Capítulo 1. Introdução à Termodinâmica Aplicada

Tamanho: px
Começar a partir da página:

Download "Capítulo 1. Introdução à Termodinâmica Aplicada"

Transcrição

1 Capítulo Introdução à Termodinâmica Aplicada

2 Objetivos Na disciplina de Fundamentos da Termodinâmica, você aprendeu inúmeros conceitos físicos importantes. O objetivo da disciplina de Termodinâmica Aplicada é estender esses conceitos, enfocando em problemas envolvendo equipamentos e sistemas de engenharia. Neste capítulo, faremos uma breve revisão de alguns conceitos, já colocando em contexto aspectos aplicados da Termodinâmica.

3 Objetivos A disciplina de Fundamentos da Termodinâmica lhe forneceu um embasamento sólido nos seguintes conceitos: Sistema, Estado, Propriedade, Processo, Ciclo Fase (S, L, G), Saturação, Título Calor, Trabalho, Energia, Entalpia, ª Lei Ciclo de Carnot, Entropia, Irreversibilidade, ª Lei Todos esses conceitos serão amplamente utilizados em Termodinâmica Aplicada (alguns serão estendidos!)

4 .. Sistema SISTEMA e VIZINHANÇA Sistema ISOLADO Sistema FECHADO Sistema ABERTO (VOLUME DE CONTROLE)

5 .. Um Sistema e seus Sub-sistemas

6 .3. Energia A energia total de um sistema é resultado da combinação de diversas formas de energia (variação com relação a um valor de referência) Total Δ E = ΔU Interna + ΔE C + ΔE P Cinética Potencial [kj] Energia INTERNA: Forma MICROSCÓPICA de energia. Combinação de uma parcela sensível (energia cinética molecular), de uma parcela latente (energia de ligação entre moléculas) e e de uma parcela química (energia de ligação entre átomos).

7 .3. Energia (variação com relação a um valor de referência) Total Δ E = ΔU Interna + ΔE C + ΔE P Cinética Potencial [kj] Energias POTENCIAL e CINÉTICA: Formas MACROSCÓPICAS de energia. Referentes ao sistema como um todo, com relação a um referencial externo. Sistema estacionário: ΔE C = ΔE P = 0 E C macro E C molecular!

8 .4. Sistema Fechado: Primeira Lei ΔE = Q W [kj] Convenção de sinais: CALOR: > 0 quando transferido PARA o sistema < 0 quando transferido DO sistema elétrico, de eixo, de fronteira móvel, elástico... TRABALHO: < 0 quando realizado SOBRE o sistema > 0 quando realizado PELO sistema Q W = ΔU + ΔE C + ΔE P!Q W! = d ( dt U + E + E ) C P [kj] [kw] Çengel Cap. 4 Van Wylen Cap. 5

9 .4. Sistema Fechado: Primeira Lei Como a massa é fixa: " Q W = m$ u u + V #!Q W! = m d ( u + V * dt ) + gz + -, ( V ) + g z z ( ) % ' & [kj] [kw] Qual é a variação da energia total de um sistema que executa um ciclo?

10 .4. Sistema Fechado: Primeira Lei Em um ciclo: ΔE = E final E = ( ) inicial() 0 O trabalho líquido realizado é igual à entrada líquida de calor

11 .4. Sistema Fechado: Primeira Lei (Trabalho) Exemplos de tipos de trabalho ou de trabalho por unidade de tempo (potência) Trabalho (potência) de eixo W W! n n! e e " " = F s = = π nt = π nt! ' % & T $ " r # (kj) ( πr n) (kw) = n o de revoluções = revoluções por segundo

12 .4. Sistema Fechado: Primeira Lei (Trabalho) Exemplos de tipos de trabalho ou de trabalho por unidade de tempo (potência) W W! e e = = VN VI (kj) (kw) Trabalho (potência) elétrico onde I = dn dt = carga elétrica tempo gerador massa

13 .4. Sistema Fechado: Primeira Lei (Trabalho) Trabalho elástico Trabalho de fronteira móvel F = kx W = k ( x x ) W = pdv

14 .4. Sistema Fechado: Primeira Lei O tipo de interação pela fronteira depende de como o sistema é definido Q>0 W=0 Q=0 W<0

15 .4. Sistema Fechado: Primeira Lei O tipo de interação pela fronteira depende de como o sistema é definido Q=0 W=0

16 .5. Sistema Fechado: Segunda Lei dq ΔS = S S = + T f S ger variação transferência com o calor geração Δ Çengel Cap. 7 Van Wylen Cap. 8 Q k S = S S = + Tk S ger k regiões a temperatura constante [kj/k] ds k + S! ger dt Tk =0, se o processo for reversível Q! = [kw/k]

17 .5. Sistema Fechado: Segunda Lei Em um sistema isolado: ΔS = S S 0

18 .6. Conservação da Massa: Volume de Controle Sistema Aberto: Çengel Cap. 5 Δm = m in m out [kg] Van Wylen Cap. 6

19 .6. Conservação da Massa: Volume de Controle Sistema Aberto: Çengel Cap. 5 m! in m! out = m! = ρva dm dt [kg/s] Van Wylen Cap. 6

20 .6. Primeira Lei: Volume de Controle Sistema Aberto: ΔE = Q W + m θ m θ in in out out [kj] Çengel Cap. 5 Van Wylen Cap. 6 energia transportada com a massa que entrou no VC energia transportada com a massa que saiu do VC θ = V u + pv + + gz [kj/kg] trabalho de escoamento Energia necessária para mover uma massa unitária de fluido pela fronteira

21 .6. Primeira Lei: Volume de Controle Trabalho entregue ao fluido (por unidade de massa) para movê-lo para dentro do Volume de Controle F = pa W fluxo = FL = pal = w fluxo = pv pv [N] [kj] [kj/kg] W! = m! [kw] fluxo w fluxo mas: h = u + pv

22 .6. Primeira Lei: Volume de Controle Sistema Aberto: de dt = Q! W! +!m θ!m θ in in out out [kw] θ = V h + + gz [kj/kg] mas: h = u + pv

23 .7. Segunda Lei: Volume de Controle Sistema Aberto: ds dt Q! = k + m! s in in Tk m! out s out + S! entropia gerada no VC ger [kw/k] entropia transportada com o calor que entrou ou saiu do VC entropia transportada com a massa que entrou no VC entropia transportada com a massa que saiu do VC Çengel Cap. 7 Van Wylen Cap. 9

24 .8. Primeira e Segunda Leis: Volume de Controle Em REGIME PERMANENTE:!Q! W =!m =!m out in ( ) d dt = 0!m θ!m out out in θ in 0 =!Q k + T k!m s!m s in in out out +! S ger A maioria dos dispositivos (equipamentos) de engenharia opera, na maior parte do tempo, em regime permanente.

25 .9. Propriedades de Substâncias Puras Revisão de propriedades termodinâmicas

26 .9. Propriedades de Substâncias Puras Superfície p-v-t Substância que se contrai ao se solidificar

27 .9. Propriedades de Substâncias Puras Superfície p-v-t Substância que se expande ao se solidificar

28 .9. Propriedades de Substâncias Puras Projeção p-t Ponto crítico da água: T~374 o C p ~ MPa Ponto triplo da água: T~0.0 o C p ~ 6 Pa

29 .9. Propriedades de Substâncias Puras Ponto crítico R-34a (00.9oC, 4.06 MPa) 3 4

30 .9. Propriedades de Substâncias Puras Projeção p-t (estados da matéria) p p c Sólido( fusão( Líquido( Pto.(crí4co( Fluido( supercrí4co( Pto.(triplo( vaporização( Vapor( Gás( sublimação( T c T

31 .9. Propriedades de Substâncias Puras Projeção p-v

32 Diagrama T-v (substância pura) Para quantificar o desempenho dos dispositivos, é conveniente utilizar diagramas transferindo calor a p constante somente energia atravessa a fronteira do sistema

33 Diagrama p-v (substância pura) comprimindo a T constante somente energia atravessa a fronteira do sistema

34 Título (mássico) de vapor x m m v t = m v m v + m l

35 Vapor d água é gás ideal? Erro percentual p real p p real gasideal

36 Fator de compressibilidade Desvio com relação ao comportamento de gás ideal Z = pv RT p r = p p c T r = T T c

37 Diagrama T-s (a) (b) (c) Linhas de p constante Linhas de v constante Linhas de h constante (hip. gás ideal) transferindo calor a p constante l v v t v m m m m m x + = (título) ( ) l v l u u x u u + = ( ) l v l h h x h h + = ( ) l v l s s x s s + = ( ) l v l v v x v v + = (Na saturação)

38 Diagrama h-s Linhas de p constante Linhas de T constante Linhas de h constante (hip. gás ideal) x m m v t = mv m + m v l (título)

39 Processos isentrópicos

40 Tabelas de Propriedades - Saturação Tabela com entrada em temperatura

41 Tabelas de Propriedades - Saturação Tabela com entrada em temperatura (cont.)

42 Tabelas de Propriedades - Saturação Tabela com entrada em pressão

43 Tabelas de Propriedades Vapor Superaquecido

44 Tabelas de Propriedades Líquido Comprimido Pouco utilizada: A baixa compressibilidade do líquido faz com que as propriedades do líquido comprimido sejam muito próximas daquelas do líquido saturado na temperatura especificada

45 Tabelas de Propriedades Líquido Comprimido E% v = -0.4% E% u = -0.34% E% h =.63% E% s = %

46 .0. Turbinas Turbinas são dispositivos que produzem trabalho à medida que o escoamento de um gás (vapor) ou de um líquido movimenta as pás presas a um eixo Turbina a gás ou a vapor (expansão do fluido de trabalho) Çengel Cap. 5,7 Van Wylen Cap. 6,9 Turbina hidráulica

47 .0.. Turbinas a vapor e a gás IDEAIS Assumindo que o dispositivo é adiabático =0 ρ V A = ρ V A ( =!m )!Q!m W!!m + h + V + gz = h + V + gz!q k +!m s T + S! ger =!ms k =0 =0! W s =!m h h ( ) s (>0) (h <h ) (o sistema realiza trabalho!)

48 .0.. Turbinas a vapor e a gás REAIS Assumindo que o dispositivo é adiabático =0 ρ V A = ρ V A ( =!m )!Q!m W!!m + h + V + gz = h + V + gz!q k +!m s T + S! ger =!ms k =0 >0! W r =!m h h ( ) r W! Quem é maior: ou? r W! s

49 .0.. Turbinas a vapor e a gás REAIS Eficiência Isentrópica η T W! = W! r s = ( h ) h r ( h h ) s

50 .0.3. Turbinas hidráulicas IDEAIS Assumindo que o dispositivo é adiabático =0 ρ V A = ρ V A ( =!m )!Q!m W!!m + h + V + gz = h + V + gz!q k +!m s T + S! ger =!ms k =0 =0 W! =!mg ( z s z ) (>0) Turbina hidráulica (o sistema realiza trabalho!) por que h = h? h = u + pv

51 .0.3. Turbinas hidráulicas REAIS Assumindo que o dispositivo é adiabático =0 ρ V A = ρ V A ( =!m )!Q!m W!!m + h + V + gz = h + V + gz!q k +!m s T + S! ger =!ms k =0 >0 como ( pv ) ~ = ( pv) Turbina hidráulica como u < u W! < W! r W! =!mg ( z r z )!m ( u u ) (>0) s

52 .. Compressores Compressores são dispositivos que consomem trabalho para elevar a pressão de um gás Lóbulos Alternativo Çengel Cap. 5,7 Van Wylen Cap. 6,9 Axial Centrífugo

53 ... Compressores IDEAIS Assumindo que o dispositivo é adiabático =0 ρ V A = ρ V A ( =!m )!Q!m W!!m + h + V + gz = h + V + gz Compressor alternativo!q k +!m s T + S! ger =!ms k =0 =0! W s =!m h h ( ) s (<0) (o sistema recebe trabalho!) (h >h )

54 ... Compressores REAIS Assumindo que o dispositivo é adiabático Compressor rotativo =0 ρ V A = ρ V A ( =!m )!Q!m W!!m + h + V + gz = h + V + gz!q k +!m s T + S! ger =!ms k W! =0 Quem é maior: ou? r >0! W r =!m h h ( ) r W! s

55 ... Compressores REAIS Eficiência Isentrópica η C W! = W! s r = ( h ) h s ( h h ) r

56 .. Bombas. Bombas são dispositivos que consomem trabalho para elevar a pressão de um líquido

57 ... Bombas IDEAIS Assumindo que o dispositivo é adiabático =0 ρ V A = ρ V A ( =!m )!Q!m W!!m + h + V + gz = h + V + gz!q k +!m s T + S! ger =!ms k =0 =0 mas, em um líquido (sem atrito): h h = u u + ρ (T = T, incompressível) ( p p ) W! m =! ( s ρ p p ) (p >p ) (o sistema recebe trabalho!)

58 ... Bombas REAIS Assumindo que o dispositivo é adiabático =0 ρ V A = ρ V A ( =!m )!Q!m W!!m + h + V + gz = h + V + gz!q k +!m s T + S! ger =!ms k =0 como a temperatura aumenta: h h = u u + ρ >0 ( h ) ( ) h r > h h s ( p p ) W! =!m ( h r h ) (p r >p )

59 ... Bombas REAIS Assim como para o compressor: Eficiência Isentrópica η C W! = W! s r = ( h ) h s ( h h ) r

60 .3. Bocais e Difusores Um bocal é um dispositivo que aumenta a velocidade do fluido por meio da redução da pressão Venturi Çengel Cap. 5,7 Van Wylen Cap. 6,9 Um difusor é um dispositivo que aumenta a pressão do fluido por meio de sua desaceleração

61 .3.. Bocais IDEAIS Assumindo dispositivo adiabático ρ V A = ρ V A ( =!m )!Q!m W!!m + h + V + gz = h + V + gz!q k +!m s T + S! ger =!ms k =0 =0 =0 =0

62 .3.. Bocais REAIS Assumindo que o dispositivo é adiabático =0 =0 ρ V A = ρ V A ( =!m )!Q!m W!!m + h + V + gz = h + V + gz p T!Q k +!m s T + S! ger =!ms k =0 >0 p T ( h ) ( ) h r < h h s ( ) ( V V < V V ) r s

63 .3.. Bocais REAIS Se V << V p T Eficiência Isentrópica p T η N = ( h h ), r ( ) h h V r s = V, s

64 .3.3. Difusores IDEAIS Assumindo dispositivo adiabático ρ V A = ρ V A ( =!m )!Q!m W!!m + h + V + gz = h + V + gz!q k +!m s T +! <<V S ger =!ms k =0 =0 =0 =0

65 .3.4. Difusores REAIS Assumindo que o dispositivo é adiabático processo isentropico T s s p s p r =0 =0 ρ V A = ρ V A ( =!m )!Q!m W!!m + h + V + gz = h + V + gz!q k +!m s T + S! ger =!ms k p s <<V r processo real =0 >0 p T Como: s r > ss Então: p r < ps (atrito...)

66 .4. Válvulas e Estrangulamentos São dispositivos que restringem o escoamento e causam queda de pressão significativa ρ V A = ρ V A ( =!m )!Q!m W!!m + h + V + gz = h + V + gz!q k +!m s T + S! ger =!ms k =0 =0 =0 >0 A entalpia na saida é igual à da entrada São essencialmente irreversíveis!

67 .5. Trocadores de Calor Dispositivos utilizados para transferir calor entre fluidos a diferentes temperaturas Em cada corrente: C!Q!m W!!m + h + V + gz = h + V + gz H H =0 Q! Q! C H = m! C = m! H! = ( h h ) Cs ( h h ) Hs Q C Q! H Ce He C Q! T k + ms! + Sger = m! s k!

A 1 a lei da termodinâmica para um sistema transiente é:

A 1 a lei da termodinâmica para um sistema transiente é: TT011 - Termidinâmica - Engenharia Ambiental - UFPR Gabarito - Avaliação Final Data: 15/07/2016 Professor: Emílio G. F. Mercuri Antes de iniciar a resolução leia atentamente a prova e verifique se a mesma

Leia mais

Módulo V Balanço de Entropia para Sistemas Fechados. Balanço de Entropia para Volume de Controle.

Módulo V Balanço de Entropia para Sistemas Fechados. Balanço de Entropia para Volume de Controle. Módulo V Balanço de Entropia para Sistemas Fechados. Balanço de Entropia para Volume de Controle. Balanço de Entropia para Sistemas Fechados O balanço de entropia é uma expressão da segunda lei conveniente

Leia mais

Capítulo 5: Análise através de volume de controle

Capítulo 5: Análise através de volume de controle Capítulo 5: Análise através de volume de controle Segunda lei da termodinâmica Conversão de energia EM-54 Fenômenos de Transporte Variação de entropia em um sistema Num sistema termodinâmico a equação

Leia mais

Eficiência em Processos. Vimos que para um ciclo, no caso um motor térmico, a eficiência é dada por: W resultante Q

Eficiência em Processos. Vimos que para um ciclo, no caso um motor térmico, a eficiência é dada por: W resultante Q Eficiência em Processos Vimos que para um ciclo, no caso um motor térmico, a eficiência é dada por: η térmica W resultante Q H Entretanto, para um processo a definição de eficiência envolve uma comparação

Leia mais

Dispositivos com escoamento em regime permanente

Dispositivos com escoamento em regime permanente Dispositivos com escoamento em regime permanente Bocais e difusores Os bocais e difusores normalmente são utilizados em motores a jato, foguetes, ônibus espaciais e até mesmo em mangueiras de jardim. Um

Leia mais

Análise Energética para Sistemas Abertos (Volumes de Controles)

Análise Energética para Sistemas Abertos (Volumes de Controles) UTFPR Termodinâmica 1 Análise Energética para Sistemas Abertos (Volumes de Controles) Princípios de Termodinâmica para Engenharia Capítulo 4 Parte III Análise de Volumes de Controle em Regime Permanente

Leia mais

PME 3344 Exercícios - Ciclos

PME 3344 Exercícios - Ciclos PME 3344 Exercícios - Ciclos 13) Exercícios sobre ciclos 1 v. 2.0 Exercício 01 Água é utilizada como fluido de trabalho em um ciclo Rankine no qual vapor superaquecido entra na turbina a 8 MPa e 480 C.

Leia mais

Módulo VI - Processos Isentrópicos Eficiência Isentrópica em Turbinas, Bombas, Bocais e Compressores.

Módulo VI - Processos Isentrópicos Eficiência Isentrópica em Turbinas, Bombas, Bocais e Compressores. Módulo VI - Processos Isentrópicos Eficiência Isentrópica em Turbinas, Bombas, Bocais e Compressores. Processos Isentrópicos O termo isentrópico significa entropia constante. Eficiência de Dispositivos

Leia mais

MÁQUINAS TÉRMICAS E PROCESSOS CONTÍNUOS

MÁQUINAS TÉRMICAS E PROCESSOS CONTÍNUOS MÁQUINAS TÉRMICAS E PROCESSOS CONTÍNUOS AULA 1-3 TERMODINÂMICA APLICADA AS MÁQUINAS TÉRMICAS PROF.: KAIO DUTRA Diagrama de Fases Estado líquido Mistura bifásica líquido-vapor Estado de vapor Conservação

Leia mais

Disciplina : Termodinâmica. Aula 17 Processos Isentrópicos

Disciplina : Termodinâmica. Aula 17 Processos Isentrópicos Disciplina : Termodinâmica Aula 17 Processos Isentrópicos Prof. Evandro Rodrigo Dário, Dr. Eng. Processos Isentrópicos Mencionamos anteriormente que a entropia de uma massa fixa pode variar devido a (1)

Leia mais

Variação de Entropia do Sistema Durante um Processo Irreversível

Variação de Entropia do Sistema Durante um Processo Irreversível Núcleo de Engenharia érmica e Fluidos ermodinâmica I (SEM33) Prof. Oscar M.H. Rodriguez Variação de Entropia do Sistema Durante um Processo Irreversível Aplicando a desigualdade de Clausius: S S (b) (a)

Leia mais

PME 3344 Termodinâmica Aplicada

PME 3344 Termodinâmica Aplicada PME 3344 Termodinâmica Aplicada Aula de exercícios 01 1 v. 1.3 Exercício 01 Considere o conjunto mostrado na figura. O pistão pode mover-se sem atrito entre os dois conjuntos de batentes. Quando o pistão

Leia mais

EM34F Termodinâmica A

EM34F Termodinâmica A EM34F Termodinâmica A Prof. Dr. André Damiani Rocha arocha@utfpr.edu.br Análise Integral (Volume de Controle) 2 ou 1ª Lei da Termodinâmica A 1ª Lei da Termodinâmica para um Sistema Fechado é dada por,

Leia mais

Módulo I Ciclo Rankine Ideal

Módulo I Ciclo Rankine Ideal Módulo I Ciclo Rankine Ideal Sistema de Potência a Vapor As usinas de potência a vapor são responsáveis pela produção da maior parte da energia elétrica do mundo. Porém, para o estudo e desenvolvimento

Leia mais

Módulo III Desigualdade de Clausis, Entropia, Geração de Entropia.

Módulo III Desigualdade de Clausis, Entropia, Geração de Entropia. Módulo III Desigualdade de Clausis, Entropia, Geração de Entropia. Desigualdade de Clausius Aplicável para qualquer ciclo reversível ou irreversível. Ela foi desenvolvida pelo físico alemão R. J. E. Clausius

Leia mais

Capítulo 4: Análise de Sistemas: 1ª e 2ª Leis da Termodinâmica

Capítulo 4: Análise de Sistemas: 1ª e 2ª Leis da Termodinâmica Capítulo 4: Análise de Sistemas: ª e ª eis da ermodinâmica Revisão Exercícios Primeira lei da termodinâmica O balanço de energia pode ser escrito na forma diferencial: de δ - δw Como energia E é uma propriedade

Leia mais

Componentes dos ciclos termodinâmicos

Componentes dos ciclos termodinâmicos Componentes dos ciclos termodinâmicos Componentes dos ciclos termodinâmicos Quais podem ser os componentes de um ciclo termodinâmico? Turbinas, válvulas, compressores, bombas, trocadores de calor (evaporadores,

Leia mais

b A eficiência térmica de um ciclo é medida pela relação entre o trabalho do ciclo e o calor que nele é adicionado.

b A eficiência térmica de um ciclo é medida pela relação entre o trabalho do ciclo e o calor que nele é adicionado. 1) As usinas de potência (termoelétricas e nucleares) precisam retornar ao meio ambiente uma determinada quantidade de calor para o funcionamento do ciclo. O retorno de grande quantidade de água aquecida

Leia mais

Introdução. Exergia ou Disponibilidade máximo trabalho útil que pode ser obtido de um sistema em um determinado estado e em um ambiente especificado.

Introdução. Exergia ou Disponibilidade máximo trabalho útil que pode ser obtido de um sistema em um determinado estado e em um ambiente especificado. Exergia Introdução 1ª Lei da Termodinâmica conservação da energia (energia não pode ser criada nem destruída). Serve como ferramenta para contabilizar a energia durante um processo 2ª Lei da Termodinâmica

Leia mais

PME 3344 Termodinâmica Aplicada

PME 3344 Termodinâmica Aplicada PME 3344 Termodinâmica Aplicada 1) Introdução 2) Conceitos Fundamentais 1 v. 1.1 Introdução Objetivo Apresentar os conceitos relacionados à Termodinâmica, aplicados a situações de interesse nos campos

Leia mais

Conteúdo. 1 Introdução e Comentários Preliminares, Propriedades de uma Substância Pura, 53

Conteúdo. 1 Introdução e Comentários Preliminares, Propriedades de uma Substância Pura, 53 Conteúdo 13 Conteúdo 1 Introdução e Comentários Preliminares, 21 1.1 O Sistema Termodinâmico e o Volume de Controle, 23 1.2 Pontos de Vista Macroscópico e Microscópico, 24 1.3 Estado e Propriedades de

Leia mais

Aula 4 A 2ª Lei da Termodinâmica

Aula 4 A 2ª Lei da Termodinâmica Universidade Federal do ABC P O S M E C Aula 4 A 2ª Lei da Termodinâmica MEC202 As Leis da Termodinâmica As leis da termodinâmica são postulados básicos aplicáveis a qualquer sistema que envolva a transferência

Leia mais

Disciplina : Termodinâmica. Aula 2

Disciplina : Termodinâmica. Aula 2 Disciplina : Termodinâmica Aula 2 Prof. Evandro Rodrigo Dário, Dr. Eng. Introdução Estamos familiarizados com o princípio da conservação de energia, que é um expressão da primeira lei da termodinâmica,

Leia mais

Cap. 4: Análise de Volume de Controle

Cap. 4: Análise de Volume de Controle Cap. 4: Análise de Volume de Controle AR Ar+Comb. www.mecanicavirtual.org/carburador2.htm Cap. 4: Análise de Volume de Controle Entrada, e Saída, s Conservação da Massa em um Sistema dm dt sist = 0 Conservação

Leia mais

SISTEMAS TÉRMICOS DE POTÊNCIA

SISTEMAS TÉRMICOS DE POTÊNCIA SISTEMAS TÉRMICOS DE POTÊNCIA PROF. RAMÓN SILVA Engenharia de Energia Dourados MS - 2013 SISTEMAS DE POTÊNCIA A VAPOR 2 SIST. POTÊNCIA A VAPOR Diferente do ciclo de potência a gás, no ciclo de potência

Leia mais

PME 3344 Exercícios - Ciclos

PME 3344 Exercícios - Ciclos PME 3344 Exercícios - Ciclos 13) Exercícios sobre ciclos 1 v. 2.0 Exercício 01 Água é utilizada como fluido de trabalho em um ciclo Rankine no qual vapor superaquecido entra na turbina a 8 MPa e 480 C.

Leia mais

Lista de Exercícios Solução em Sala

Lista de Exercícios Solução em Sala Lista de Exercícios Solução em Sala 1) Um conjunto pistão-cilindro área de seção transversal igual a 0,01 m². A massa do pistão é 101 kg e ele está apoiado nos batentes mostrado na figura. Se a pressão

Leia mais

Módulo II Ciclo Rankine Real e Efeitos das Pressões da Caldeira e do Condensador no Ciclo Rankine

Módulo II Ciclo Rankine Real e Efeitos das Pressões da Caldeira e do Condensador no Ciclo Rankine Módulo II Ciclo Rankine Real e Efeitos das Pressões da Caldeira e do Condensador no Ciclo Rankine Ciclo Rankine Real Esses ciclos diferem do ideal devido às irreversibilidades presentes em vários componentes.

Leia mais

Essa relação se aplica a todo tipo de sistema em qualquer processo

Essa relação se aplica a todo tipo de sistema em qualquer processo Módulo III Primeira Lei da Termodinâmica e em Ciclos de Potência e Refrigeração. Propriedades de Substâncias Puras: Relações P-V-T e Diagramas P-V, P-T e T-V, Título, Propriedades Termodinâmicas, Tabelas

Leia mais

PME 3344 Termodinâmica Aplicada

PME 3344 Termodinâmica Aplicada PME 3344 Termodinâmica Aplicada 6) Primeira Lei da Termodinâmica para volume de controle 1 v. 2.4 Introdução Os princípios básicos que nos são importantes estão escritos para um sistema. Assim, temos as

Leia mais

TERMODINÂMICA APLICADA CAPÍTULO 3

TERMODINÂMICA APLICADA CAPÍTULO 3 TERMODINÂMICA APLICADA CAPÍTULO 3 PRIMEIRA LEI DA TERMODINÂMICA: SISTEMAS FECHADOS Primeira Lei da Termodinâmica A Energia pode atravessar a fronteira de um sistema fechado na forma de Calor e/ou Trabalho.

Leia mais

Escola Politécnica da Universidade de São Paulo. Termodinâmica. Conceitos Fundamentais. v. 1.0

Escola Politécnica da Universidade de São Paulo. Termodinâmica. Conceitos Fundamentais. v. 1.0 Termodinâmica Conceitos Fundamentais 1 v. 1.0 Sistema termodinâmico quantidade de matéria com massa e identidade fixas sobre a qual nossa atenção é dirigida. Volume de controle região do espaço sobre a

Leia mais

Aula 1 Leis de conservação da energia

Aula 1 Leis de conservação da energia Universidade Federal do ABC P O S M E C Aula 1 Leis de conservação da energia MEC202 Problema para discussão O estranho caso do refrigerador aberto na sala adiabática O que acontece com a temperatura do

Leia mais

Exercícios sugeridos para Ciclos de Refrigeração

Exercícios sugeridos para Ciclos de Refrigeração Exercícios sugeridos para Ciclos de Refrigeração 11-13 (Cengel 7ºed) - Um ciclo ideal de refrigeração por compressão de vapor que utiliza refrigerante R134a como fluido de trabalho mantém um condensador

Leia mais

Termodinâmica Seção 05-1ª Lei da Termodinâmica para Volume de Controle

Termodinâmica Seção 05-1ª Lei da Termodinâmica para Volume de Controle Termodinâmica Seção 05-1ª Lei da Termodinâmica para Volume de Controle Prof. João Porto Objetivos: Enunciar e aplicar a 1ª primeira lei da termodinâmica para volume de controle. Resumo 01- Conservação

Leia mais

Disciplina : Termodinâmica. Aula 6 - Análise da Energia dos Sistemas Fechados

Disciplina : Termodinâmica. Aula 6 - Análise da Energia dos Sistemas Fechados Disciplina : Termodinâmica Aula 6 - Análise da Energia dos Sistemas Fechados Prof. Evandro Rodrigo Dário, Dr. Eng. Análise da Energia dos Sistemas Fechados Já vimos várias formas de energia e de transferência

Leia mais

A SEGUNDA LEI DA TERMODINÂMICA ENTROPIA-

A SEGUNDA LEI DA TERMODINÂMICA ENTROPIA- A SEGUNDA LEI DA ERMODINÂMICA 05-06 -ENROPIA- SUMÁRIO Neste capítulo, vamos aplicar a ª lei a processos de engenaria. A ª lei introduz uma nova propriedade designada por entropia. A entropia é melor compreendida

Leia mais

Escola Politécnica da Universidade de São Paulo. Termodinâmica. Ciclos motores a vapor

Escola Politécnica da Universidade de São Paulo. Termodinâmica. Ciclos motores a vapor Termodinâmica Ciclos motores a vapor 1 v. 1.1 Por que estudar ciclos? Pergunta: Quanto custa operar uma usina termelétrica de 1000 MW de potência elétrica, queimando combustível fóssil, operando segundo

Leia mais

3. Um gás ideal passa por dois processos em um arranjo pistão-cilindro, conforme segue:

3. Um gás ideal passa por dois processos em um arranjo pistão-cilindro, conforme segue: 1. Um arranjo pistão-cilindro com mola contém 1,5 kg de água, inicialmente a 1 Mpa e título de 30%. Esse dispositivo é então resfriado até o estado de líquido saturado a 100 C. Calcule o trabalho total

Leia mais

Utilizando Gráficos de Entropia

Utilizando Gráficos de Entropia Módulo IV Variação da Entropia em Substâncias Puras, Relações Termodinâmicas (Tds), Diagramas T-s e h-s, Entropia em Substâncias Incompressíveis, Entropia em Gás Ideal. Utilizando Gráficos de Entropia

Leia mais

SISTEMAS TÉRMICOS DE POTÊNCIA

SISTEMAS TÉRMICOS DE POTÊNCIA SISTEMAS TÉRMICOS DE POTÊNCIA SISTEMAS DE POTÊNCIA A VAPOR Prof. Dr. Ramón Silva - 2015 O objetivo dessa aula é relembrar os conceitos termodinâmicos do ciclo Rankine e introduzir aos equipamentos que

Leia mais

TERMODINÂMICA APLICADA

TERMODINÂMICA APLICADA TERMODINÂMICA APLICADA Livro Texto adotado: Fundamentos da Termodinâmica Claus Borgnakke/ Richard E. Sonntag Editora Blucher. Samuel Sander de Carvalho samuel.carvalho@ifsudestemg.edu.br Juiz de Fora -MG

Leia mais

TERMODINÂMICA APLICADA

TERMODINÂMICA APLICADA TERMODINÂMICA APLICADA Capítulo 4: Primeira Lei da Termodinâmica Processos de controlo de volume Sumário No Capítulo 3 discutimos as interações da energia entre um sistema e os seus arredores e o princípio

Leia mais

Considere o ciclo de potência representado na figura seguinte com três reservatórios de energia identificados como R H, R M, R C.

Considere o ciclo de potência representado na figura seguinte com três reservatórios de energia identificados como R H, R M, R C. Termodinâmica I Ano Lectivo 2007/08 1º Ciclo-2ºAno/2º semestre (MEMec,LEAMB,LEAR,LENAV) 1º Exame, 21/Junho /2008 P1 Nome: Nº Sala Problema 1 (2v+2v+1v) Considere o ciclo de potência representado na figura

Leia mais

2ª Lei da Termodinâmica. Prof. Matheus Fontanelle Pereira

2ª Lei da Termodinâmica. Prof. Matheus Fontanelle Pereira 2ª Lei da Termodinâmica Prof. Matheus Fontanelle Pereira Introdução Trabalho poderia ser obtido. Oportunidades de gerar trabalho Qual é o máximo valor teórico do trabalho que poderia ser obtido? Quais

Leia mais

Refrigeração e Ar Condicionado

Refrigeração e Ar Condicionado Refrigeração e Ar Condicionado Ciclo de Refrigeração por Compressão de Vapor Filipe Fernandes de Paula filipe.paula@engenharia.ufjf.br Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia

Leia mais

Aula 02 : EM-524. Capítulo 2 : Definições e Conceitos Termodinâmicos

Aula 02 : EM-524. Capítulo 2 : Definições e Conceitos Termodinâmicos Aula 02 : EM-524 Capítulo 2 : Definições e Conceitos Termodinâmicos 1. Termodinâmica Clássica; 2. Sistema Termodinâmico; 3. Propriedades Termodinâmicas; 4. As propriedades termodinâmicas pressão, volume

Leia mais

Problema 1 (5V)- resposta correcta=1v; resposta incorrecta= v; sem resposta =0v

Problema 1 (5V)- resposta correcta=1v; resposta incorrecta= v; sem resposta =0v P1 Problema 1 (5V)- resposta correcta=1v; resposta incorrecta= - 0.25v; sem resposta =0v Para aumentar o rendimento de um ciclo de potência reversível, que opera entre duas fontes de energia com temperatura

Leia mais

Aula 6 Dimensionamento de grandes equipamentos de usinas termoelétricas

Aula 6 Dimensionamento de grandes equipamentos de usinas termoelétricas BIJ-0207 Bases conceituais da energia Aula 6 Dimensionamento de grandes equipamentos de usinas termoelétricas Prof. João Moreira CECS - Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas Universidade

Leia mais

PME 3344 Termodinâmica Aplicada

PME 3344 Termodinâmica Aplicada PME 3344 Termodinâmica Aplicada 9) a Lei da Termodinâmica para Volume de Controle 1 v.. Introdução Estenderemos o balanço de entropia desenvolvido para considerar entrada e saída de massa. Não nos ocuparemos

Leia mais

LOQ Fenômenos de Transporte I

LOQ Fenômenos de Transporte I LOQ 4083 - Fenômenos de Transporte I FT I 09 Primeira Lei da Termodinâmica Prof. Lucrécio Fábio dos Santos Departamento de Engenharia Química LOQ/EEL Atenção: Estas notas destinam-se exclusivamente a servir

Leia mais

Escola Politécnica da Universidade de São Paulo. Termodinâmica. 10) Ciclos motores a vapor. v. 2.5

Escola Politécnica da Universidade de São Paulo. Termodinâmica. 10) Ciclos motores a vapor. v. 2.5 Termodinâmica 10) Ciclos motores a vapor 1 v. 2.5 Por que estudar ciclos? Pergunta: Quanto custa operar uma usina termelétrica de 1000 MW de potência elétrica, queimando combustível fóssil, operando segundo

Leia mais

Refrigeração e Ar Condicionado

Refrigeração e Ar Condicionado Refrigeração e Ar Condicionado Introdução aos Ciclos Refrigeração por Compressão de Vapor Filipe Fernandes de Paula filipe.paula@engenharia.ufjf.br Departamento de Engenharia de Produção e Mecânica Faculdade

Leia mais

PME 3344 Termodinâmica Aplicada

PME 3344 Termodinâmica Aplicada PME 3344 Termodinâmica Aplicada 11) Ciclos motores a vapor 1 v. 2.0 Por que estudar ciclos? Pergunta: Quanto custa operar uma usina termelétrica de 1000 MW de potência elétrica, queimando combustível fóssil,

Leia mais

PME 3344 Termodinâmica Aplicada

PME 3344 Termodinâmica Aplicada PME 3344 Termodinâmica Aplicada 12) Ciclos de Refrigeração 1 v. 3.0 Ciclos de refrigeração A transferência de calor de compartimentos de baixa temperatura para outros a temperaturas maiores é chamada de

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA MECÂNICA TM-364 MÁQUINAS TÉRMICAS I. Máquinas Térmicas I

UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA MECÂNICA TM-364 MÁQUINAS TÉRMICAS I. Máquinas Térmicas I UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA MECÂNICA TM-364 MÁQUINAS TÉRMICAS I Máquinas Térmicas I "Existem três tipos de pessoas: as que sabem e as que não sabem contar...

Leia mais

Sistemas de Refrigeração Parte I

Sistemas de Refrigeração Parte I Sistemas de Refrigeração Parte I 1 Tópicos da Aula de Hoje Introdução / definições sobre sistemas de refrigeração Ciclo de refrigeração por compressão Fatores que influenciam o desempenho do sistema de

Leia mais

UTFPR Termodinâmica 1 Avaliando Propriedades

UTFPR Termodinâmica 1 Avaliando Propriedades UTFPR Termodinâmica 1 Avaliando Propriedades Moran e Shapiro - Cap. 3 Çengel e Boles - Cap. 3 Van Wylen e Sonntag - Cap. 3 Fase Refere-se a uma quantidade de matéria que é homegênea como um todo, tanto

Leia mais

Energética Industrial

Energética Industrial Universidade do Minho Departamento de Engenharia Mecânica Energética Industrial Problemas propostos José Carlos Fernandes Teixeira 1) 1.5 kg de gelo à temperatura de 260 K, funde-se, à pressão de 1 bar,

Leia mais

Exercícios e exemplos de sala de aula Parte 1

Exercícios e exemplos de sala de aula Parte 1 PME2398 Termodinâmica e suas Aplicações 1 o semestre / 2013 Prof. Bruno Carmo Exercícios e exemplos de sala de aula Parte 1 Propriedade das substâncias puras: 1- Um tanque rígido com volume de 1m 3 contém

Leia mais

PME 3344 Termodinâmica Aplicada

PME 3344 Termodinâmica Aplicada PME 3344 Termodinâmica Aplicada 10) Ciclos motores a vapor 1 v. 2.0 Por que estudar ciclos? Pergunta: Quanto custa operar uma usina termelétrica de 1000 MW de potência elétrica, queimando combustível fóssil,

Leia mais

Capítulo 2 Propriedades de uma Substância Pura

Capítulo 2 Propriedades de uma Substância Pura Capítulo 2 Propriedades de uma Substância Pura 2.1 - Definição Uma substância pura é aquela que tem composição química invariável e homogênea. Pode existir em mais de uma fase Composição química é igual

Leia mais

ÁREA DE ESTUDO: CÓDIGO 16 TERMODINÂMICA APLICADA, MECÂNICA DOS FLUIDOS E OPERAÇÕES UNITÁRIAS

ÁREA DE ESTUDO: CÓDIGO 16 TERMODINÂMICA APLICADA, MECÂNICA DOS FLUIDOS E OPERAÇÕES UNITÁRIAS INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO CEARÁ DIRETORIA DE GESTÃO DE PESSOAS COMISSÃO COORDENADORA DE CONCURSOS CONCURSO PÚBLICO PROFESSOR EFETIVO EDITAL Nº 10/DGP-IFCE/2010 ÁREA DE ESTUDO:

Leia mais

03/Mar/2017 Aula 3. 01/Mar/2017 Aula 2

03/Mar/2017 Aula 3. 01/Mar/2017 Aula 2 01/Mar/2017 Aula 2 Teoria Cinética dos Gases Teoria Cinética e Equação dos Gases Ideais Gás Ideal num Campo Gravitacional Distribuição de Boltzmann; distribuição de velocidades de Maxwell e Boltzmann Velocidades

Leia mais

Disciplina : Termodinâmica. Aula 16 Entropia

Disciplina : Termodinâmica. Aula 16 Entropia Disciplina : Termodinâmica Aula 16 Entropia Prof. Evandro Rodrigo Dário, Dr. Eng. Introdução A segunda lei leva à definição de uma nova propriedade chamada entropia. Essa propriedade é um tanto abstrata,

Leia mais

Instruções. Leia as questões antes de respondê-las. A interpretação da questão faz parte da avaliação.

Instruções. Leia as questões antes de respondê-las. A interpretação da questão faz parte da avaliação. Nome: Curso: RA: Instituto de Ciências Exatas e Tecnológicas Campus Indianópolis SUB Termodinâmica Básica Turma: Data: Instruções Leia as questões antes de respondê-las. A interpretação da questão faz

Leia mais

Disciplina: Sistemas Térmicos

Disciplina: Sistemas Térmicos Disciplina: Sistemas Térmicos Apresentação da Primeira Lei da Termodinâmica Primeira Lei para um Sistema que Percorre um Ciclo Primeira Lei para Mudança de Estado do Sistema Descrição da Propriedade Termodinâmica

Leia mais

Capítulo 5. Ciclos de Refrigeração

Capítulo 5. Ciclos de Refrigeração Capítulo 5 Ciclos de Refrigeração Objetivos Estudar o funcionamento dos ciclos frigoríficos por compressão de vapor idealizados e reais Apontar as distinções entre refrigeradores e bombas de calor 5.1.

Leia mais

LISTA DE EXERCÍCIOS 3

LISTA DE EXERCÍCIOS 3 LISTA DE EXERCÍCIOS 3 ANÁLISE VOLUME DE CONTROLE 1) Óleo vegetal para cozinha é acondicionado em um tubo cilíndrico equipado com bocal para spray. De acordo com o rótulo, o tubo é capaz de fornecer 560

Leia mais

EM34F Termodinâmica A

EM34F Termodinâmica A EM34F Termodinâmica A Prof. Dr. André Damiani Rocha arocha@utfpr.edu.br Propriedades: Parte II 2 Avaliando Propriedades Calores Específicos As propriedades intensivas c v e c p são definidas para substâncias

Leia mais

UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE LORENA - EEL. Professor : Geronimo

UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE LORENA - EEL. Professor : Geronimo UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE LORENA - EEL Professor : Geronimo BALANÇO DE ENERGIA Objetivos desta Unidade Ao concluir esta unidade, espera-se que o aluno adquira as seguintes habilidades:

Leia mais

TERMODINÂMICA E ESTRUTURA DA MATÉRIA

TERMODINÂMICA E ESTRUTURA DA MATÉRIA MEC - Mestrado Integrado em Engenharia Civil LEGM - Licenciatura Bolonha em Engenharia Geológica e de Minas TERMODINÂMICA E ESTRUTURA DA MATÉRIA 0-03 Exame de ª Época, 5 de Junho de 03, 8h-0h30min INSTRUÇÕES

Leia mais

Nota: Campus JK. TMFA Termodinâmica Aplicada

Nota: Campus JK. TMFA Termodinâmica Aplicada TMFA Termodinâmica Aplicada 1) Considere a central de potência simples mostrada na figura a seguir. O fluido de trabalho utilizado no ciclo é água e conhece-se os seguintes dados operacionais: Localização

Leia mais

Gabarito do Trabalho T1 - Termodinâmica Ambiental

Gabarito do Trabalho T1 - Termodinâmica Ambiental Gabarito do Trabalho T - Termodinâmica Ambiental Professor: Emílio Graciliano Ferreira Mercuri, D.Sc. Departamento de Engenharia Ambiental - DEA, Universidade Federal do Paraná - UFPR mercuri@ufpr.br Questão

Leia mais

UNIVERSIDADE ESTADUAL PAULISTA FACULDADE DE ENGENHARIA MECÂNICA DEPARTAMENTO DE ENGENHARIA MECÂNICA MÁQUINAS HIDRÁULICAS E TÉRMICAS

UNIVERSIDADE ESTADUAL PAULISTA FACULDADE DE ENGENHARIA MECÂNICA DEPARTAMENTO DE ENGENHARIA MECÂNICA MÁQUINAS HIDRÁULICAS E TÉRMICAS UNIVERSIDADE ESTADUAL PAULISTA FACULDADE DE ENGENHARIA MECÂNICA DEPARTAMENTO DE ENGENHARIA MECÂNICA MÁQUINAS HIDRÁULICAS E TÉRMICAS Prof. Dr. Ricardo Alan Verdú Ramos Prof. Dr. João Batista Campos Silva

Leia mais

SISTEMAS TÉRMICOS PME 2378 INTRODUÇÃO ÀS CIÊNCIAS TÉRMICAS - Alberto Hernandez Neto Direitos ais reservados Proibida a reprodução desse material sem a

SISTEMAS TÉRMICOS PME 2378 INTRODUÇÃO ÀS CIÊNCIAS TÉRMICAS - Alberto Hernandez Neto Direitos ais reservados Proibida a reprodução desse material sem a PME 2378 INTRODUÇÃO ÀS CIÊNCIAS TÉRMICAS INTRODUÇÃO E CONCEITOS INICIAIS ALBERTO HERNANDEZ NETO PME 2378 INTRODUÇÃO ÀS CIÊNCIAS TÉRMICAS - Alberto Hernandez Neto Direitos ais reservados Proibida a reprodução

Leia mais

Aula 9: Entropia e a Segunda Lei da Termodinâmica

Aula 9: Entropia e a Segunda Lei da Termodinâmica UFABC Fenômenos Térmicos Prof. Germán Lugones Aula 9: Entropia e a Segunda Lei da Termodinâmica Sadi Carnot [1796-1832] R. Clausius [1822-1888] W. Thomson (Lord Kelvin) [1824-1907] Quando um saco de pipocas

Leia mais

Geração de Energia Elétrica

Geração de Energia Elétrica Geração de Energia Elétrica Geração Termoelétrica a Joinville, 6 de Abril de 202 Escopo dos Tópicos Abordados Ciclos térmicos; Configurações emodelos de Turbinas a : Modelos dinâmicos de turbinas a vapor;

Leia mais

BC1309 Termodinâmica Aplicada

BC1309 Termodinâmica Aplicada Universidade Federal do ABC BC309 Termodinâmica Aplicada Prof. Dr. Jose Rubens Maiorino joserubens.maiorino@ufabc.edu.br Calor, Trabalho e Primeira Lei da Termodinâmica Conceitos q Calor Definição Meios

Leia mais

EM34F Termodinâmica A

EM34F Termodinâmica A EM34F Termodinâmica A Prof. Dr. André Damiani Rocha arocha@utfpr.edu.br Energia 2 Energia Transferência de Energia por Calor Sempre que existir diferença de temperatura haverá transferência de calor. Se

Leia mais

Programa de Unidade Curricular

Programa de Unidade Curricular Programa de Unidade Curricular Faculdade Engenharia Licenciatura Engenharia e Gestão Industrial Unidade Curricular Termodinâmica Semestre: 3 Nº ECTS: 6,0 Regente Professor Doutor Manuel Alves da Silva

Leia mais

Profa.. Dra. Ana Maria Pereira Neto

Profa.. Dra. Ana Maria Pereira Neto 5/09/0 Universidade Federal do ABC BC309 Termodinâmica Aplicada Profa.. Dra. Ana Maria Pereira Neto ana.neto@ufabc.edu.br Bloco A, torre, sala 637 Calor, Trabalho e Primeira Lei da Termodinâmica 5/09/0

Leia mais

Escola Politécnica da Universidade de São Paulo. Termodinâmica. Primeira Lei da Termodinâmica para volume de controle. v. 1.1

Escola Politécnica da Universidade de São Paulo. Termodinâmica. Primeira Lei da Termodinâmica para volume de controle. v. 1.1 Termodinâmica Primeira Lei da Termodinâmica para volume de controle 1 v. 1.1 Introdução Os princípios básicos que nos são importantes estão escritos para um sistema. Assim, temos as expressões a seguir

Leia mais

2/Mar/2016 Aula 4. 26/Fev/2016 Aula 3

2/Mar/2016 Aula 4. 26/Fev/2016 Aula 3 6/Fev/016 Aula 3 Calor e Primeira Lei da Termodinâmica Calor e energia térmica Capacidade calorífica e calor específico Calor latente Diagrama de fases para a água Primeira Lei da Termodinâmica Trabalho

Leia mais

PME 3344 Termodinâmica Aplicada

PME 3344 Termodinâmica Aplicada PME 3344 Termodinâmica Aplicada 2 a Lei da Termodinâmica v. 2.2 Introdução A 1ª lei da termodinâmica não estabelece restrições no sentido da interação de calor ou trabalho. De nossa experiência sabemos

Leia mais

Escola Politécnica da Universidade de São Paulo. Termodinâmica. 6) Primeira Lei da Termodinâmica para volume de controle. v. 2.6

Escola Politécnica da Universidade de São Paulo. Termodinâmica. 6) Primeira Lei da Termodinâmica para volume de controle. v. 2.6 Termodinâmica 6) Primeira Lei da Termodinâmica para volume de controle 1 v. 2.6 Introdução Os princípios básicos que nos são importantes estão escritos para um sistema. Assim, temos as expressões a seguir

Leia mais

1ª Lei da Termodinâmica lei da conservação de energia

1ª Lei da Termodinâmica lei da conservação de energia 1ª Lei da Termodinâmica lei da conservação de energia É de bastante interesse em análises termodinâmicas conhecer o balanço energético dos sistemas, principalmente durante trocas de estado A 1ª Lei da

Leia mais

Capítulo 4. Ciclos de Potência a Vapor

Capítulo 4. Ciclos de Potência a Vapor Capítulo 4 Ciclos de Potência a Vapor Objetivos Estudar os ciclos de potência em que o fluido de trabalo é alternadamente vaporizado e condensado. Fornecer uma introdução aos processos de co-geração. 4..

Leia mais

Escola Politécnica da Universidade de São Paulo. Termodinâmica. 2 a Lei da Termodinâmica. v. 2.1

Escola Politécnica da Universidade de São Paulo. Termodinâmica. 2 a Lei da Termodinâmica. v. 2.1 Termodinâmica 2 a Lei da Termodinâmica v. 2.1 Introdução 1ª lei da termodinâmica não estabelece restrições no sentido da interação de calor ou trabalho. De nossa experiência sabemos que há um único sentido

Leia mais

Escola Politécnica da Universidade de São Paulo. Termodinâmica. Entropia

Escola Politécnica da Universidade de São Paulo. Termodinâmica. Entropia ermodinâmica Entropia v.. Introdução Falamos nas aulas anteriores sobre a a Lei da ermodinâmica. Vimos dois enunciados da a Lei, o de Kelvin-Planck e o de Clausius. Falamos sobre sentido natural dos processos,

Leia mais

2 º Semestre 2014/2015 (MEAer, MEMec, Amb, Naval) 2º Teste-Repescagem, 15/Junho /2015. Nome Nº

2 º Semestre 2014/2015 (MEAer, MEMec, Amb, Naval) 2º Teste-Repescagem, 15/Junho /2015. Nome Nº 2º Teste-Repescagem, 15/Junho /2015 P1 Problema 1 (10 v) (selecione apenas uma resposta) 1) Para aumentar o rendimento de um ciclo reversível de potência que opera entre duas fontes de energia com temperaturas

Leia mais

TERMODINÂMICA E ESTRUTURA DA MATÉRIA

TERMODINÂMICA E ESTRUTURA DA MATÉRIA MEC - Mestrado Integrado em Engenharia Civil LEGM - Licenciatura Bolonha em Engenharia Geológica e de Minas TERMODINÂMICA E ESTRUTURA DA MATÉRIA 0-03 Exame de ª Época, 5 de Junho de 03, 8h-0h30min INSTRUÇÕES

Leia mais

LISTA DE EXERCÍCIOS Trabalho, Calor e Primeira Lei da Termodinâmica para Sistemas

LISTA DE EXERCÍCIOS Trabalho, Calor e Primeira Lei da Termodinâmica para Sistemas - 1 - LISTA DE EXERCÍCIOS Trabalho, Calor e Primeira Lei da Termodinâmica para Sistemas 1. Um aquecedor de ambientes a vapor, localizado em um quarto, é alimentado com vapor saturado de água a 115 kpa.

Leia mais

SISTEMAS DE POTÊNCIA A VAPOR (SPV)

SISTEMAS DE POTÊNCIA A VAPOR (SPV) SISTEMAS DE POTÊNCIA A VAPOR (SPV) Prof. Dr. Paulo H. D. Santos psantos@utfpr.edu.br AULA 1 06/06/2013 Apresentação do curso; Modelagem dos Sistemas de Potência a Vapor; Sistemas de Potência a Vapor -

Leia mais

Refrigeração e Ar Condicionado

Refrigeração e Ar Condicionado Refrigeração e Ar Condicionado Revisão Filipe Fernandes de Paula filipe.paula@engenharia.ufjf.br Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade Federal de Juiz de

Leia mais

Equação da Conservação de Energia (Primeira Lei da Termodinâmica)

Equação da Conservação de Energia (Primeira Lei da Termodinâmica) quação da onservação de nergia (Primeira Lei da Termodinâmica) A primeira lei da termodinâmica é um enunciado da conservação de energia aplicado a um sistema. sse princípio de conservação afirma que a

Leia mais

Mecânica dos Fluidos

Mecânica dos Fluidos Mecânica dos Fluidos Cinemática dos Fluidos: Balanço Global de Energia Prof. Universidade Federal do Pampa BA000200 Campus Bagé 03 e 04 de abril de 2017 Cinemática dos Fluidos, Parte 2 1 / 28 Balanço de

Leia mais

ESZO Fenômenos de Transporte

ESZO Fenômenos de Transporte Universidade Federal do ABC ESZO 001-15 Fenômenos de Transporte Profa. Dra. Ana Maria Pereira Neto ana.neto@ufabc.edu.br Bloco A, torre 1, sala 637 Propriedades Termodinâmicas Propriedades Termodinâmicas

Leia mais

Disciplina : Termodinâmica. Aula 3

Disciplina : Termodinâmica. Aula 3 Disciplina : Termodinâmica Aula 3 Prof. Evandro Rodrigo Dário, Dr. Eng. Trabalho Elétrico Os elétrons que cruzam a fronteira do sistema realizam trabalho elétrico no sistema. Em um campo elétrico, os elétrons

Leia mais