Introdução aos Métodos Numéricos

Tamanho: px
Começar a partir da página:

Download "Introdução aos Métodos Numéricos"

Transcrição

1 Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho

2 Conteúdo Erros e Aproximações Numéricas Sistemas de Equações Lineares. Métodos diretos Interpolação Ajuste de Curvas Zeros de Função Sistemas de Equações Lineares. Métodos Iterativos Integração Numérica Introdução à Resolução de Equações Diferenciais Ordinárias

3 Conteúdo Zeros de Função

4 Zeros de função Suponha que, por algum motivo, necessitamos de determinar onde uma função se anula f (x)=0

5 Zeros de função Parece que a solução é simples: basta achar a função inversa da função e a calcular em zero x=f 1 (0) Pena que achar a inversa de uma função não seja uma coisa simples em geral Sem contar que podemos ter a função anulando em mais de um ponto, como na figura que mostramos...

6 Zeros de função Mas em que situações necessitaríamos determinar os pontos uma função se anula? Determinação de máximos de funções Apresentação realística de contato entre objetos em computação gráfica (animações, etc.) Determinação de níveis de energia em simulações Etc.

7 Zeros de função Existe um conjunto de funções das quais sabemos algo sobre o ponto no qual elas se anulam como os polinômios. Se um polinômio de grau n sabemos que terá n pontos onde se anulará, seja no eixo real ou no plano complexo Problemas...

8 Zeros de função Sabemos fórmulas algébricas para polinômios de grau até 4. Deste grau para cima é demonstrável que não existem fórmulas algébricas para o caso geral, apenas para casos particulares. Usar o recurso de dividir polinômios é numericamente instável...

9 Zeros de função Mas e para estas equações? e x 3 cos x=0 ;cos x sen 2 x+ 3 x 2 =0 ; 0 Existem pontos onde se anulam? Se tem, quantos? Como achar estes pontos? sent t dt x+1=0

10 Zeros de função Diremos que determinar onde funções se anulam é determinarmos os zeros destas funções O termo raízes é mais adequado aos pontos onde polinômios se anulam

11 Zeros de função Mudaremos a visão do problema No lugar de termos um problema com n zeros, vamos transformar este problema em n problemas de um zero a determinar Faremos isto isolando cada zero num determinado intervalo que o contém...

12 Zeros de função...como na figura abaixo

13 Zeros de função Escolhamos um zero Como sabemos que há um zero no intervalo (A,B)? Se a função f(x) for diferenciável no intervalo então f ( A)f (B)<0

14 Zeros de função Esta observação nos dá a dica para o nosso primeiro método genérico de determinação de zeros de função

15 Zeros de função Apresentaremos um método da categoria de Métodos de Partição, ou seja, métodos que sucessivamente obtém subintervalos que contém a solução do problema

16 Método da bissecção Este método começa por acharmos o ponto médio do intervalo, ou seja, X= A+B 2

17 Método da bissecção Como o zero se encontra entre A e B, temos que este zero se encontra no intervalo (A,X] ou no intervalo [X,B). Usaremos o teste Se Se f ( A)f ( X )<0 ; R ( A, X ) f ( A)f ( X )>0 ; R ( X,B)

18 Método da bissecção Feito isto faremos Se f ( A)f ( X )<0 ; R ( A, X ); B X Se f ( A)f ( X )>0 ; R ( X, B); A X Novamente calculamos X= A+B 2 para o novo A ou B. A figura ficará...

19 Método da bissecção Novamente faremos o teste com uma pequena modificação

20 Método da bissecção Se f ( A)f ( X )<0 ; R ( A, X ); B X f ( A)f ( X )>0 ; R ( X, B); A X f ( A)f ( X )=0; R=A ou R=X Isto é necessário pois não temos como prever o comportamento da função em X

21 Método da bissecção Calculando X= A+B 2

22 Método da bissecção Resumo do que fizemos

23 Método da bissecção Seja f(x) diferenciável em [A, B]. Tenhamos f(a) I) Calcule II) Se X= A+B 2 e f ( X) f ( A) f ( X )<0 ; R ( A, X ); B X f ( A) f ( X )>0 ; R ( X, B); A X f ( A)f ( X)=0 ; R=A ou R=X III) Se o critério de parada não for satisfeito, retorne a I

24 Método da bissecção No momento não abordaremos o critério de parada

25 Método da bissecção Um exemplo Determine aproximações para o ponto onde a função abaixo se anula no semi-eixo positivo. e x 3 cos x Isto significa que queremos resolver a equação abaixo e x 3 cos x=0

26 Zeros de função O primeiro obstáculo é localizar o zero dentro de um intervalo. Isto pode ser feito por Um estudo da natureza do problema Um estudo exploratório O estudo da natureza do problema é o melhor e exige boa compreenção do que estamos fazendo

27 Zeros de função Aqui olharemos para o problema como a intersecção entre duas curvas, ou seja, e x 3 cos x=0 e x =3 cos x e conhecemos bem estas duas funções. Já que é assim, façamos um esboço destas duas funções no semi-eixo positivo, lembrando que cosseno atinge o primeiro valor zero em π/2

28 Zeros de função Esboço do ponto de intersecção e x =3 cos x É fácil de perceber que existe um ponto entre 0 e 1 na qual e x e sen(x) se intersectam, ou seja, a nossa função tem um zero em [0,1]

29 Zeros de função Verifiquemos... f (x)=e x 3 cos x f (0)=e 0 3 cos 0=1 3= 2 f (1)=e 1 3 cos1=2, ,540302=1, Temos a confirmação que há um zero neste intervalo Apliquemos o Método da Bissecção fazendo A=0, B=1

30 Método da bissecção Um exemplo X= A+B 2 = = 1 2 f (X )=f ( 1 ) 2 =e1/2 3 cos 1 2 = 0, f ( A)f ( X )>0 ; A X f (x)=e x 3 cos x f ( A)= 2 Agora A= 1 2 e f ( A)= 0, continuando...

31 Método da bissecção Um exemplo X= A+B 2 =1/2+1 = f (X )=f ( 3 ) 4 =e3/ 4 3 cos 3 4 = 0, f ( A)f ( X )>0 ; A X f (x)=e x 3 cos x f ( A)= 0, Agora A= 3 4 e f ( A)= 0, continuando...

32 Método da bissecção Um exemplo X= A+B 2 = 3/ = 7 8 =0,875 f (X )=f ( 7 ) 8 =e7 /8 3 cos 7 8 =0, f ( A)f ( X )<0 ; B X f (x)=e x 3 cos x f ( A)= 0, Agora B= 7 8 e f (B)=0, continuando...

33 Método da bissecção Um exemplo X= A+B 2 = 3/ 4+7/8 2 = =0,8125 f (X )=f ( 13 ) 16 =e13/16 3 cos =0, f ( A)f ( X )<0 ; B X f (x)=e x 3 cos x f ( A)= 0, Agora B= paremos por aqui...

34 Método da bissecção Um exemplo Resumindo temos a seguinte progressão R [0,1] R [ 1 2,1 ] R [ 3 4, 1 ] R [ 3 4, 7 ] 8 R [ 3 4, 13 ] 16 ou na última avaliação R [0,75;0,8125] Temos uma progressão mas como ela se dá? Quando parar?

35 Método da bissecção Acredito que seja fácil de perceber que o intervalo que contém o zero decresce para metade de sua amplitude a cada passo, ou seja, L n = B A 2 n

36 Método da bissecção Acredito que seja fácil de perceber que o intervalo que contém o zero decresce para metade de sua amplitude a cada passo, ou seja, L n = B A 2 n onde B e A são os valores iniciais. Isto nos dá um critério de parada.

37 Método da bissecção Vamos supor que desejamos parar quando o intervalo que contém R for de tamanho tol. Assim, tol= B A 2 n = B A ( n=log 2 n tol 2 B A ) tol Com isto, sabemos quantos passos do método teremos que executar para obtermos o resultado que desejamos

38 Método da bissecção Se no nosso exemplo desejássemos que tol fosse um milésimo do intervalo original, teríamos n=log 2 ( B A ) tol =log ( 1 0 ) 2 0,001 =log 2(1000) 10 Este método não parece tão ruim assim. Mas é lento...

39 Método da bissecção Um exemplo O método da bissecção não leva em consideração o valor das funções, somente os sinais. Abaixo temos alguns valores numéricos calculados durante o uso do algoritmo f (0)= 2;f (1)=1, ; f ( 1 2 ) = 0, f ( 3 4 ) = 0, ; f ( 7 8 ) =0, ;f ( ) =0, o valor em ¾ parece próximo da solução......e o método não viu...

40 Zeros de função A questão agora é como termos um método que leve em consideração o valor da função Retornemos um pouco ao que já foi apresentado: Determinar o zero da função é equivalente a determinar a função inversa da função e daí R=f 1 (0) O problema é que achar a inversa não é fácil...

41 Zeros de função Mas porque não achamos uma função aproximada a nossa f(x) e que seja fácil de achar a função inversa? Não teremos a solução exata mas teremos uma solução aproximada e, esperamos, válida Uma possibilidade você conhece...

42 Zeros de função Um polinômio interpolador... X será a aproximação do zero de função Determinemos X

43 Zeros de função Podemos escolher qualquer técnica para determinar o polinômio interpolador. Aqui usaremos Newton-Gregory Temos os pontos (A, f(a)) e (B, f(b)) logo p 1 (x)= p 0 (x)+ y 1 y 0 x 1 x 0 ( x x 0 )=f ( A)+ f (B) f ( A) B A ( x A ) Mas não queremos o polinômio mas onde ele se anula

44 Zeros de função Assim, ou ou ainda daí ( X A )= f ( A) X= A+ p 1 ( X)=f ( A)+ Af ( A) B f ( A) f (B) f ( A) f (B) f ( A) B A ( X A )=0 B A A B X= A+f ( A) f (B) f ( A) X= X= f (B) f ( A) Af (B) Af ( A)+ Af ( A) B f ( A) f (B) f ( A) Af (B) B f ( A) f (B) f ( A)

45 Zeros de função Observe que podemos impor desta maneira uma partição da região onde se encontra o zero da função Usaremos o mesmo algoritmo do método de bissecção só que aqui trabalharemos com esta nova maneira de particionar que leva em consideração valores de f(x) A este método denominaremos Método Regula-Falsi

46 Regula-falsi Método Regula-Falsi Seja f(x) diferenciável em [A, B]. Tenhamos f(a) e f(b) I) Calcule II) Se X= Af (B) B f ( A) f (B) f ( A) e f (X ) f ( A) f ( X )<0 ; R ( A, X ); B X f ( A) f ( X )>0 ; R ( X, B); A X f ( A)f ( X)=0 ; R=A ou R=X III) Se o critério de parada não for satisfeito, retorne a I

47 Zeros de função Mais uma vez adiaremos a discussão sobre o critério de parada. Nos concentremos no algoritmo.

48 Regula-falsi Aplicando o algoritmo temos que f(a)f(x)<0 e B toma o valor de X. Calculando um novo X teremos

49 Regula-falsi Veja que o novo valor para X está mais próximo de R

50 Regula-falsi Este método fornece não só o valor da função f(x) como também a informação aproximada da derivada da função no intervalo onde se encontra R dada pela declividade do polinômio que interpola os extremos do intervalo A intuição nos diz que este método deve ser melhor que a bissecção...

51 Regula-falsi Resolvamos o mesmo exemplo anterior mas sem critério de parada

52 Regula-falsi Determine aproximações para o ponto onde a função abaixo se anula no semi-eixo positivo. Já sabemos que que e x 3 cos x R [0,1] e escolheremos A=0, B=1 e temos f ( A)= 2; f (B)=1,097374

53 Regula-falsi f ( A)= 2; f (B)=1, X= A f (B) B f ( A) f (B) f ( A) = 0 1, ( 2) =0, , ( 2) f (0,645708)= 0, f ( A)f (X )>0; R (X, B); A X e agora teremos A=0, e f ( A)= 0, assim...

54 Regula-falsi A=0, ; f ( A)= 0, X= A f (B) B f ( A) f (B) f ( A) = 0, , ( 0,488684) =0, , ( 0,488684) f (0,754869)= 0, f ( A)f (X )>0; R (X, B); A X e agora teremos A=0, e f ( A)= 0, assim...

55 Regula-falsi A=0, ; f ( A)= 0, X= A f (B) B f ( A) f (B) f ( A) = 0, , ( 0,057751) =0, , ( 0,057751) f (0,767124)= 6, f ( A)f (X )>0; R (X, B); A X e agora teremos A=0, e f ( A)= 6, assim...

56 Regula-falsi A=0, ;f ( A)= 0, X= A f (B) B f ( A) f (B) f ( A) = 0, , ( 0,006165) =0, , ( 0,006165) f (0,768424)= 6, f ( A)f (X )>0; R (X, B); A X e agora teremos A=0, e f ( A)= 6, Paremos...

57 Regula-falsi Façamos um resumo do que obtemos f (0,645708)= 0, ;f (0,754869)= 0, f (0,767124)= 6, ;f (0,768424)= 6, Repare que tanto o valor de X muda cada vez menos quanto o valor de f(x) se aproxima de zero

58 Regula-falsi Observe que X toma valores que cada vez mais aproximam do ponto onde a função f(x) se anula Mais do que o fator de corte do intervalo, este valor nos dá sucessivas aproximações de R Temos de pensar em quando parar...

59 Critérios de parada Naturalmente aparecem dois critérios de parada avaliando os valores obtidos para X avaliando o valor de f(x)

60 Critérios de parada Critérios de parada: avaliando os valores obtidos para X Seja tol x o valor o qual desejamos para a precisão da determinação de R. Então pararemos quando o módulo da diferença entre dois valores sucessivos de X dividido por um destes valores for menor que tol x, ou seja, tol x < X i+1 X i X i ou tol x < X i+1 X i X i+1 A alternativa é para evitar um valor nulo no divisor

61 Critérios de parada Critérios de parada: avaliando o valor de f(x) Seja tol f o valor o qual desejamos para a precisão da determinação de R. Então pararemos quando o valor de f(x) for menor que tol f, ou seja, tol f <f ( X i )

62 Critérios de parada O mais rigoroso é a utilização conjunta destes dois critérios Estes critérios são usados em outros métodos de determinação de zeros de função que se seguirão

63 Regula-falsi Outro exemplo Determine uma aproximação para o zero da função abaixo que se encontra no intervalo [1,2]. Use tol x <10 3 x 4 + x 10

64 Regula-falsi Outro exemplo f (x)=x 4 +x 10 Calculemos a função nos extremos do intervalo f ( A)=f (1)= = 8 ; f (B)=f (2)= =8 Temos a confirmação da existência do zero e os valores necessários para iniciar o algoritmo

65 Regula-falsi Outro exemplo f ( A)= 8 ;f (B)=8 X= A f (B) B f ( A) f (B) f ( A) = ( 8) = 3 8 ( 8) 2 =1,5 f ( 3 2 ) = = 3,4375 f ( A)f (X )>0; R (X, B); A X e agora teremos A= 3 2 e f ( A)= 3,4375 assim...

66 Regula-falsi Outro exemplo A= 3 2 ;f ( A)= 3,4375 X= A f (B) B f ( A) f (B) f ( A) = 3/2 8 2 ( 3,4375) = ( 3,4375) 183 =1, f ( ) = 0, f ( A)f (X )>0; R (X, B); A X e agora teremos A=1, Testemos o critério de parada e f ( A)= 0,932809

67 Regula-falsi Outro exemplo Usando os dois últimos valores obtidos para X teremos X 2 X 1 X 1 = 1, ,5 0, ,5 Continuemos

68 Regula-falsi Outro exemplo A=1, ;f ( A)= 0, X= A f (B) B f ( A) f (B) f ( A) f (1, )= 0, f ( A)f (X )>0; R (X, B); A X e agora teremos = 1, ( 0,932809) =1, ( 0,932809) A=1, Testemos o critério de parada e f ( A)= 0,217632

69 Regula-falsi Outro exemplo Usando os dois últimos valores obtidos para X teremos X 3 X 2 X 2 = 1, , ,0228 1, Ainda não podemos parar mas o erro caiu quase cinco vezes num passo. Continuemos

70 Regula-falsi Outro exemplo A=1, ;f ( A)= 0, X= A f (B) B f ( A) f (B) f ( A) f (1, )= 0, f ( A)f (X )>0; R (X, B); A X e agora teremos = 1, ( 0,217632) =1, ( 0,217632) A=1, Testemos novamente o critério de parada e f ( A)= 0,048918

71 Regula-falsi Outro exemplo Usando os dois últimos valores obtidos para X teremos X 4 X 3 X 3 = 1, , ,0048 1, O valor ainda é mais de quatro vezes o valor desejado. Continuemos

72 Regula-falsi Outro exemplo A=1,695088;f ( A)= 0, X= A f (B) B f ( A) f (B) f ( A) f (1, )= 0, f ( A)f (X )>0; R (X, B); A X e agora teremos = 1, ( 0,048918) =1, ( 0,048918) A=1, Testemos mais uma vez o critério de parada e f ( A)= 0,010902

73 Regula-falsi Outro exemplo Usando os dois últimos valores obtidos para X teremos X 5 X 4 X 4 = 1, , , , Foi quase! Continuemos

74 Regula-falsi Outro exemplo A=1,696941; f ( A)= 0, X= A f (B) B f ( A) f (B) f ( A) f (1, )= 0, f ( A)f (X )>0; R (X, B); A X e agora teremos = 1, ( 0,010902) =1, ( 0,010902) A=1, Testemos (esperamos) pela última vez... e f ( A)= 0,002425

75 Regula-falsi Outro exemplo Usando os dois últimos valores obtidos para X teremos X 6 X 5 X 5 = 1, , , , Critério de parada satisfeito...

76 Zeros de função Mas observe que os métodos de partição são um tanto enrolados pois precisamos de fazer testes. Nos exemplos dados temos funções que são de comportamento monótono nos intervalos dados mas isto pode se complicar Além disso, temos quais garantias que os métodos funcionariam sempre? Vamos partir para outra categoria de métodos

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo Erros e Aproximações Numéricas Sistemas de Equações Lineares.

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo Erros e Aproximações Numéricas Sistemas de Equações Lineares.

Leia mais

Cálculo Numérico. Santos Alberto Enriquez-Remigio FAMAT-UFU 2015

Cálculo Numérico. Santos Alberto Enriquez-Remigio FAMAT-UFU 2015 Cálculo Numérico Santos Alberto Enriquez-Remigio FAMAT-UFU 2015 1 Capítulo 1 Solução numérica de equações não-lineares 1.1 Introdução Lembremos que todo problema matemático pode ser expresso na forma de

Leia mais

TE231 Capitulo 2 Zeros de Funções; Prof. Mateus Duarte Teixeira

TE231 Capitulo 2 Zeros de Funções; Prof. Mateus Duarte Teixeira TE231 Capitulo 2 Zeros de Funções; Prof. Mateus Duarte Teixeira Sumário 1. Como obter raízes reais de uma equação qualquer 2. Métodos iterativos para obtenção de raízes 1. Isolamento das raízes 2. Refinamento

Leia mais

Lista de Exercícios de Métodos Numéricos

Lista de Exercícios de Métodos Numéricos Lista de Exercícios de Métodos Numéricos 1 de outubro de 010 Para todos os algoritmos abaixo assumir n = 0, 1,, 3... Bisseção: Algoritmo:x n = a+b Se f(a) f(x n ) < 0 então b = x n senão a = x n Parada:

Leia mais

Introdução aos Métodos Numéricos. Instituto de Computação UFF

Introdução aos Métodos Numéricos. Instituto de Computação UFF Introdução aos Métodos Numéricos Instituto de Computação UFF Conteúdo Erros e Aproximações Numéricas Sistemas de Equações Lineares. Métodos diretos Interpolação Ajuste de Curvas Zeros de Função Sistemas

Leia mais

MAP CÁLCULO NUMÉRICO (POLI) Lista de Exercícios sobre Interpolação e Integração. φ(x k ) ψ(x k ).

MAP CÁLCULO NUMÉRICO (POLI) Lista de Exercícios sobre Interpolação e Integração. φ(x k ) ψ(x k ). MAP 22 - CÁLCULO NUMÉRICO (POLI) Lista de Exercícios sobre Interpolação e Integração : Sejam x =, x =, x 2 = 2 e x 3 = 3. (a) Determine os polinômios de Lagrange L i (x) correspondentes a estes pontos

Leia mais

f(1) = 6 < 0, f(2) = 1 < 0, f(3) = 16 > 0 x [2, 3].

f(1) = 6 < 0, f(2) = 1 < 0, f(3) = 16 > 0 x [2, 3]. 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia. Métodos Numéricos Para Solução

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 7 04/2014 Zeros reais de funções Parte 1 Objetivo Determinar valores aproximados para as soluções (raízes) de equações da

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo Erros e Aproximações Numéricas Sistemas de Equações Lineares.

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 7 04/2014 Zeros reais de funções Parte 1 Objetivo Determinar valores aproximados para as soluções (raízes) de equações da

Leia mais

Resolução Numérica de Equações Métodos Parte II

Resolução Numérica de Equações Métodos Parte II Cálculo Numérico Resolução Numérica de Equações Métodos Parte II Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br MATERIAL ADAPTADO DOS SLIDES DA DISCIPLINA CÁLCULO NUMÉRICO DA UFCG - www.dsc.ufcg.edu.br/~cnum/

Leia mais

A. Equações não lineares

A. Equações não lineares A. Equações não lineares 1. Localização de raízes. a) Verifique se as equações seguintes têm uma e uma só solução nos intervalos dados: i) (x - 2) 2 ln(x) = 0, em [1, 2] e [e, 4]. ii) 2 x cos(x) (x 2)

Leia mais

Ana Paula. October 26, 2016

Ana Paula. October 26, 2016 Raízes de Equações October 26, 2016 Sumário 1 Aula Anterior 2 Método da Secante 3 Convergência 4 Comparação entre os Métodos 5 Revisão Aula Anterior Aula Anterior Aula Anterior Aula Anterior Método de

Leia mais

Métodos Numéricos - Notas de Aula

Métodos Numéricos - Notas de Aula Métodos Numéricos - Notas de Aula Prof a Olga Regina Bellon Junho 2007 Zeros de equações transcendentes e Tipos de Métodos polinomiais São dois os tipos de métodos para se achar a(s) raízes de uma equação:

Leia mais

Introdução aos Métodos Numéricos. Instituto de Computação UFF

Introdução aos Métodos Numéricos. Instituto de Computação UFF Introdução aos Métodos Numéricos Instituto de Computação UFF Conteúdo Erros e Aproximações Numéricas Sistemas de Equações Lineares. Métodos diretos Interpolação Ajuste de Curvas Zeros de Função Sistemas

Leia mais

x exp( t 2 )dt f(x) =

x exp( t 2 )dt f(x) = INTERPOLAÇÃO POLINOMIAL 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia Aproximação

Leia mais

Encontre um valor aproximado para 3 25 com precisão de 10 5 utilizando o método da bissecção.

Encontre um valor aproximado para 3 25 com precisão de 10 5 utilizando o método da bissecção. 1 a) Mostre que f (x) = x cos x possui uma raiz no intervalo [0, 1]. b) Prove que essa raiz é única. c) Sem executar o método, preveja o número de iterações que o algoritmo da bissecção utilizaria para

Leia mais

TP062-Métodos Numéricos para Engenharia de Produção Zeros: Introdução

TP062-Métodos Numéricos para Engenharia de Produção Zeros: Introdução TP062-Métodos Numéricos para Engenharia de Produção Zeros: Introdução Prof. Volmir Wilhelm Curitiba, 2015 Os zeros de uma função são os valores de x que anulam esta função. Este podem ser Reais ou Complexos.

Leia mais

Raízes de Equações métodos delimitados. qual o problema? equações não lineares/raízes

Raízes de Equações métodos delimitados. qual o problema? equações não lineares/raízes Raízes de Equações métodos delimitados Aula 5 (16/0/07) Métodos Numéricos Aplicados à Engenharia Licenciatura em Engenharia Alimentar Escola Superior Agrária de Coimbra qual o problema? Podemos calcular

Leia mais

Solução numérica de equações não-lineares

Solução numérica de equações não-lineares Capítulo 1 Solução numérica de equações não-lineares 1.1 Introdução Lembremos que todo problema matemático pode ser expresso na forma de uma equação. Mas, o que é uma equação? Uma equação é uma igualdade

Leia mais

Neste capítulo estamos interessados em resolver numericamente a equação

Neste capítulo estamos interessados em resolver numericamente a equação CAPÍTULO1 EQUAÇÕES NÃO-LINEARES 1.1 Introdução Neste capítulo estamos interessados em resolver numericamente a equação f(x) = 0, onde f é uma função arbitrária. Quando escrevemos resolver numericamente,

Leia mais

de Interpolação Polinomial

de Interpolação Polinomial Capítulo 10 Aproximação de Funções: Métodos de Interpolação Polinomial 101 Introdução A aproximação de funções por polinômios é uma das idéias mais antigas da análise numérica, e ainda uma das mais usadas

Leia mais

1. Converta os seguintes números decimais para sua forma binária: (a) 22 (b) 255 (c) 256 (d) 0.11 (e) (f)

1. Converta os seguintes números decimais para sua forma binária: (a) 22 (b) 255 (c) 256 (d) 0.11 (e) (f) 1 a Lista de Exercícios de Cálculo Numérico Prof a. Vanessa Rolnik 1. Converta os seguintes números decimais para sua forma binária: (a) 22 (b) 255 (c) 256 (d).11 (e).8125 (f) 4.69375 2. Converta os seguintes

Leia mais

Integração Numérica. = F(b) F(a)

Integração Numérica. = F(b) F(a) Integração Numérica Do ponto de vista analítico, existem diversas regras que podem ser utilizadas na prática. Contudo, embora tenhamos resultados básicos e importantes para as técnicas de integração analítica,

Leia mais

Aula 6. Zeros reais de funções Parte 3

Aula 6. Zeros reais de funções Parte 3 CÁLCULO NUMÉRICO Aula 6 Zeros reais de funções Parte 3 MÉTODO DE NEWTON RAPHSON Cálculo Numérico 3/48 CONSIDERAÇÕES INICIAS MÉTODO DO PONTO FIXO: Uma das condições de convergência é que onde I é um intervalo

Leia mais

étodos uméricos ZEROS DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos ZEROS DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos ZEROS DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA

Leia mais

SME Cálculo Numérico. Lista de Exercícios: Gabarito

SME Cálculo Numérico. Lista de Exercícios: Gabarito Exercícios de prova SME0300 - Cálculo Numérico Segundo semestre de 2012 Lista de Exercícios: Gabarito 1. Dentre os métodos que você estudou no curso para resolver sistemas lineares, qual é o mais adequado

Leia mais

Introdução aos Métodos Numéricos. Instituto de Computação UFF

Introdução aos Métodos Numéricos. Instituto de Computação UFF Introdução aos Métodos Numéricos Instituto de Computação UFF Conteúdo Erros e Aproximações Numéricas Sistemas de Equações Lineares. Métodos diretos Interpolação Ajuste de Curvas Zeros de Função Sistemas

Leia mais

Cálculo Numérico A - 2 semestre de 2006 Prof. Leonardo F. Guidi. 2 a Lista de Exercícios - Gabarito. 1) Seja a equação não linear x e x = 0.

Cálculo Numérico A - 2 semestre de 2006 Prof. Leonardo F. Guidi. 2 a Lista de Exercícios - Gabarito. 1) Seja a equação não linear x e x = 0. Cálculo Numérico A - 2 semestre de 2006 Prof. Leonardo F. Guidi 2 a Lista de Exercícios - Gabarito 1) Seja a equação não linear x e x = 0. A solução é dada em termos da função W de Lambert, x = W 1) 0,

Leia mais

Resolução Numérica de Equações Métodos Parte II

Resolução Numérica de Equações Métodos Parte II Cálculo Numérico Resolução Numérica de Equações Métodos Parte II Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br MATERIAL ADAPTADO DOS SLIDES DA DISCIPLINA CÁLCULO NUMÉRICO DA UFCG - www.dsc.ufcg.edu.br/~cnum/

Leia mais

Teoremas e Propriedades Operatórias

Teoremas e Propriedades Operatórias Capítulo 10 Teoremas e Propriedades Operatórias Como vimos no capítulo anterior, mesmo que nossa habilidade no cálculo de ites seja bastante boa, utilizar diretamente a definição para calcular derivadas

Leia mais

Métodos iterativos dão-nos uma valor aproximado para s. Sequência de valores de x que convergem para s.

Métodos iterativos dão-nos uma valor aproximado para s. Sequência de valores de x que convergem para s. Análise Numérica 1 Resolução de equações não lineares ou Cálculo de zeros de funções Problema: Dada a função f(x) determinar o valor s tal que f(s) = 0. Slide 1 Solução: Fórmulas exemplo: fórmula resolvente

Leia mais

Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA

Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA Licenciaturas em Engenharia do Ambiente e Química 2 o Semestre de 2005/2006 Capítulo IV Aproximação de Funções 1 Interpolação Polinomial 1. Na tabela seguinte

Leia mais

Instituto Politécnico de Tomar Escola Superior de Tecnologia de Tomar Área Interdepartamental de Matemática

Instituto Politécnico de Tomar Escola Superior de Tecnologia de Tomar Área Interdepartamental de Matemática Instituto Politécnico de Tomar Escola Superior de Tecnologia de Tomar Área Interdepartamental de Matemática Análise Numérica Licenciaturas em Engenharia Ambiente,Civil e Química I - Equações Não Lineares.

Leia mais

Equações não lineares

Equações não lineares Capítulo 2 Equações não lineares Vamos estudar métodos numéricos para resolver o seguinte problema. Dada uma função f contínua, real e de uma variável, queremos encontrar uma solução x que satisfaça a

Leia mais

3.6 Erro de truncamento da interp. polinomial.

3.6 Erro de truncamento da interp. polinomial. 3 Interpolação 31 Polinômios interpoladores 32 Polinômios de Lagrange 33 Polinômios de Newton 34 Polinômios de Gregory-Newton 35 Escolha dos pontos para interpolação 36 Erro de truncamento da interp polinomial

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo Erros e Aproximações Numéricas Sistemas de Equações Lineares.

Leia mais

CAP. II RESOLUÇÃO NUMÉRICA DE EQUAÇÕES NÃO LINEARES

CAP. II RESOLUÇÃO NUMÉRICA DE EQUAÇÕES NÃO LINEARES CAP. II RESOLUÇÃO NUMÉRICA DE EQUAÇÕES NÃO LINEARES Vamos estudar alguns métodos numéricos para resolver: Equações algébricas (polinómios não lineares; Equações transcendentais equações que envolvem funções

Leia mais

Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA

Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA Licenciaturas em Engenharia do Ambiente e Química 2 o Semestre de 2005/2006 Capítulo II Resolução Numérica de Equações Não-Lineares 1. Considere a equação sin(x)

Leia mais

Zero de Funções ou Raízes de Equações

Zero de Funções ou Raízes de Equações Zero de Funções ou Raízes de Equações Um número ξ é um zero de uma função f() ou raiz da equação se f(ξ). Graficamente os zeros pertencentes ao conjunto dos reais, IR, são representados pelas abscissas

Leia mais

Cálculo Numérico Ponto Fixo

Cálculo Numérico Ponto Fixo Cálculo Numérico Ponto Fixo Método do Ponto Fixo (MPF) Dada uma função f(x) contínua no intervalo [a,b] onde existe uma raiz única, f(x) = 0, é possível transformar tal equação em uma equação equivalente

Leia mais

C alculo Num erico Erro de Integra c ao Num erica Ana Paula Ana Paula C alculo Num erico

C alculo Num erico Erro de Integra c ao Num erica Ana Paula Ana Paula C alculo Num erico Erro de Integração Numérica Sumário 1 Revisão 2 Erro na Interpolação 3 Erro de Integração 4 Análise dos Erros das Fórmulas Repetidas Revisão Revisão Revisão Revisão Forma de Newton P n (x) =f[x 0 ] + (x

Leia mais

Interpolação polinomial: Diferenças divididas de Newton

Interpolação polinomial: Diferenças divididas de Newton Interpolação polinomial: Diferenças divididas de Newton Marina Andretta ICMC-USP 16 de maio de 2012 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina Andretta (ICMC-USP) sme0500

Leia mais

Cálculo Numérico / Métodos Numéricos. Solução de equações polinomiais Briot-Ruffini-Horner

Cálculo Numérico / Métodos Numéricos. Solução de equações polinomiais Briot-Ruffini-Horner Cálculo Numérico / Métodos Numéricos Solução de equações polinomiais Briot-Ruffini-Horner Equações Polinomiais p = x + + a ( x) ao + a1 n x n Com a i R, i = 0,1,, n e a n 0 para garantir que o polinômio

Leia mais

Disciplina: Cálculo Numérico IPRJ/UERJ. Sílvia Mara da Costa Campos Victer. Integração numérica: Fórmulas de Newton-Cotes.

Disciplina: Cálculo Numérico IPRJ/UERJ. Sílvia Mara da Costa Campos Victer. Integração numérica: Fórmulas de Newton-Cotes. Disciplina: Cálculo Numérico IPRJ/UERJ Sílvia Mara da Costa Campos Victer Aula 5- Integração numérica: Fórmulas de Newton-Cotes. Objetivo: Apresentar o método de integração numérica baseado nas fórmulas

Leia mais

Andréa Maria Pedrosa Valli

Andréa Maria Pedrosa Valli Raízes de Equações Andréa Maria Pedrosa Valli Laboratório de Computação de Alto Desempenho (LCAD) Departamento de Informática Universidade Federal do Espírito Santo - UFES, Vitória, ES, Brasil 2-27 Raízes

Leia mais

Exercícios de MATEMÁTICA COMPUTACIONAL. 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares

Exercícios de MATEMÁTICA COMPUTACIONAL. 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares Exercícios de MATEMÁTICA COMPUTACIONAL Mestrado Integrado em Engenharia Biomédica 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares 1. Considere a equação sin(x) e x = 0. a) Prove que

Leia mais

A Segunda Derivada: Análise da Variação de Uma Função

A Segunda Derivada: Análise da Variação de Uma Função A Segunda Derivada: Análise da Variação de Uma Função Suponhamos que a função y = f() possua derivada em um segmento [a, b] do eio-. Os valores da derivada f () também dependem de, ou seja, a derivada

Leia mais

Integrais. ( e 12/ )

Integrais. ( e 12/ ) Integrais (21-04-2009 e 12/19-05-2009) Já estudámos a determinação da derivada de uma função. Revertamos agora o processo de derivação, isto é, suponhamos que nos é dada uma função F e que pretendemos

Leia mais

Lista de exercícios de MAT / II

Lista de exercícios de MAT / II 1 Lista de exercícios de MAT 271-26 / II 1. Converta os seguintes números da forma decimal para a forma binária:x 1 = 37; x 2 = 2347; x 3 =, 75; x 4 =(sua matrícula)/1; x 5 =, 1217 2. Converta os seguintes

Leia mais

- Métodos numéricos. - Métodos analíticos versus métodos numéricos. - Necessidade de se usar métodos numéricos. - Métodos iterativos

- Métodos numéricos. - Métodos analíticos versus métodos numéricos. - Necessidade de se usar métodos numéricos. - Métodos iterativos Tópicos Tópicos - Métodos numéricos - Métodos analíticos versus métodos numéricos - Necessidade de se usar métodos numéricos - Métodos iterativos - Resolução de problemas - Problemas com equações não lineares

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 4 Zeros reais de funções Parte 1 Objetivo Determinar valores aproimados para as soluções (raízes) de equações da forma: f

Leia mais

PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL

PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL. Introdução Considere f uma função, não constante, de uma variável real ou complexa, a equação f(x) = 0 será denominada equação de uma incógnita. EXEMPLO e x + senx

Leia mais

Interpolação polinomial: Polinômio de Lagrange

Interpolação polinomial: Polinômio de Lagrange Interpolação polinomial: Polinômio de Lagrange Marina Andretta ICMC-USP 09 de maio de 2012 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina Andretta (ICMC-USP) sme0500 - cálculo

Leia mais

Derivadas Parciais Capítulo 14

Derivadas Parciais Capítulo 14 Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS Como vimos no Capítulo 4, no Volume I, um dos principais usos da derivada ordinária é na determinação dos valores máximo e mínimo. DERIVADAS PARCIAIS 14.7

Leia mais

RESOLUÇÕES LISTA 02. b) FALSA, pois para termos a equação de uma reta em um certo ponto a função deve ser derivável naquele ponto.

RESOLUÇÕES LISTA 02. b) FALSA, pois para termos a equação de uma reta em um certo ponto a função deve ser derivável naquele ponto. UNIVERSIDADE ESTADUAL VALE DO ACARAÚ CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS CAMPUS DA CIDAO CURSO DE MATEMÁTICA CÁLCULO NUMÉRICO JOSÉ CLAUDIMAR DE SOUSA RESOLUÇÕES LISTA 02 QUESTÃO 1 a) Pela equação

Leia mais

MINISTÉRlO DA EDUCACAO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ CAMPUS PATO BRANCO

MINISTÉRlO DA EDUCACAO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ CAMPUS PATO BRANCO prof. Jorge Roberto Grobe /09/4 4:2 cálculo numérico equações algébricas e transcendentes CAPITULO 4 4.0 SOLUÇÕES DE EQUAÇÕES ALGÉBRICAS E TRANSCENDENTES 4. METODO DA BISSECÇÃO OU PESQUISA BINARIA Descrição:

Leia mais

Cap. 4- Interpolação Numérica Definições. Censos de BH. Qual o número de habitantes na cidade de Belo Horizonte em 1975?

Cap. 4- Interpolação Numérica Definições. Censos de BH. Qual o número de habitantes na cidade de Belo Horizonte em 1975? Cap. 4- Interpolação Numérica 4.1. Definições Censos de BH População em BH (Habitantes,5,,, 1,5, 1,, 5, 194 196 198 Ano Ano 195 196 197 198 1991 1996 1 No. habitantes 5.74 68.98 1.5. 1.78.855..161.91.71.8.56.75.444

Leia mais

Equações Não Lineares. 35T12 Sala 3G4 Bruno Motta de Carvalho DIMAp Sala 15 Ramal 227

Equações Não Lineares. 35T12 Sala 3G4 Bruno Motta de Carvalho DIMAp Sala 15 Ramal 227 Equações Não Lineares 35T12 Sala 3G4 Bruno Motta de Carvalho DIMAp Sala 15 Ramal 227 Introdução Um tipo de problema bastante comum é o de achar raízes de equações da forma f() = 0, onde f() pode ser um

Leia mais

étodos uméricos INTERPOLAÇÃO, EXTRAPOLAÇÃO, APROXIMAÇÃO E AJUSTE DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno

étodos uméricos INTERPOLAÇÃO, EXTRAPOLAÇÃO, APROXIMAÇÃO E AJUSTE DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno étodos uméricos INTERPOLAÇÃO, EXTRAPOLAÇÃO, APROXIMAÇÃO E AJUSTE DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA

Leia mais

Aula 3 11/12/2013. Integração Numérica

Aula 3 11/12/2013. Integração Numérica CÁLCULO NUMÉRICO Aula 3 11/12/2013 Integração Numérica Objetivo: Calcular integrais utilizando métodos numéricos Cálculo Numérico 3/64 Integração Numérica Cálculo Numérico 4/64 Integração Numérica Em determinadas

Leia mais

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Departamento de Ciência da ComputaçãoUFRJ. Cálculo Numérico. S. C. Coutinho. Provas e gabaritos

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Departamento de Ciência da ComputaçãoUFRJ. Cálculo Numérico. S. C. Coutinho. Provas e gabaritos UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Departamento de Ciência da ComputaçãoUFRJ Cálculo Numérico S. C. Coutinho Provas e gabaritos Lembre-se: Nas provas não são aceitas respostas sem justicativa. Você

Leia mais

Aula 2- Soluções de Equações a uma Variável (zeros reais de funções reais)

Aula 2- Soluções de Equações a uma Variável (zeros reais de funções reais) Cálculo Numérico IPRJ/UERJ Sílvia Mara da Costa Campos Victer ÍNDICE Aula 2- Soluções de Equações a uma Variável (zeros reais de funções reais) FASE I: Isolamento das raízes. FASE 2: Refinamento: 2.1-

Leia mais

CCI-22 LISTA DE EXERCÍCIOS

CCI-22 LISTA DE EXERCÍCIOS CCI-22 LISTA DE EXERCÍCIOS Capítulos 1 e 2: 1) Considere floats com 4 dígitos decimais de mantissa e expoentes inteiros entre -5 e 5. Sejam X =,7237.1 4, Y =,2145.1-3, Z =,2585.1 1. Utilizando um acumulador

Leia mais

Lista de Exercícios 1 Cálculo Numérico - Professor Daniel

Lista de Exercícios 1 Cálculo Numérico - Professor Daniel Lista de Exercícios 1 Cálculo Numérico - Professor Daniel Observação: Esta lista abrange os três primeiros tópicos da ementa do curso, teoria dos erros, sistemas lineares, e zeros de funções. Ela abrange

Leia mais

Modelagem Computacional. Parte 8 2

Modelagem Computacional. Parte 8 2 Mestrado em Modelagem e Otimização - RC/UFG Modelagem Computacional Parte 8 2 Prof. Thiago Alves de Queiroz 2/2016 2 [Cap. 10 e 11] BURDEN, R. L.; FAIRES, J. D. Numerical Analysis (9th ed). Cengage Learning,

Leia mais

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1 UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1 PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR - 16/10/2016 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES: 1.

Leia mais

CCI-22 FORMALIZAÇÃO CCI-22 MODOS DE SE OBTER P N (X) Prof. Paulo André CCI - 22 MATEMÁTICA COMPUTACIONAL INTERPOLAÇÃO

CCI-22 FORMALIZAÇÃO CCI-22 MODOS DE SE OBTER P N (X) Prof. Paulo André CCI - 22 MATEMÁTICA COMPUTACIONAL INTERPOLAÇÃO CCI - MATEMÁTICA COMPUTACIONAL INTERPOLAÇÃO Prof. Paulo André ttp://www.comp.ita.br/~pauloac pauloac@ita.br Sala 0 Prédio da Computação -Gregory DEFINIÇÃO Em matemática computacional, interpolar significa

Leia mais

3. Equações Algébricas

3. Equações Algébricas 3. Equações Algébricas 3.1 Introdução Em muitos problemas de Ciência e Engenharia há necessidade de se determinar um número ξ para o qual um número ξ para o qual uma função f(x) seja zero, ou seja, f(ξ)

Leia mais

Cálculo Numérico P2 EM33D

Cálculo Numérico P2 EM33D Cálculo Numérico P EM33D 8 de Abril de 03 Início: 07h30min (Permanência mínima: 08h40min) Término: 0h00min Nome: GABARITO LER ATENTAMENTE AS OBSERVAÇÕES, POIS SERÃO CONSIDERADAS NAS SUA AVALIAÇÃO ) detalhar

Leia mais

13 Fórmula de Taylor

13 Fórmula de Taylor 13 Quando estudamos a diferencial vimos que poderíamos calcular o valor aproimado de uma função usando a sua reta tangente. Isto pode ser feito encontrandose a equação da reta tangente a uma função y =

Leia mais

MÉTODOS NUMÉRICOS. ENGENHARIA e GESTÃO INDUSTRIAL

MÉTODOS NUMÉRICOS. ENGENHARIA e GESTÃO INDUSTRIAL UNIVERSIDADE DO MINHO MÉTODOS NUMÉRICOS ENGENHARIA e GESTÃO INDUSTRIAL EXERCÍCIOS PRÁTICOS Ano lectivo de 2005/2006 Métodos Numéricos - L.E.G.I. Exercícios práticos - CONUM Solução de uma equação não linear

Leia mais

1 A Equação Fundamental Áreas Primeiras definições Uma questão importante... 7

1 A Equação Fundamental Áreas Primeiras definições Uma questão importante... 7 Conteúdo 1 4 1.1- Áreas............................. 4 1.2 Primeiras definições...................... 6 1.3 - Uma questão importante.................. 7 1 EDA Aula 1 Objetivos Apresentar as equações diferenciais

Leia mais

CÁLCULO I. 1 Funções Crescentes e Decrescentes

CÁLCULO I. 1 Funções Crescentes e Decrescentes CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 17: Crescimento e Decrescimento de funções. Teste da Primeira Derivada. Objetivos da Aula Denir funções crescentes e

Leia mais

étodos uméricos ZEROS DE FUNÇÕES DE UMA OU MAIS VARIÁVEIS Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos ZEROS DE FUNÇÕES DE UMA OU MAIS VARIÁVEIS Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos ZEROS DE FUNÇÕES DE UMA OU MAIS VARIÁVEIS Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO

Leia mais

Teorema Do Ponto Fixo Para Contrações 1

Teorema Do Ponto Fixo Para Contrações 1 Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência 20 anos c Publicação Eletrônica do KIT http://www.dma.uem.br/kit Teorema Do Ponto Fixo

Leia mais

Determinação de raízes de polinômios: Método de Briot-Ruffini-Horner

Determinação de raízes de polinômios: Método de Briot-Ruffini-Horner Determinação de raízes de polinômios: Método de Briot-Ruffini-Horner Marina Andretta/Franklina Toledo ICMC-USP 29 de outubro de 2012 Baseado no livro Cálculo Numérico, de Neide B. Franco Marina Andretta/Franklina

Leia mais

BANCO DE EXERCÍCIOS - 24 HORAS

BANCO DE EXERCÍCIOS - 24 HORAS BANCO DE EXERCÍCIOS - HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº GABARITO COMENTADO ) A função será y,5x +, onde y (preço a ser pago) está em função de x (número de quilômetros

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO

UNIVERSIDADE FEDERAL DE PERNAMBUCO CÁLCULO L NOTAS DA NONA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, apresentaremos as funções logaritmo e exponencial e calcularemos as suas derivadas. Também estabeleceremos algumas propriedades

Leia mais

Renato Martins Assunção

Renato Martins Assunção Análise Numérica Integração Renato Martins Assunção DCC - UFMG 2012 Renato Martins Assunção (DCC - UFMG) Análise Numérica 2012 1 / 1 Introdução Calcular integrais é uma tarefa rotineira em engenharia,

Leia mais

TÓPICOS DE MATEMÁTICA II. O Curso está dividido em três unidades, temos que concluir todas.

TÓPICOS DE MATEMÁTICA II. O Curso está dividido em três unidades, temos que concluir todas. TÓPICOS DE MATEMÁTICA II Roosevelt Imperiano da Silva Palavras iniciais Caros alunos, vamos iniciar o curso da disciplina Tópicos de Matemática II. Neste curso estudaremos os conjuntos numéricos e suas

Leia mais

Métodos Numéricos Professor Tenani - 3 / 42

Métodos Numéricos Professor Tenani -  3 / 42 Métodos Numéricos Professor Tenani - www.professortenani.com.br 1 / 42 Métodos Numéricos Professor Tenani - www.professortenani.com.br 2 / 42 Introdução Objetivos da Seção Entender o que são problemas

Leia mais

Métodos Numéricos - Notas de Aula

Métodos Numéricos - Notas de Aula Métodos Numéricos - Notas de Aula Prof a Olga Regina Bellon Junho 2007 Introdução Do ponto de vista analítico existem diversas regras, que podem ser utilizadas na prática. Porém, técnicas de integração

Leia mais

2.3- Método Iterativo Linear (MIL)

2.3- Método Iterativo Linear (MIL) .3- Método Iterativo Linear (MIL) A fim de introduzir o método de iteração linear no cálculo de uma raiz da equação (.) f(x) = 0 expressamos, inicialmente, a equação na forma: (.) x = Ψ(x) de forma que

Leia mais

Aula Distância entre duas retas paralelas no espaço. Definição 1. Exemplo 1

Aula Distância entre duas retas paralelas no espaço. Definição 1. Exemplo 1 Aula 1 Sejam r 1 = P 1 + t v 1 t R} e r 2 = P 2 + t v 2 t R} duas retas no espaço. Se r 1 r 2, sabemos que r 1 e r 2 são concorrentes (isto é r 1 r 2 ) ou não se intersectam. Quando a segunda possibilidade

Leia mais

Semana 4 Zeros das Funções

Semana 4 Zeros das Funções 1 CÁLCULO NUMÉRICO Semana 4 Zeros das Funções Professor Luciano Nóbrega UNIDADE 1 Eixo das ordenadas www.professorlucianonobrega.wordpress.com 2 ZEROS DAS FUNÇÕES INTRODUÇÃO Nas diversas áreas científicas,

Leia mais

Ficha de trabalho Decomposição e resolução de equações e inequações polinomiais

Ficha de trabalho Decomposição e resolução de equações e inequações polinomiais Ficha de trabalho Decomposição e resolução de equações e inequações polinomiais 1. Verifique, recorrendo ao algoritmo da divisão, que: 6 4 0x 54x + 3x + é divisível por x 1.. De um modo geral, que relação

Leia mais

MAP Primeiro exercício programa Método de Diferenças Finitas para solução de problemas de contorno de equações diferenciais ordinárias

MAP Primeiro exercício programa Método de Diferenças Finitas para solução de problemas de contorno de equações diferenciais ordinárias MAP-2121 - Primeiro exercício programa - 2006 Método de Diferenças Finitas para solução de problemas de contorno de equações diferenciais ordinárias Instruções gerais - Os exercícios computacionais pedidos

Leia mais

étodos uméricos DERIVAÇÃO NUMÉRICA Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos DERIVAÇÃO NUMÉRICA Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos DERIVAÇÃO NUMÉRICA Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA

Leia mais

Integral definida. Prof Luis Carlos Fabricação 2º sem

Integral definida. Prof Luis Carlos Fabricação 2º sem Integral definida Prof Luis Carlos Fabricação 2º sem Cálculo de Áreas Para calcular esta área, aproximamos a região por retângulos e fazemos o número de retângulos se tornar muito grande. A área exata

Leia mais

Métodos Numéricos. Turma CI-202-X. Josiney de Souza.

Métodos Numéricos. Turma CI-202-X. Josiney de Souza. Métodos Numéricos Turma CI-202-X Josiney de Souza josineys@inf.ufpr.br Agenda do Dia Aula 5 (16/09/15) Zero de funções: Introdução Tipos de métodos Diretos Indiretos ou iterativos Fases de cálculos Isolamento

Leia mais

Computação Científica 65

Computação Científica 65 Capítulo 3. 1. Métodos numéricos Sempre que se pretende resolver um problema cuja solução é um valor numérico, é habitual ter de se considerar, para além de conceitos mais abstratos (que fornecem um modelo

Leia mais

Equações Diferenciais Ordinárias

Equações Diferenciais Ordinárias Equações Diferenciais Ordinárias Profa. Simone Aparecida Miloca UNIOESTE 2017 Sumario EQUAÇÕES DIFERENCIAIS ORDINÁRIAS MÉTODO DE EULER MÉTODOS DE SÉRIES DE TAYLOR MÉTODOS DE RUNGE KUTTA EQUAÇÕES DIFERENCIAIS

Leia mais

1ª LISTA DE EXERCÍCIOS DE MÉTODOS NUMÉRICOS Prof.: Magnus Melo

1ª LISTA DE EXERCÍCIOS DE MÉTODOS NUMÉRICOS Prof.: Magnus Melo ª LISTA DE EXERCÍCIOS DE MÉTODOS NUMÉRICOS Pro.: Magnus Melo Eercício. Sejam os polinômios dados abaio. Use a regra de sinais de descartes e o teorema da cota de Augustin Cauchy para pesquisar a eistência

Leia mais

Aplicações de. Integração

Aplicações de. Integração Aplicações de Capítulo 6 Integração APLICAÇÕES DE INTEGRAÇÃO Neste capítulo exploraremos algumas das aplicações da integral definida, utilizando-a para calcular áreas entre curvas, volumes de sólidos e

Leia mais

Zeros de Polinômios. 1 Resultados Básicos. Iguer Luis Domini dos Santos 1, Geraldo Nunes Silva 2

Zeros de Polinômios. 1 Resultados Básicos. Iguer Luis Domini dos Santos 1, Geraldo Nunes Silva 2 Zeros de Polinômios Iguer Luis Domini dos Santos, Geraldo Nunes Silva 2 DCCE/IBILCE/UNESP, São José do Rio Preto, SP, Brazil, iguerluis@hotmail.com 2 DCCE/IBILCE/UNESP, São José do Rio Preto, SP,Brazil,

Leia mais

FFCLRP-USP Regra de L Hospital e Lista - CALCULO DIFERENCIAL E INTEGRAL I

FFCLRP-USP Regra de L Hospital e Lista - CALCULO DIFERENCIAL E INTEGRAL I FFCLRP-USP Regra de L Hospital e Lista - CALCULO DIFERENCIAL E INTEGRAL I Professor Dr. Jair Silvério dos Santos 1 Teorema de Michel Rolle Teorema 0.1. (Rolle) Se f : [a;b] R for uma função contínua em

Leia mais

Lucia Catabriga e Andréa Maria Pedrosa Valli

Lucia Catabriga e Andréa Maria Pedrosa Valli 1-35 Lucia Catabriga e Andréa Maria Pedrosa Valli Laboratório de Computação de Alto Desempenho (LCAD) Departamento de Informática Universidade Federal do Espírito Santo - UFES, Vitória, ES, Brasil 2-35

Leia mais

ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. Questão 01 [ 1,25 ]

ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. Questão 01 [ 1,25 ] MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 017 Gabarito Questão 01 [ 1,5 ] Encontre as medidas dos lados e ângulos de dois triângulos ABC diferentes tais que AC = 1, BC = e A BC = 0 Considere

Leia mais