a selecionar 8 de entre os 1 jornalistas que não ocuparam a primeira fila, podendo estes 8 fazer todas as trocas entre si. Finalmente, por cada uma das 0 A 8 1 A 8 formas de ocupar as duas primeira filas, existem ainda 8 A 4 hipóteses a considerar, decorrentes de selecionar 4 cadeiras, ou posições, de entre as 8 existentes na terceira fila considerando a ordem relevante para fazer a atribuição de cada uma delas a um dos 4 jornalistas que se senta nesta fila. Como consideramos a ordem relevante, ficam já consideradas as trocas possíveis entre eles Para averiguar se a função f é contínua em x 1, temos que verificar se f1 lim x 1 fx lim x 1 +fx f1 1 e e 4 + lim x 1 fx lim xe +x + x 1 e e 4 + x 1 1 x + sen x 1 lim fx lim sen x 1 + x x sen ind. 1 x sen x 1 1 x sen x 1 lim + lim + lim x x 1 x x x x x 1 x1 + x sen x 1 lim x x1 + + lim x x 1 + x 1 1 x sen x 1 lim x x1 + lim x x 1 + x 1 Como lim x 1 fazendo x 1, temos que se x 1 +, então x sen 1 x1 + lim lim x 0 + x 1 }{{} + Lim. Notável lim x x fx lim +fx, não existe lim fx; logo a função f não é contínua em x 1 x 1 x 1 Página de 9

7 4.. Para mostrar que o gráfico da função f admite uma assíntota oblíqua de equação mx+b, quando x tende para, temos: fx m lim x x lim xe +x + x xe +x lim + x lim e +x + x x x x x x b lim x lim x e+x + lim x e+ + e fx mx lim xe +x + x x lim xe +x e + x x e indeterminação fazendo x, temos x e se x, então + b lim xe +x lim e lim e lim e x lim e lim e e lim 1 e e lim 1 e lim }{{} Lim. Notável e lim e e e 1 + e 0 0 Assim temos que a reta de equação x é uma assíntota do gráfico de f quando x tende para Página 7 de 9

8 5. Começando por determinar g temos: g x g x ex + e x + 4x e x + e x + 4x ex + e x + 4x e x + e x ex + x e x x e x + e x ex e x x e x + e x + 4x Para determinar o sentido das concavidades, vamos estudar o sinal de g : g x 0 ex e x + 4 e x + e x + 4x 0 ex e x e x + e x + 4x 0 como e x + e x + 4x > 0 em R + e x e x +4 0 e x 1 e x +4 0 ex e x +4 0 ex +4e x 0 fazendo a substituição de variável e x ± ± 40 4 ± 40 4 ± ± 10 ± / R e x + 10 x ln + 10 Assim, estudando a variação de sinal de g e relacionando com o sentido das concavidades do gráfico de g, vem: x 0 ln g x n.d. 0 + gx n.d. Pt. I. Logo, podemos concluir que o gráfico de g: tem um único ponto de inflexão de abcissa x ln + 10 tem a concavidade voltada para baixo no intervalo ]0, ln + 10[ tem a concavidade voltada para cima no intervalo ] ln + 10, + [. Representado o gráfico de f, no domínio definido reproduzido na figura ao lado, numa janela compatível com o domínio da função 1 x, podemos observar que o triângulo [OAP ] terá área mínima quando a ordenada do ponto P corresponder ao máximo da função. O A P 0.15,.9 x Usando a função da calculadora gráfica para determinar o máximo de uma função num intervalo, determinámos valores aproximados às centésimas para as coordenadas de P 0.15,.9. Designado a ordenada do ponto P por P, temos que o valor da área do triângulo [OAP ] arredondado às centésimas é: f A [AOP ] OA P.9.9 Página 8 de 9

9 Começamos por definir o ponto P,0 e o ângulo AOP, cuja amplitude é π α. Assim, como sabemos que que OP, podemos usar a definição de cosseno podemos calcular OA: cosπ α OP OA cosπ α OA OA cosπ α A r Como cosπ α cos α, temos que: OA cosπ α OA cos α OA cos α Depois, calculamos AP recorrendo à definição de tangente: P π α α O x tg π α AP OP tg π α AP AP tg π α Como tg π α tg α, temos que: AP tg π α AP tg α B Como AB AP e OB OA, calculado a expressão do perímetro vem: P [OAB] AB + OA + OB AP + OA tg α + cos α tg α cos α ] π [ Logo, para cada x, π, o perímetro do triângulo é P x tg x cos x 7.. Como o declive da reta tangente num ponto é dado pela valor da derivada nesse ponto, vamos calcular a derivada da função P : P x tg x cos x 1 cos x tg x tg x cos x cos x cos x cos x 0 sen x cos x cos x sen x sen x cos x cos x Assim, o declive da reta tangente ao gráfico da função P no ponto de abcissa 5π, é 5π sen π 1 5π m P sen 5π π cos cos Página 9 de 9

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ano 00 - a Fase Proposta de resolução GRUPO I. Como só existem bolas azuis e roxas, e a probabilidade de extrair uma bola da caixa, e ela ser azul é igual a, então existem

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ano 0 - a Fase Proposta de resolução GRUPO I. Temos que P A B) P A) + P B) P A B) P A B) P A) + P B) P A B) Como A e B são independentes, então P A) P B) P A B), pelo

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial Prova Escrita de MATEMÁTICA A - 1o Ano 010 - Época especial Proposta de resolução GRUPO I 1. O grupo dos 3 livros de Matemática pode ser arrumado de 3 A 3 = P 3 = 3! formas diferentes. Como a prateleira

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial Prova Escrita de MATEMÁTICA A - 1o Ano 01 - Época especial Proposta de resolução GRUPO I 1. Como o primeiro e último algarismo são iguais, o segundo e o penúltimo também, o mesmo acontecendo com o terceiro

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - 1o Ano 009-1 a Fase Proposta de resolução GRUPO I 1. Como existem 4 cartas de cada tipo, existem 4 4 4 4 4 4 = 4 6 sequências do tipo 4 6 7 Dama Rei existem 4 hipóteses

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - 1o Ano 01-1 a Fase Proposta de resolução GRUPO I 1. Sabemos que P B A P B A P A P B A P B A P A Como P A 0,, temos que P A 1 P A 1 0, 0,6 Como P B A 0,8 e P A 0,6, temos

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ano 00 - a Fase Proposta de resolução GRUPO I. Como A e B são acontecimentos incompatíveis, temos que A B, ou seja, P A B 0 Como P A B P A + P B P A B P A B + P A B P

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial Prova Escrita de MATEMÁTICA A - o Ano 0 - Época especial Proposta de resolução GRUPO I. Temos que A e B são acontecimentos incompatíveis, logo P A B 0 Como P A B P B P A B, e P A B 0, vem que: P A B P

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ano 06 - a Fase Proposta de resolução GRUPO I. Como P (A B) P (A B) P (B) P (A B) P (A B) P (B) vem que: P (A B) 6 0 60 0 Como P (A B) P (A) + P (B) P (A B), temos que:

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial Prova Escrita de MATEMÁTICA A - o Ano 07 - Época especial Proposta de resolução GRUPO I. Como o número a formar deve ser maior que 0 000, então para o algarismo das dezenas de milhar existem apenas 3 escolhas

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - 1o Ano 009 - a Fase Proposta de resolução GRUPO I 1. Como a Maria escolheu CD de um conjunto de 9, sem considerar a ordem relevante, existem 9 C pares diferentes que podem

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial Prova Escrita de MATEMÁTIA A - o Ano 006 - Época especial Proposta de resolução GRUPO I. Estudando a variação de sinal de f e relacionando com o sentido das concavidades do gráfico de f, vem: 6 ) + + +

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ano 7 - a Fase Proposta de resolução GRUPO I. Como a área do retângulo é igual a 5, designado por x o comprimento de um dos lados e por y o comprimento de um lado adjacente,

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial Prova Escrita de MATEMÁTICA A - 2o Ano 20 - Época especial Proposta de resolução GRUPO I. O declive da reta AB é dado por: m AB = y B y A x B x A = 2 = 2 + = Como retas paralelas têm o mesmo declive, de

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ano 0 - a Fase Proposta de resolução GRUPO I. Para calcular o número de códigos diferentes, de acordo com as restrições impostas, podemos começar por escolher a posição

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ano 05 - a Fase Proposta de resolução GRUPO I. Escolhendo os lugares das etremidades para os dois rapazes, eistem hipóteses correspondentes a uma troca entre os rapazes.

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ano 06 - a Fase Proposta de resolução GRUPO I. Como P A B ) P A B ) P A B), temos que: P A B ) 0,6 P A B) 0,6 P A B) 0,6 P A B) 0,4 Como P A B) P A) + P B) P A B) P A

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial Prova Escrita de MATEMÁTICA A - o Ano 04 - Época especial Proposta de resolução GRUPO I. Para que os números de cinco algarismos sejam ímpares e tenham 4 algarismo pares, todos os números devem ser pares

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ano 04 - a Fase Proposta de resolução GRUPO I. Usando as leis de DeMorgan, e a probabilidade do acontecimento contrário, temos que: P A B P A B P A B então P A B 0,48

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - 12o Ano 2008-1 a Fase Proposta de resolução GRUPO I 1. Como se pretende ordenar 5 elementos amigos) em 5 posições lugares), existem 5 A 5 = P 5 = 5! casos possíveis. Como

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MAEMÁICA A - o Ano 006 - a Fase Proposta de resolução GRUPO I. Como o ponto (0,) pertence ao gráfico de f, temos que f(0) =, e assim vem que: f(0) = a 0 + b = + b = b = b = Como o ponto

Leia mais

Prova Escrita de Matemática A 12. O Ano de Escolaridade Prova 635/Versões 1 e 2

Prova Escrita de Matemática A 12. O Ano de Escolaridade Prova 635/Versões 1 e 2 Eame Nacional de 0 (. a fase) Prova Escrita de Matemática A. O Ano de Escolaridade Prova /Versões e GRUPO I. Versão : (B); Versão : (A) Se apenas são distinguíveis pela cor, os discos brancos entre si

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 18 DE JUNHO Grupo I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 18 DE JUNHO Grupo I PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 5) ª FASE 18 DE JUNHO 01 Grupo I Questões 1 4 5 7 8 Versão 1 B C A D B A C A Versão A D B B C A D C Grupo II 1 11 z

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - 1o Ano 011-1 a Fase Proposta de resolução GRUPO I 1. A igualdade da opção A é válida para acontecimentos contrários, a igualdade da opção B é válida para acontecimentos

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 18 DE JUNHO Grupo I. Grupo II.

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 18 DE JUNHO Grupo I. Grupo II. Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 7-A 1500- Lisboa Tel.: +51 1 71 90 / 1 711 0 77 Fax: +51 1 71 4 4 http://www.apm.pt email: geral@apm.pt PROPOSTA DE RESOLUÇÃO

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial Prova Escrita de MATEMÁTICA A - o Ano 08 - Época especial Proposta de resolução Caderno... Como A e B são acontecimentos equiprováveis, temos que P A P B E como A e B são acontecimentos independentes,

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ano 006 - a Fase Proposta de resolução GRUPO I. Como, pela observação da figura podemos constatar que os gráficos das duas funções se intersetam num ponto de ordenada

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial Prova Escrita de MATEMÁTICA A - 2o Ano 20 - Época especial Proposta de resolução GRUPO I. Considerando a eperiência aleatória que consiste em escolher, ao acaso, um jovem inscrito no clube, e os acontecimentos:

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial Prova Escrita de MATEMÁTICA A - o Ano 08 - Época especial Proposta de resolução Caderno... Como A e B são acontecimentos equiprováveis, temos que P A P B E como A e B são acontecimentos independentes,

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 65) ª FASE DE JUNHO 06 GRUPO I. Como P ( A B ) P A B P B temos que: P 6, ( A B ) 6 P( B ) P ( A B ) 6 0 P ( A B ) 0

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 20 DE JULHO 2018 CADERNO 1

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 20 DE JULHO 2018 CADERNO 1 PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) ª FASE 0 DE JULHO 08 CADERNO... P00/00 Como se trata de uma distribuição normal temos que: ( ) 0,9545. P µ σ

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 23 DE JUNHO 2016 GRUPO I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 23 DE JUNHO 2016 GRUPO I Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 7-A 500-6 Lisboa Tel.: +5 76 6 90 / 7 0 77 Fax: +5 76 6 http://www.apm.pt email: geral@apm.pt PROPOSTA DE RESOLUÇÃO DA PROVA DE

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - 1o Ano 007-1 a Fase Proposta de resolução GRUPO I 1. Calculando o valor do ite, temos: x + 1 1 x + 4 x = x + 4 x ) = 1 4 + ) = 1 4 4 + = 1 0 =. Resolvendo a inequação temos

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 20 DE JULHO 2018 CADERNO 1

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 20 DE JULHO 2018 CADERNO 1 Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 7-A 500-36 Lisboa Tel.: +35 76 36 90 / 7 03 77 Fax: +35 76 64 4 http://www.apm.pt email: geral@apm.pt PROPOSTA DE RESOLUÇÃO DA

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - 2o Ano 207-2 a Fase Proposta de resolução GRUPO I. Temos que os algarismos pares, ficando juntos podem ocupar 4 grupos de duas posições adjacentes e trocando entre si, podem

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 18 DE JUNHO Grupo I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 18 DE JUNHO Grupo I Associação de Professores de Matemática Contactos: Rua Dr João Couto, nº 7-A 1500- Lisboa Tel: +51 1 71 90 / 1 711 0 77 Fa: +51 1 71 4 4 http://wwwapmpt email: geral@apmpt PROPOSTA DE RESOLUÇÃO DA PROVA

Leia mais

MATEMÁTICA A - 11o Ano Funções - Derivada (extremos, monotonia e retas tangentes) Propostas de resolução

MATEMÁTICA A - 11o Ano Funções - Derivada (extremos, monotonia e retas tangentes) Propostas de resolução MATEMÁTICA A - o Ano Funções - Derivada extremos, monotonia e retas tangentes) Propostas de resolução Exercícios de exames e testes intermédios. Temos que, pela definição de derivada num ponto, f ) fx)

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições Propostas de resolução MATEMÁTICA A - o Ano N o s Complexos - Conjuntos e condições Propostas de resolução Exercícios de exames e testes intermédios. Escrevendo i na f.t. temos i i = ρ cis α, onde: ρ = i i = + ) = tg α = = ;

Leia mais

Disciplina: Matemática A. Prova: 635. Ano: Fase: 2ª. Resolução. O Sistema (

Disciplina: Matemática A. Prova: 635. Ano: Fase: 2ª. Resolução. O Sistema ( Disciplina: Matemática A Prova: 635 Ano: 2013 Fase: 2ª Resolução O Sistema (www.osis-tema.blogspot.pt) GRUPO I 1 2 3 4 5 6 7 8 Versão 1 B C A D B A C A Versão 2 A D B B C A D C 1. Começamos por colocar

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 23 DE JUNHO 2017 GRUPO I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 23 DE JUNHO 2017 GRUPO I PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) ª FASE 3 DE JUNHO 07. GRUPO I Dado que os algarismos que são usados são os do conjunto {,, 3, 4, 5, 6, 7, 8, 9

Leia mais

Nome do aluno: N.º: Para responder aos itens de escolha múltipla, não apresente cálculos nem justificações e escreva, na folha de respostas:

Nome do aluno: N.º: Para responder aos itens de escolha múltipla, não apresente cálculos nem justificações e escreva, na folha de respostas: Teste de Matemática A 018 / 019 Teste N.º 5 Matemática A Duração do Teste (Caderno 1 + Caderno ): 90 minutos 1.º Ano de Escolaridade Nome do aluno: N.º: Turma: Este teste é constituído por dois cadernos:

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições Propostas de resolução MATEMÁTICA A - o Ano N o s Complexos - Conjuntos e condições Propostas de resolução Exercícios de exames e testes intermédios. Analisando cada uma das afirmações temos (A) z z = z z é uma afirmação verdadeira

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições Propostas de resolução MATEMÁTICA A - o Ano N o s Complexos - Conjuntos e condições Propostas de resolução Exercícios de exames e testes intermédios. Escrevendo i na f.t. temos i i = ρe iα, onde: ρ = i i = + ) = tg α = = ; como

Leia mais

MATEMÁTICA A - 12o Ano Funções - 2 a Derivada (concavidades e pontos de inflexão) Propostas de resolução

MATEMÁTICA A - 12o Ano Funções - 2 a Derivada (concavidades e pontos de inflexão) Propostas de resolução MATEMÁTICA A - 1o Ano Funções - a Derivada concavidades e pontos de infleão) Propostas de resolução Eercícios de eames e testes intermédios 1. Por observação do gráfico de f, podemos observar o sentido

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução MATEMÁTICA A - 1o Ano N o s Complexos - Equações e problemas Propostas de resolução Exercícios de exames e testes intermédios 1. Simplificando as expressões de z 1 e z, temos que: Como i 19 i + i i, vem

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 23 DE JUNHO 2017 GRUPO I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 23 DE JUNHO 2017 GRUPO I Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 7-A 500-36 Lisboa Tel.: +35 76 36 90 / 7 03 77 Fax: +35 76 64 4 http://www.apm.pt email: geral@apm.pt PROPOSTA DE RESOLUÇÃO DA

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Potências e raízes Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Potências e raízes Propostas de resolução MATEMÁTICA A - 1o Ano N o s Complexos - Potências e raízes Propostas de resolução Exercícios de exames e testes intermédios 1. Escrevendo 1 + i na f.t. temos 1 + i ρ cis θ, onde: ρ 1 + i 1 + 1 1 + 1 tg

Leia mais

Acesso de Maiores de 23 anos Prova escrita de Matemática 7 de Junho de 2017 Duração da prova: 150 minutos. Tolerância: 30 minutos.

Acesso de Maiores de 23 anos Prova escrita de Matemática 7 de Junho de 2017 Duração da prova: 150 minutos. Tolerância: 30 minutos. Acesso de Maiores de 23 anos Prova escrita de Matemática 7 de Junho de 2017 Duração da prova: 150 minutos. Tolerância: 30 minutos. Primeira Parte As oito questões desta primeira parte são de escolha múltipla.

Leia mais

Na resposta a cada um dos itens deste grupo, selecione a única opção correta.

Na resposta a cada um dos itens deste grupo, selecione a única opção correta. Exame Nacional exame nacional do ensino secundário Decreto Lei n. 9/0, de de julho Prova Escrita de Matemática A. Ano de Escolaridade Prova 6/.ª Fase Duração da Prova: 0 minutos. Tolerância: 0 minutos

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Operações e simplificação de expressões Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Operações e simplificação de expressões Propostas de resolução MATEMÁTICA A - 1o Ano N o s Complexos - Operações e simplificação de expressões Propostas de resolução Exercícios de exames e testes intermédios 1. Como a multiplicação de um número complexo por i corresponde

Leia mais

A) 72 B) 240 C) 720 D) 1440

A) 72 B) 240 C) 720 D) 1440 Concurso de acesso de Estudantes Internacionais Prova escrita de Matemática 18 de Abril de 2018 Duração da prova: 10 minutos. Tolerância: 0 minutos. Primeira Parte As oito questões desta primeira parte

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Operações e simplificação de expressões Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Operações e simplificação de expressões Propostas de resolução MATEMÁTICA A - 1o Ano N o s Complexos - Operações e simplificação de expressões Propostas de resolução Exercícios de exames e testes intermédios 1. A operação multiplicar por i corresponde a fazer uma

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Operações e simplificação de expressões Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Operações e simplificação de expressões Propostas de resolução MATEMÁTICA A - 1o Ano N o s Complexos - Operações e simplificação de expressões Propostas de resolução Exercícios de exames e testes intermédios 1. A operação multiplicar por i corresponde a fazer uma

Leia mais

Nome do aluno: N.º: Para responder aos itens de escolha múltipla, não apresente cálculos nem justificações e escreva, na folha de respostas:

Nome do aluno: N.º: Para responder aos itens de escolha múltipla, não apresente cálculos nem justificações e escreva, na folha de respostas: Teste de Matemática A 017 / 018 Teste N.º 3 Matemática A Duração do Teste (Caderno 1+ Caderno ): 90 minutos 1.º Ano de Escolaridade Nome do aluno: N.º: Turma: Este teste é constituído por dois cadernos:

Leia mais

Proposta de Resolução do Exame do 12º ano Matemática A (Prova 635) Grupo I

Proposta de Resolução do Exame do 12º ano Matemática A (Prova 635) Grupo I Proposta de Resolução do Exame do 1º ano Matemática A (Prova 635) Grupo I 1. Como só existem bolas de dois tipos na caixa e a probabilidade de sair bola azul é 1, existem tantas bolas roxas quantas as

Leia mais

3. Tem-se: Como não pode ser, então. ( não pode ser porque se assim fosse a probabilidade de sair a face numerada com o número

3. Tem-se: Como não pode ser, então. ( não pode ser porque se assim fosse a probabilidade de sair a face numerada com o número EXAME NACIONAL DO ENSINO SECUNDÁRIO MATEMÁTICA A PROVA MODELO N.º 1 PROPOSTA DE RESOLUÇÃO 12.º ANO DE ESCOLARIDADE Site: http://recursos-para-matematica.webnode.pt/ Facebook: https://www.facebook.com/recursos.para.matematica

Leia mais

Proposta de Resolução da Prova Escrita de Matemática A

Proposta de Resolução da Prova Escrita de Matemática A Proposta de Resolução da Prova Escrita de Matemática A.º Ano de Escolaridade Prova 6/.ª fase 9 páginas 0 Grupo I. Homens 6 Mulheres 6 C - Das três mulheres, têm de ser selecionadas eatamente C - Dos 6

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO 2018 CADERNO 1

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO 2018 CADERNO 1 PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) ª FASE 5 DE JUNHO 08 CADERNO... P00/00 Seja X a variável aleatória: Número de vezes que sai a face numerada com

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO 2018 CADERNO 1

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO 2018 CADERNO 1 Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 7-A 500-36 Lisboa Tel.: +35 76 36 90 / 7 03 77 Fa: +35 76 64 4 http://www.apm.pt email: geral@apm.pt PROPOSTA DE RESOLUÇÃO DA

Leia mais

Proposta de Exame Final Nacional do Ensino Secundário

Proposta de Exame Final Nacional do Ensino Secundário Proposta de Exame Final Nacional do Ensino Secundário Prova Escrita de Matemática A. O ANO DE ESOLARIDADE Proposta de resolução GRUPO I. (Número de maneiras de nos lugares da fila escolher lugares para

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO 2019 CADERNO 1. e AV.

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO 2019 CADERNO 1. e AV. Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 7-A 1500-6 Lisboa Tel.: +51 1 716 6 90 / 1 711 0 77 Fa: +51 1 716 64 4 http://www.apm.pt email: geral@apm.pt PROPOSTA DE RESOLUÇÃO

Leia mais

Proposta de Resolução do Exame Nacional de Matemática A 2015 (1ª fase)

Proposta de Resolução do Exame Nacional de Matemática A 2015 (1ª fase) Proposta de Resolução do Exame Nacional de Matemática A 2015 (1ª fase) GRUPO I (versão 1) 1. Como há dois rapazes e quatro raparigas, existem duas maneiras de sentar os rapazes nas duas extremidades do

Leia mais

TESTE N.º 4 Proposta de resolução

TESTE N.º 4 Proposta de resolução TESTE N.º 4 Proposta de resolução Caderno 1 1. 1.1. Consideremos os seguintes acontecimentos: A: O produto ser vendido para os Estados Unidos da América. B: O produto ser vendido para o Japão. Sabemos

Leia mais

7. Na figura 3, está representado, no plano complexo, a sombreado, um setor circular. Sabe se que:

7. Na figura 3, está representado, no plano complexo, a sombreado, um setor circular. Sabe se que: Exames Nacionais exame nacional do ensino secundário Decreto Lei n. 74/004, de 6 de março Prova Escrita de Matemática A 1. Ano de Escolaridade Prova 63/.ª Fase Duração da Prova: 10 minutos. Tolerância:

Leia mais

Acesso de Maiores de 23 anos Prova escrita de Matemática 15 de junho de 2015 Duração da prova: 150 minutos. Tolerância: 30 minutos.

Acesso de Maiores de 23 anos Prova escrita de Matemática 15 de junho de 2015 Duração da prova: 150 minutos. Tolerância: 30 minutos. Acesso de Maiores de 23 anos Prova escrita de Matemática 15 de junho de 2015 Duração da prova: 150 minutos. Tolerância: 30 minutos. Primeira Parte As oito questões desta primeira parte são de escolha múltipla.

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO Grupo I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO Grupo I PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) ª FASE 25 DE JUNHO 203 Grupo I Questões 2 3 4 5 6 7 8 Versão B D C A D B C A Versão 2 C A B D D C B B Grupo II...

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução MATEMÁTICA A - 1o Ano N o s Complexos - Equações e problemas Propostas de resolução Exercícios de exames e testes intermédios 1. Simplificando as expressões de z 1 e z, temos que: Como i 19 i + i i, vem

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 26 DE JUNHO Grupo I. Questões

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 26 DE JUNHO Grupo I. Questões ROOSTA DE RESOLUÇÃO DA ROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA ROVA 5) ª FASE DE JUNHO 0 Grupo I Questões 5 7 8 Versão C A C B B D C D Versão B D B C B C A C Grupo II Seja w = + Tem-se que:

Leia mais

Proposta de Exame Final Nacional do Ensino Secundário

Proposta de Exame Final Nacional do Ensino Secundário Proposta de Exame Final Nacional do Ensino Secundário Prova Escrita de Matemática A. O ANO DE ESCOLARIDADE Duração da Prova: 50 minutos Tolerância: 0 minutos Data: Grupo I Na resposta aos itens deste grupo,

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO Grupo I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO Grupo I Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 27-A 500-236 Lisboa Tel.: +35 2 76 36 90 / 2 7 03 77 Fa: +35 2 76 64 24 http://www.apm.pt email: geral@apm.pt PROPOSTA DE RESOLUÇÃO

Leia mais

Nome do aluno: N.º: Para responder aos itens de escolha múltipla, não apresente cálculos nem justificações e escreva, na folha de respostas:

Nome do aluno: N.º: Para responder aos itens de escolha múltipla, não apresente cálculos nem justificações e escreva, na folha de respostas: Teste de Matemática A 018 / 019 Teste N.º 3 Matemática A Duração do Teste (Caderno 1+ Caderno ): 90 minutos 1.º Ano de Escolaridade Nome do aluno: N.º: Turma: Este teste é constituído por dois cadernos:

Leia mais

Proposta de Resolução da Prova Escrita de Matemática

Proposta de Resolução da Prova Escrita de Matemática prova 65, 2ª fase, 205 proposta de resolução Proposta de Resolução da Prova Escrita de Matemática 2.º Ano de Escolaridade Prova 65/2.ª Fase 8 páginas 205 Grupo I. P X P X 2 P X a 2a 0,4 a 0,6 a 0,2 0,2

Leia mais

Primeira Parte. Acesso de Maiores de 23 anos Prova escrita de Matemática 9 de junho de 2016 Duração da prova: 150 minutos. Tolerância: 30 minutos.

Primeira Parte. Acesso de Maiores de 23 anos Prova escrita de Matemática 9 de junho de 2016 Duração da prova: 150 minutos. Tolerância: 30 minutos. Acesso de Maiores de 23 anos Prova escrita de Matemática 9 de junho de 2016 Duração da prova: 150 minutos. Tolerância: 30 minutos. Primeira Parte As oito questões desta primeira parte são de escolha múltipla.

Leia mais

Nome do aluno: N.º: Na resposta aos itens de resposta aberta, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias.

Nome do aluno: N.º: Na resposta aos itens de resposta aberta, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Teste de Matemática A 2018 / 2019 Teste N.º 3 Matemática A Duração do Teste (Caderno 1+ Caderno 2): 90 minutos 12.º Ano de Escolaridade Nome do aluno: N.º: Turma: Este teste é constituído por dois cadernos:

Leia mais

GRUPO I. controlo antidoping. De quantas maneiras pode ter sido feita essa escolha sendo o Cristiano Ronaldo e o Rúben Micael dois dos escolhidos?

GRUPO I. controlo antidoping. De quantas maneiras pode ter sido feita essa escolha sendo o Cristiano Ronaldo e o Rúben Micael dois dos escolhidos? PREPRR EXME O NCIONL NCIONL PROV-MODELO GRUPO I Na resposta a cada um dos itens deste grupo, selecione a única opção correta. Escreva, na folha de respostas: o número do item; a letra que identifica a

Leia mais

TESTE N.º 3 Proposta de resolução

TESTE N.º 3 Proposta de resolução TESTE N.º 3 Proposta de resolução Caderno 1 1. 1.1. Opção (D) 5! 8! 4! 3! 696 79 600 1.. Número de casos possíveis Corresponde ao número de números naturais com seis algarismos (note-se que o algarismo

Leia mais

EXAME NACIONAL DO ENSINO SECUNDÁRIO MATEMÁTICA A PROVA MODELO N.º 4 PROPOSTA DE RESOLUÇÃO 12.º ANO DE ESCOLARIDADE

EXAME NACIONAL DO ENSINO SECUNDÁRIO MATEMÁTICA A PROVA MODELO N.º 4 PROPOSTA DE RESOLUÇÃO 12.º ANO DE ESCOLARIDADE EXAME NACIONAL DO ENSINO SECUNDÁRIO MATEMÁTICA A PROVA MODELO N.º 4 PROPOSTA DE RESOLUÇÃO 1.º ANO DE ESCOLARIDADE Site: http://recursos-para-matematica.webnode.pt/ Facebook: https://www.facebook.com/recursos.para.matematica

Leia mais

Proposta de resolução da Prova de Matemática A (código 635) 21 de Junho de 2010

Proposta de resolução da Prova de Matemática A (código 635) 21 de Junho de 2010 Proposta de resolução da Prova de Matemática A (código 635) 1. Como A e B são acontecimentos incompatíveis, 0 e Ou seja, de acordo com os dados do enunciado, 70% 30% 40% Versão 1: B Versão : C. Como se

Leia mais

Nome do aluno: N.º: Para responder aos itens de escolha múltipla, não apresente cálculos nem justificações e escreva, na folha de respostas:

Nome do aluno: N.º: Para responder aos itens de escolha múltipla, não apresente cálculos nem justificações e escreva, na folha de respostas: Teste de Matemática A 018 / 019 Teste N.º 4 Matemática A Duração do Teste (Caderno 1+ Caderno ): 90 minutos 1.º Ano de Escolaridade Nome do aluno: N.º: Turma: Este teste é constituído por dois cadernos:

Leia mais

EXAME NACIONAL DE MATEMÁTICA A ª FASE VERSÃO 1/2 PROPOSTA DE RESOLUÇÃO

EXAME NACIONAL DE MATEMÁTICA A ª FASE VERSÃO 1/2 PROPOSTA DE RESOLUÇÃO Preparar o Eame 06 Matemática A EXAME NACIONAL DE MATEMÁTICA A 05.ª FASE VERSÃO / PROPOSTA DE RESOLUÇÃO Site: http://recursos-para-matematica.webnode.pt/ Facebook: https://www.facebook.com/recursos.para.matematica

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano 2011-2 a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano 2011-2 a Fase Prova Escrita de MATEMÁTICA A - 1o Ano 011 - a Fase Proposta de resolução GRUPO I 1. Como no lote existem em total de 30 caixas, ao selecionar 4, podemos obter um conjunto de 30 C 4 amostras diferentes,

Leia mais

Proposta de Resolução do Exame do 12º ano Matemática A (Prova 635) ª Fase. Grupo I. 1. BComo A e B são acontecimentos incompatíveis, 0 e

Proposta de Resolução do Exame do 12º ano Matemática A (Prova 635) ª Fase. Grupo I. 1. BComo A e B são acontecimentos incompatíveis, 0 e Proposta de Resolução do Exame do 1º ano Matemática A (Prova 635) 010-1ª Fase 1. BComo A e B são acontecimentos incompatíveis, 0 e Ou seja, de acordo com c os dados do enunciado, 70% 30% 40% A opção correcta

Leia mais

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 1

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 1 P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 1 GRUPO I ITENS DE ESCOLHA MÚLTIPLA 1. Trata-se de uma permutação com repetições, ou seja, é uma sequência de oito letras em que a letra repete-se

Leia mais

Prova-Modelo de Exame Proposta de resolução

Prova-Modelo de Exame Proposta de resolução Prova-Modelo de Exame Proposta de resolução Caderno 1 1. Opção (D) Pretende-se determinar a quantidade de números constituídos por seis algarismos diferentes, múltiplos de 5 e com os algarismos pares todos

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 26 DE JUNHO Grupo I. Questões

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 26 DE JUNHO Grupo I. Questões Associação de rofessores de Matemática Contactos: Rua Dr João Couto, nº 7-A 500- Lisboa Tel: +5 7 0 / 7 0 77 Fax: +5 7 http://wwwapmpt email: geral@apmpt ROOSTA DE RESOLUÇÃO DA ROVA DE MATEMÁTICA A DO

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 22 DE JULHO 2019

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 22 DE JULHO 2019 Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 7-A 1500-36 Lisboa Tel.: +351 1 716 36 90 / 1 711 03 77 Fax: +351 1 716 64 4 http://www.apm.pt email: geral@apm.pt PROPOSTA DE

Leia mais

Grupo I. Na resposta a cada um dos itens deste grupo, selecione a única opção correta. (C) (D) 11 20

Grupo I. Na resposta a cada um dos itens deste grupo, selecione a única opção correta. (C) (D) 11 20 Eames Nacionais eame nacional do ensino secundário Decreto Lei n. 7/00, de 6 de março Prova Escrita de Matemática A. Ano de Escolaridade Prova 6/.ª Fase Duração da Prova: 0 minutos. Tolerância: 0 minutos

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas MATEMÁTICA A - 1o Ano N o s Complexos - Equações e problemas Exercícios de exames e testes intermédios 1. Em C, conjunto dos números complexos, sejam z 1 = 1 3i19 1 + i e z = 3k cis ( 3π, com k R + Sabe-se

Leia mais

Proposta de Teste Intermédio Matemática A 12.º ano

Proposta de Teste Intermédio Matemática A 12.º ano GRUPO I. Se f 0,, então f é estritamente crescente em. Se f é estritamente crescente em e se (0) 0 f, então 0, Se f 0,, então f é estritamente crescente em Logo, f f Resposta: (C). f... e f f e Resposta:

Leia mais

ESCOLA SECUNDÁRIA DA RAMADA. Teste de Matemática A. Grupo I

ESCOLA SECUNDÁRIA DA RAMADA. Teste de Matemática A. Grupo I ESCOLA SECUNDÁRIA DA RAMADA Teste de Matemática A 30 de maio de 2017 12º A Versão 1 Grupo I As cinco questões deste grupo são de escolha múltipla. Para cada uma delas, são indicadas quatro alternativas,

Leia mais

Proposta de Teste Intermédio Matemática A 12.º ano

Proposta de Teste Intermédio Matemática A 12.º ano Proposta de Teste Intermédio Matemática A 1.º ano Nome da Escola Ano letivo 0-0 Matemática A 1.º ano Nome do Aluno Turma N.º Data Professor - - 0 GRUPO I Os cinco itens deste grupo são de escolha múltipla.

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Operações e simplificação de expressões Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Operações e simplificação de expressões Propostas de resolução MATEMÁTICA A - 1o Ano N o s Complexos - Operações e simplificação de expressões Propostas de resolução Exercícios de exames e testes intermédios 1. Como a multiplicação de um número complexo por i corresponde

Leia mais

A o ângulo à superior a 180º, na opção B é inferior a 90º e na opção C é superior a 135º. e sen 0.

A o ângulo à superior a 180º, na opção B é inferior a 90º e na opção C é superior a 135º. e sen 0. Preparar o Eame 0 06 Matemática A Página 55. Sabemos que radianos equivalem a 80º, pelo que a um ângulo de radianos vai corresponder 80,6 graus. Este ângulo só pode estar representado na opção D. Na opção

Leia mais

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 7

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 7 P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 7 GRUPO I ITENS DE ESCOLHA MÚLTIPLA 1. Nas condições do enunciado, o número de triângulos que se podem formar com três dos doze pontos é (dos

Leia mais

3= 105 é um cálculo possível.

3= 105 é um cálculo possível. Associação de Professores de Matemática http://wwwapmpt geral@apmpt PROPOSTA DE RESOLUÇÃO DO EXAME NACIONAL DE MATEMÁTICA (PROVA 6) ªFASE Grupo I Questões 6 7 8 Versão A C B A D B D B Versão C A D D A

Leia mais

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 2

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 2 P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 2 GRUPO I ITENS DE ESCOLHA MÚLTIPLA 1. Nota: Na versão de 2014, no enunciado, onde está entre a e a -ésima linhas, inclusive deve estar entre

Leia mais

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 7

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 7 P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 7 GRUPO I ITENS DE ESCOLHA MÚLTIPLA 1. Nas condições do enunciado, o número de triângulos que se podem formar com três dos doze pontos é (dos

Leia mais

Proposta de teste de avaliação

Proposta de teste de avaliação Proposta de teste de avaliação Matemática A. O ANO DE ESCOLARIDADE Duração: 90 minutos Data: O teste é constituído por dois grupos, I e II. O Grupo I inclui cinco questões de escolha múltipla. O Grupo

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições

MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições MATEMÁTICA A - 1o Ano N o s Complexos - Conjuntos e condições Exercícios de exames e testes intermédios 1. Na figura ao lado, está representado, no plano complexo, um quadrado cujo centro coincide com

Leia mais

Nome: Nº. Página 1 de 9

Nome: Nº. Página 1 de 9 Nome: Nº Página 1 de 9 Página 2 de 9 1. Uma urna contém 5 bolas, numeradas de 1 a 5 e indistinguíveis ao tato. Retiram-se sucessivamente 3 bolas com reposição e em cada extração anota-se o número obtido.

Leia mais