Introdução ao Cálculo Numérico Lista de Exercícios 1. (x x k )ω (x k ) = 1.

Tamanho: px
Começar a partir da página:

Download "Introdução ao Cálculo Numérico Lista de Exercícios 1. (x x k )ω (x k ) = 1."

Transcrição

1 Introdução ao Cálculo Numérico 2005 Lista de Exercícios 1 Problema 1. Seja Q π n. Provar que L n (Q; x) Q(x), quaisquer que sejam os nos distintos x 0, x 1,..., x n. Problema 2. Se n N e x 0, x 1,..., x n são pontos distintos e ω(x) = (x x 0 ) (x x n ), então x k x 0 (x x 1 ) (x x n ) (x x k )ω (x k ) = 1. k=1 Problema 3. Construir o polinômio interpolador de Lagrange que satisfaz p(0) = 1, p(0.5) = 2, p(1) = 3, p(1.5) = 4. Problema 4. Simplicar a expressão 1 6 (x 1)(x 2)(x 3)+x(x 2)(x 3) 3 2 x(x 1)(x 3)+ 2 3 x(x 1)(x 2). Problema 5. Provar que para todo n N o polinômio l(x) = 1 + x x 0 + (x x 0)(x x 1 ) x 0 x 1 (x 0 x 1 )(x 0 x 2 ) + + (x x 0) (x x n 1 ) (x 0 x 1 ) (x 0 x n ) satisfaz as condições l(x 0 ) = 1, l(x k ) = 0, k = 1, 2,..., n. Problema 6. Provar que o polinômio de Lagrange que interpola a tabela (x 0, f 0 ),..., (x n, f n ) pode ser construído através da fórmula de recorrência P 0 (x) = f 0, p k (x) = P k 1 (x) + [f k P k 1 (x k )] ω k(x) ω k (x k ), onde ω 1 (x) = x x 0, ω k+1 (x) = (x x k )ω k (x). Problema 7. Provar que l nk (x) = 1 para todo x R. Problema 8. Provar que x m k l nk(x) = x m, m = 1, 2,..., n. 1

2 2 Problema 9. Provar que (x x k ) m l nk (x) = 0, m = 1, 2,..., n. Problema 10. Provar que (x x k ) n+1 l nk (x) = ( 1) n ω(x). Problema 11. Provar que (x x k ) n+2 l nk (x) = ( 1) n ω(x) ((n + 1)x x 0 x 1 x n ). Problema 12. Sejam x 0 < x 1 <... x n. Provar que x n+1 k l nk (0) = ( 1) n x 0... x n. Problema 13. Provar que, se x 0, x 1,..., x n são distintos, então 1 ω(x) = A k, x x k onde A k = 1 ω(x k ), k = 0,..., n. Problema 14. Decompor em soma de frações elementares a função x 2 x 1 (x 1)(x 2)(x 3). Problema 15. Usando a fórmula de Lagrange, provar que, se m, n N, m > n 0, então ( )( ) m n 1 ( 1) n k n k m k = 1 m n. Problema 16. Provar que, se m, n N, m > n 1, então ( )( ) m n k ( 1) n k n k m k = m m n. Problema 17. Sejam P π n e k N. Provar que, se P (j) são múltiplos de k para n + 1 valores consecutivos inteiros de j, então P (j) e múltiplo de k para todo valor inteiro de j.

3 Problema 18. Provar que, se n N e k N, 0 k n, então l nk (x) + l n,k+1 (x) 1 para x [x k, x k+1 ]. Problema 19. Sejam n N, s 0,..., s n 1 números reais e x 0 < x 1 <... x n. Construir o polinômio P (x) de grau n 1, que satisfaz xi+1 x i P (x)dx = s i, i = 0,..., n 1. Problema 20. Sejam n N e x 0 < x 1 <... x n. Provar que o coeciente de x n do polinômio que interpola a tabela (x 0, 0),..., (x i, 0), (x i+1, 1),..., (x n, 1), e diferente de zero. Problema 21. Construir explicitamente o polinômio de Lagrange de grau n 1 se os nos de interpolação coincidem com os zeros x k = cos((2k 1)π/(2n)), k = 1,..., n, do polinômio de Chebyshev de primeira espécie T n (x) = cos(n arccos x). Problema 22. Construir explicitamente o polinômio de Lagrange de grau n 1 se os nos de interpolação coincidem com os zeros x k = cos(kπ/(n+1)), k = 1,..., n, do polinômio de Chebyshev de segunda espécie U n (x) = sin((n + 1) arccos x). 1 x 2 Problema 23. Seja T n (x) = 2 n 1 x n + + a 1 x + a 0 o n-esimo polinômio de Chebyshev de primeira espécie. Determinar o coeciente a 1. Problema 24. Sejam x 0 < x 1 <... x n e P (x) π n o polinômio que satisfaz as condições de interpolação P (x k ) = ( 1) n k, k = 0,..., n. Provar que L n (f; x) P (x) para todo x (x 0, x n ), se f(x k ) 1, k = 0,..., n. Provar que igualdade e atingida somente quando f(x k ) = P (x k ), k = 0,..., n, ou f(x k ) = P (x k ), k = 0,..., n. Problema 25. Provar que Q(x) T n (x) max Q(x) x [ 1,1] para todo polinômio Q π n e para todo x, x 1. Aqui T n (x) = cos(n arccos x), para 1 x 1, isto é, o polinômio de Chebyshev de grau n. Problema 26. Provar que o problema extremo { min 1 x 0 <...<x n 1 max P (x) : P π n, P (x k ) = ( 1) n k, k = 0,..., n 1 x 1 possui uma única solução que é P (x) = T n (x). } 3

4 4 Problema 27. Provar que inf 1 x 0 <...<x n 1 1 ω (x k ) = 2n 1 e que este ínmo é atingido somente para os pontos de extremo do polinômio de Chebyshev ±T n (x). Problema 28. Construir o polinômio de grau n cujo valor no ponto ξ, ξ > 1, e η e que menos desvia de zero no intervalo [ 1, 1]. Problema 29. Seja P π 2. Provar que max P (x) 5 max { P (a), P (b), P ((a + b)/2) }. x [a,b] 4 Problema 30. Seja f C 2 [0, 1] e f (x) x 2 para todo x [0, 1]. Denotamos por p ξ (x) a função continua e linear em cada um dos intervalos [0, ξ] e [ξ, 1] que interpola f(x) nos pontos 0, ξ, 1. Determinar ξ de tal modo que f(x) p ξ (x) seja menor que 0.02 em [0, 1]. Problema 31. Seja P x i(x) π 2 o polinômio que interpola a função f(x) = x nos pontos 1, ξ, 1, onde 0 ξ < 1. Determinar ξ de modo que o erro seja o mínimo possível. max f(x) P ξ(x) x [ 1,1] Problema 32. Seja P x i(x) π 2 o polinômio que interpola a função f(x) = x nos pontos ±1/2, ±ξ, onde 0 ξ 1, ξ 1/2. Determinar o erro R(ξ) := max f(x) P ξ(x) x [ 1,1] e minimizar R(ξ) com respeito a todos os admissíveis ξ. Para qual ξ este mínimo e atingido? Problema 33. Seja n N e {P i (x)} i=0 uma sequência de polinômios, todos de grau no máximo n e tais que P i (x) 1 para todo x [a, b]. Usando a formula de interpolação de Lagrange, provar que esta sequência possui uma subsequência {P ik (x)} cujo limite e um polinômio de grau n, isto e, que P ik (x) f(x), quando k, para todo x [a, b], onde f π n. Problema 34. Seja f(x) uma função continua em [a, b], para a qual existe um polinômio algébrico de grau n que satisfaz max f(x) P (x) E, x [a,b] onde E > 0. Sejam x 0 <... < x n pontos arbitrários de [a, b] e λ(x) := l nk (x)

5 a função de Lebesgue para estes pontos. Provar que f(x) L n (f; x) (1 + λ(x))e, x [a, b]. Problema 35. Seja L n (f; x) o polinômio que interpola f(x) = x/(x + 1) em 0, 1,..., n. Provar que L n (f; n + 1) = ( 1)n+1 + n + 1. n + 2 Problema 36. Seja f uma função tal que f (n) (x) e integrável em [a, b]. o Provar que, para todo x [a, b], f(x) = n 1 f (k) (a) (x a) k + k! 1 (n 1)! x Esta e a fórmula de Taylor com erro em forma integral. a (x t) n 1 f (n) (t)dt. 5

6 6

7 Problema 37. Provar que f[x 0, x 1,..., x n ] = onde ω(x) = (x x 0 )(x x 1 ) (x x n ). f(x k ) ω (x k ), Problema 38. Provar que, se F (x) = αf(x) + βg(x), então F [x 0, x 1,..., x n ] = αf[x 0, x 1,..., x n ] + βg[x 0, x 1,..., x n ]. Problema 39. Provar que, se (i 0, i 1,... i n ) é qualquer permutação de 0, 1,..., n, então f[x 0, x 1,..., x n ] = f[x i0, x i1,..., x in ]. Problema 40. Provar que x m k ω = 0, m = 0, 1,..., n 1. (x k ) Problema 41. Provar que x n k ω (x k ) = 1. Problema 42. Seja f(x) = x n. Provar que e f[x 0, x 1,..., x n ] = 1 f[x 1, x 2,..., x n ] = x 1 + x 2 + x n. Problema 43. Sejam t 1 < t 2 < < t n e x 1 < x 2 < < x n. Denotamos f(x) := (x t 1 )(x t 2 ) (x t n ), g(x) := (x g 1 )(x g 2 ) (x g n ). Provar que f(x k ) g (x k ) = (x i t i ). k=1 Problema 44. Provar que Problema 45. Provar que ω (x k ) x k ω (x k ) i=1 ω (x k ) ω (x k ) = 0. = n(n + 1). Problema 46. Calcular, para qualquer n N, a expressão { } 1 ω (x k ) ω (x k ) (x x k). 7

8 8 Problema 47. Sejam x k 0, 1, para todo k = 1,..., n, e f(x) = (x x 1 ) (x x n ). Provar que x n k f(1/x k) (1 + x k )f (x k ) = ( 1)n+1 (1 x 1 x 2 x n ). k=1 Problema 48. Provar que a diferença dividida é o único funcional linear da forma D(f) = A k f(x k ) que satisfaz D(x n ) = 1 e D(x k ) = 0, k = 0,..., n 1. Problema 49. Sejam {x k } n 0 números inteiros arbitrários mas distintos. Provar que, se P (x) é um polinômio de grau n com coeciente 1 de x n (isto é, P (x) é mônico), então existe um número x j, 0 j n, para o qual P (x j ) n! 2 n. Problema 50. Sejam x 0 < x 1 < < x n, n N, n 2 Provar que, para todo índice k N, 0 < k < n, existem números positivos A i, i = 0,..., n 2, tais que n 2 A 0 + A 1 + A n 2 = 1 e f[x 0, x k, x n ] = A i f[x i, x i+1, x i+2 ]. Problema 51. (Fórmula de Stefenson) Se x 0, x 1,..., x n são distintos e f(x) = g(x)h(x), prove que f[x 0,..., x n ] = g[x 0,..., x k ]h[x k,..., x n ]. i=0 Problema 52. Calcular f[x 0,..., x n ] para f(x) = 1/x. Problema 53. Provar que ( ) n 1 ( 1) n j j 2k + 1 = 22n (n!) 2 (2n + 1)! para todo n N. j=0 Problema 54. Sejam x 0 < x 1 < < x n e f C n [x 0, x n ]. Prove que existe ξ (x 0, x n ), tal que f[x 0,..., x n ] = f (n) (ξ) n!. Problema 55. Provar que, se f[x 0, x 1,..., x n ] = 0 para qualquer escolha de n + 1 posntos distintos de [a, b], então f(x) coincide com um polinômio algébrico de grau n 1, em [a, b].

9 Problema 56. Seja p(x) o polinômio de grau três que interpola a função ln x nos pontos 1, 2, 3, 4. Provar que p(x) > ln x para todo x (2, 3). Problema 57. Seja p(x) um polinômio de grau n que satisfaz a desigualdade p(x) 1 em [ 1, 1]. Provar que p[x 0, x 1,..., x n ] 2 n 1 para qualquer escolha dos pontos reais x 0 < x 1 < < x n. Problema 58. Seja g(x) := f[x 0, x 1,..., x k, x]. Provar que g[y 0, y 1,..., y n ] = f[x 0, x 1,..., x k, y 0, y 1,..., y n ]. Problema 59. Sejam x k = x 0 + kh, k = 0, 1,.... Provar que f[x 0, x 1,..., x k, x] = n f 0 n!h n. Problema 60. Se x k = x 0 + kh, k = 0, 1,..., mostre que, para todo polinômio P (x) = a n x n + + a 0, valem as igualdades: a) n P 0 = a n n!h n e b) m P 0 = a n n!h n, m > n. Problema 61. Provar que ( ) { n ( 1) n j j k 0, k = 0, 1,..., n 1, = j n!, k = n. j=0 Problema 62. Prove que ( )( ) n m + j ( 1) n j = 0 j k j=0 para todo número natural m e para k = 0, 1,..., n 1. Problema 63. Sejam f 0, f 1,..., f n números dados. Mostrar que ( ) n ( 1) n j n k f k = f 0. j j=0 Problema 64. Seja P (x ) um polinômio algébrico para o qual são conhecidos as quantidades P n, P n 1,..., n P 0, onde P k = P (x k ), x k = x 0 + kh, k = 0, 1,.... Mostre que os valores de P (x), para x = x n+1, x n+2,..., podem ser calculados através de soma de n termos, cada um sendo uma das quantidades dadas. Problema 65. Sejam f 0, f 1,..., f n+1 números dados que satisfazem as condições f 0 = f n+1 = 0 e 2 f i 1, i = 1,..., n. Prove que f k k(n + 1 k). 2 9

10 10 Problema 66. Seja f 0, f 1,... uma sequência de números para a qual n+1 f i = 0 para todo i = 0, Prove que existe um polinômio q(x) de grau n para o qual q(k) = f k para todo k = 0, 1,.... Problema 67. Calcular as somas a) n 2 ; b) n 3 ; c) (2n 1) 2 ; d) (2n 1) 3. Problema 68. Seja f(x) um polinômio de grau k. Provar que existe polinômio F (x) de grau k + 1, tal que,para todo n temos f(1) + f(2) + + f n = F (n). Problema 69. Seja f(x) uma função contínua em [a, b] e n+1 ( ) n + 1 ( 1) n+1 j f(x 0 + kh) = 0 j j=0 para cada x 0 e h > 0, com [x 0, x 0 +(n+1)h] [a, b]. Prove que f(x) coincide com um polinômio de grau n em [a, b].

Interpolação polinomial: Polinômio de Lagrange

Interpolação polinomial: Polinômio de Lagrange Interpolação polinomial: Polinômio de Lagrange Marina Andretta ICMC-USP 09 de maio de 2012 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina Andretta (ICMC-USP) sme0500 - cálculo

Leia mais

exercícios de análise numérica II

exercícios de análise numérica II exercícios de análise numérica II lic. matemática aplicada e computação (4/5) aulas práticas - capítulo Exercício. Mostre que a soma dos polinómios base de Lagrange é a função constante. Exercício. Usando

Leia mais

Interpolação polinomial

Interpolação polinomial Cálculo Numérico Prof. Daniel G. Alfaro Vigo dgalfaro@dcc.ufrj.br Departamento de Ciência da Computação IM UFRJ Motivação: População do Brasil Ano População (milhões) 1960 70, 992343 1970 94, 508583 1980

Leia mais

Lucia Catabriga e Andréa Maria Pedrosa Valli

Lucia Catabriga e Andréa Maria Pedrosa Valli 1-35 Lucia Catabriga e Andréa Maria Pedrosa Valli Laboratório de Computação de Alto Desempenho (LCAD) Departamento de Informática Universidade Federal do Espírito Santo - UFES, Vitória, ES, Brasil 2-35

Leia mais

Andréa Maria Pedrosa Valli

Andréa Maria Pedrosa Valli Interpolação Polinomial Andréa Maria Pedrosa Valli Laboratório de Computação de Alto Desempenho (LCAD) Departamento de Informática Universidade Federal do Espírito Santo - UFES, Vitória, ES, Brasil 2-32

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 12 Interpolação Parte 1 INTERPOLAÇÃO Cálculo Numérico 3/57 MOTIVAÇÃO A seguinte tabela relaciona densidade da água e temperatura:

Leia mais

Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA

Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA Licenciaturas em Engenharia do Ambiente e Química 2 o Semestre de 2005/2006 Capítulo IV Aproximação de Funções 1 Interpolação Polinomial 1. Na tabela seguinte

Leia mais

Laboratório de Simulação Matemática. Parte 3 2

Laboratório de Simulação Matemática. Parte 3 2 Matemática - RC/UFG Laboratório de Simulação Matemática Parte 3 2 Prof. Thiago Alves de Queiroz 2/2017 2 [Cap. 4] BURDEN, R. L.; FAIRES, J. D. Numerical Analysis (9th ed). Cengage Learning, 2010. Thiago

Leia mais

Modelagem Computacional. Parte 2 2

Modelagem Computacional. Parte 2 2 Mestrado em Modelagem e Otimização - RC/UFG Modelagem Computacional Parte 2 2 Prof. Thiago Alves de Queiroz 2/2016 2 [Cap. 2 e 3] BURDEN, R. L.; FAIRES, J. D. Numerical Analysis (9th ed). Cengage Learning,

Leia mais

MAP CÁLCULO NUMÉRICO (POLI) Lista de Exercícios sobre Interpolação e Integração. φ(x k ) ψ(x k ).

MAP CÁLCULO NUMÉRICO (POLI) Lista de Exercícios sobre Interpolação e Integração. φ(x k ) ψ(x k ). MAP 22 - CÁLCULO NUMÉRICO (POLI) Lista de Exercícios sobre Interpolação e Integração : Sejam x =, x =, x 2 = 2 e x 3 = 3. (a) Determine os polinômios de Lagrange L i (x) correspondentes a estes pontos

Leia mais

Podem ser calculados num número finito de operações aritméticas, ao contrário de outras funções (ln x, sin x, cos x, etc.)

Podem ser calculados num número finito de operações aritméticas, ao contrário de outras funções (ln x, sin x, cos x, etc.) Interpolação polinomial 1 Interpolação Polinomial Slide 1 Definição simples Definição 1 Dados os conjuntos de valores x 0, x 1,..., x n e y 0, y 1,..., y n, determinar uma função f tal que: Slide 2 f(x

Leia mais

INSTITUTO SUPERIOR TÉCNICO Licenciatura em Engenharia Física Tecnológica Licenciatura em Engenharia e Gestão Industrial Ano Lectivo: 2002/2003

INSTITUTO SUPERIOR TÉCNICO Licenciatura em Engenharia Física Tecnológica Licenciatura em Engenharia e Gestão Industrial Ano Lectivo: 2002/2003 INSTITUTO SUPERIOR TÉCNICO Licenciatura em Engenharia Física Tecnológica Licenciatura em Engenharia e Gestão Industrial Ano Lectivo 00/003 ANÁLISE NUMÉRICA Formulário 1. Representação de Números e Teoria

Leia mais

Interpolação polinomial: Diferenças divididas de Newton

Interpolação polinomial: Diferenças divididas de Newton Interpolação polinomial: Diferenças divididas de Newton Marina Andretta ICMC-USP 9 de maio de 2013 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina Andretta (ICMC-USP) sme0500

Leia mais

Matemática Computacional Ficha 5 (Capítulo 5) 1. Revisão matéria/formulário

Matemática Computacional Ficha 5 (Capítulo 5) 1. Revisão matéria/formulário Matemática Computacional Ficha 5 (Capítulo 5) Integração numérica 1. Revisão matéria/formulário A técnica de aproximar o integral de f pelo integral do seu polinómio interpolador passando num conjunto

Leia mais

Interpolação polinomial: Diferenças divididas de Newton

Interpolação polinomial: Diferenças divididas de Newton Interpolação polinomial: Diferenças divididas de Newton Marina Andretta ICMC-USP 16 de maio de 2012 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina Andretta (ICMC-USP) sme0500

Leia mais

Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos

Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Lic Eng Biomédica e Bioengenharia-2009/2010 O problema geral da interpolação polinomial consiste em, dados n + 1 pontos (reais ou complexos) x

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 12 Interpolação Parte 1 INTERPOLAÇÃO Cálculo Numérico 3/57 MOTIVAÇÃO A seguinte tabela relaciona densidade da água e temperatura:

Leia mais

Departamento de Matemática da Universidade de Aveiro

Departamento de Matemática da Universidade de Aveiro Departamento de Matemática da Universidade de Aveiro ANÁLISE MATEMÁTICA II 7/8 Folha 4 - soluções: Séries de Fourier; notação complexa. Vamos mostrar que se f e g são funções periódicas de período T, fg

Leia mais

Modelagem Computacional. Parte 3 2

Modelagem Computacional. Parte 3 2 Mestrado em Modelagem e Otimização - RC/UFG Modelagem Computacional Parte 3 2 Prof. Thiago Alves de Queiroz 2/2016 2 [Cap. 4] BURDEN, R. L.; FAIRES, J. D. Numerical Analysis (9th ed). Cengage Learning,

Leia mais

EXERCICIOS RESOLVIDOS - INT-POLIN - MMQ - INT-NUMERICA - EDO

EXERCICIOS RESOLVIDOS - INT-POLIN - MMQ - INT-NUMERICA - EDO Cálculo Numérico EXERCICIOS EXTRAIDOS DE PROVAS ANTERIORES o sem/08 EXERCICIOS RESOLVIDOS - INT-POLIN - MMQ - INT-NUMERICA - EDO x. Considere a seguinte tabela de valores de uma função f: i 0 f(x i ).50

Leia mais

x exp( t 2 )dt f(x) =

x exp( t 2 )dt f(x) = INTERPOLAÇÃO POLINOMIAL 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia Aproximação

Leia mais

Interpolação de Newton

Interpolação de Newton Interpolação de Newton Laura Goulart UESB 21 de Março de 2019 Laura Goulart (UESB) Interpolação de Newton 21 de Março de 2019 1 / 16 Introdução As diferenças divididas são razões incrementais e constituem

Leia mais

2º Exame (1ºTeste) de Análise Numérica (LMAC, MEIC, MMA) Instituto Superior Técnico, 27 de Janeiro de 2015, 15h00-16h15-17h30

2º Exame (1ºTeste) de Análise Numérica (LMAC, MEIC, MMA) Instituto Superior Técnico, 27 de Janeiro de 2015, 15h00-16h15-17h30 º Exame (ºTeste) de Análise Numérica (LMAC, MEIC, MMA) Instituto Superior Técnico, 7 de Janeiro de 5, 5h-h5-7h3.) [.] Pretende-se f(x) = p n (x)/x (onde p n é um polinómio) que verique a interpolação a)

Leia mais

Polos Olímpicos de Treinamento. Aula 10. Curso de Álgebra - Nível 3. Diferenças finitas e o polinômio interpolador de Lagrange. 1. Diferenças Finitas

Polos Olímpicos de Treinamento. Aula 10. Curso de Álgebra - Nível 3. Diferenças finitas e o polinômio interpolador de Lagrange. 1. Diferenças Finitas Polos Olímpicos de Treinamento Curso de Álgebra - Nível 3 Prof. Cícero Thiago / Prof. Marcelo Aula 10 Diferenças finitas e o polinômio interpolador de Lagrange. 1. Diferenças Finitas Seja P(x) um polinômio

Leia mais

CCI-22 FORMALIZAÇÃO CCI-22 MODOS DE SE OBTER P N (X) Prof. Paulo André CCI - 22 MATEMÁTICA COMPUTACIONAL INTERPOLAÇÃO

CCI-22 FORMALIZAÇÃO CCI-22 MODOS DE SE OBTER P N (X) Prof. Paulo André CCI - 22 MATEMÁTICA COMPUTACIONAL INTERPOLAÇÃO CCI - MATEMÁTICA COMPUTACIONAL INTERPOLAÇÃO Prof. Paulo André ttp://www.comp.ita.br/~pauloac pauloac@ita.br Sala 0 Prédio da Computação -Gregory DEFINIÇÃO Em matemática computacional, interpolar significa

Leia mais

Sabendo que f(x) é um polinômio de grau 2, utilize a formula do trapézio e calcule exatamente

Sabendo que f(x) é um polinômio de grau 2, utilize a formula do trapézio e calcule exatamente MÉTODOS NUMÉRICOS E COMPUTACIONAIS II EXERCICIOS EXTRAIDOS DE PROVAS ANTERIORES EXERCICIOS RESOLVIDOS - INTEGRACAO-NUMERICA - EDO. Considere a seguinte tabela de valores de uma função f x i..5.7..5 f(x

Leia mais

Capı tulo 5: Integrac a o Nume rica

Capı tulo 5: Integrac a o Nume rica Capı tulo 5: Integrac a o Nume rica Capı tulo 5: Integrac a o Nume rica Sumário Quadratura de Fórmula para dois pontos Fórmula geral Mudança de intervalo Polinômios de Legendre Fórmula de Interpretação

Leia mais

Exercícios de Mínimos Quadrados

Exercícios de Mínimos Quadrados INSTITUTO DE CIÊNCIAS MATEMÁTICAS E DE COMPUTAÇÃO DEPARTAMENTO DE MATEMÁTICA APLICADA E ESTATÍSTICA Exercícios de Mínimos Quadrados 1 Provar que a matriz de mínimos quadrados é denida positiva, isto é,

Leia mais

Exame (1º Teste) de Análise Numérica (LMAC, MEIC, MMA) Instituto Superior Técnico, 11 de Janeiro de 2016, 15h00-16h15 (1º Teste)

Exame (1º Teste) de Análise Numérica (LMAC, MEIC, MMA) Instituto Superior Técnico, 11 de Janeiro de 2016, 15h00-16h15 (1º Teste) Exame (º Teste) de Análise Numérica (LMAC, MEIC, MMA) Instituto Superior Técnico, de Janeiro de 6, h-6h (º Teste) ) [] a) Determine p, o polinómio de menor grau tal que p() = a, p() = b, p () = p () =

Leia mais

Integração Numérica. = F(b) F(a)

Integração Numérica. = F(b) F(a) Integração Numérica Do ponto de vista analítico, existem diversas regras que podem ser utilizadas na prática. Contudo, embora tenhamos resultados básicos e importantes para as técnicas de integração analítica,

Leia mais

Interpolação polinomial de funções de uma variável

Interpolação polinomial de funções de uma variável Capítulo 2 Interpolação polinomial de funções de uma variável 21 Introdução Seja f uma função real definida num intervalo [a,b] R e conhecida nos pontos x 0,x 1,,x n [a,b] Suponhamos ainda, sem perda de

Leia mais

UFRGS INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Programa de Pós-Graduação em Matemática Aplicada Prova Escrita - Processo Seletivo 2017/2 - Mestrado

UFRGS INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Programa de Pós-Graduação em Matemática Aplicada Prova Escrita - Processo Seletivo 2017/2 - Mestrado UFRGS INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Programa de Pós-Graduação em Matemática Aplicada Prova Escrita - Processo Seletivo 27/2 - Mestrado A prova é composta de 6 (seis) questões, das quais o candidato

Leia mais

TÓPICOS DE ANÁLISE NUMÉRICA AULA 03 - INTERPOLAÇÃO POLINOMIAL

TÓPICOS DE ANÁLISE NUMÉRICA AULA 03 - INTERPOLAÇÃO POLINOMIAL TÓPICOS DE ANÁLISE NUMÉRICA AULA 03 - INTERPOLAÇÃO POLINOMIAL Vanessa Rolnik Artioli DCM/FFCLRP/USP Introdução Dado um conjunto de n + 1 pontos (x i, f (x i )), i = 0, 1,..., n (nós interpoladores), queremos

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo Erros e Aproximações Numéricas Sistemas de Equações Lineares.

Leia mais

3.6 Erro de truncamento da interp. polinomial.

3.6 Erro de truncamento da interp. polinomial. 3 Interpolação 31 Polinômios interpoladores 32 Polinômios de Lagrange 33 Polinômios de Newton 34 Polinômios de Gregory-Newton 35 Escolha dos pontos para interpolação 36 Erro de truncamento da interp polinomial

Leia mais

Aula 3 11/12/2013. Integração Numérica

Aula 3 11/12/2013. Integração Numérica CÁLCULO NUMÉRICO Aula 3 11/12/2013 Integração Numérica Objetivo: Calcular integrais utilizando métodos numéricos Cálculo Numérico 3/64 Integração Numérica Cálculo Numérico 4/64 Integração Numérica Em determinadas

Leia mais

Marina Andretta/Franklina Toledo. 25 de outubro de 2013

Marina Andretta/Franklina Toledo. 25 de outubro de 2013 Integração Numérica Marina Andretta/Franklina Toledo ICMC-USP 25 de outubro de 2013 Baseado nos livros: Análise Numérica, de R. L. Burden e J. D. Faires; e Cálculo Numérico, de Neide B. Franco. Marina

Leia mais

Aula 19 06/2014. Integração Numérica

Aula 19 06/2014. Integração Numérica CÁLCULO NUMÉRICO Aula 19 06/2014 Integração Numérica Objetivo: Calcular integrais utilizando métodos numéricos Cálculo Numérico 3/41 Integração Numérica Cálculo Numérico 4/41 Integração Numérica Em determinadas

Leia mais

Estudos Numéricos dos Métodos de Interpolação: Lagrange, Newton, Hermite e Spline Cúbico

Estudos Numéricos dos Métodos de Interpolação: Lagrange, Newton, Hermite e Spline Cúbico 201: DISSERTAÇÃO DE MESTRADO Mestrado Profissional em Matemática - PROFMAT, Universidade Federal de São João Del-Rei - UFSJ Sociedade Brasileira de Matemática - SBM Estudos Numéricos dos Métodos de Interpolação:

Leia mais

de Interpolação Polinomial

de Interpolação Polinomial Capítulo 10 Aproximação de Funções: Métodos de Interpolação Polinomial 101 Introdução A aproximação de funções por polinômios é uma das idéias mais antigas da análise numérica, e ainda uma das mais usadas

Leia mais

Integração Numérica. Maria Luísa Bambozzi de Oliveira. 27 de Outubro, 2010 e 8 de Novembro, SME0300 Cálculo Numérico

Integração Numérica. Maria Luísa Bambozzi de Oliveira. 27 de Outubro, 2010 e 8 de Novembro, SME0300 Cálculo Numérico Integração Numérica Maria Luísa Bambozzi de Oliveira SME0300 Cálculo Numérico 27 de Outubro, 2010 e 8 de Novembro, 2010 Introdução Nas últimas aulas: MMQ: aproximar função y = f (x) por uma função F(x),

Leia mais

Diferenças finitas e o polinômio interpolador de Lagrange

Diferenças finitas e o polinômio interpolador de Lagrange Diferenças finitas e o polinômio interpolador de Lagrange Cícero Thiago B. Magalhães 19 de janeiro de 014 1 Diferenças finitas Seja P(x) um polinômio de grau m. Defina +1 P(n) = P(n +1) P(n), 1, com 1

Leia mais

Métodos Numéricos - Notas de Aula

Métodos Numéricos - Notas de Aula Métodos Numéricos - Notas de Aula Prof a Olga Regina Bellon Junho 2007 Introdução A interpolação é outra técnicas bem conhecida e básica do cálculo numérico. Muitas funções são conhecidas apenas em um

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo específico Integração Numérica Conteúdo temático Conceitos básicos

Leia mais

Gabarito da Prova Final Unificada de Cálculo IV Dezembro de 2010

Gabarito da Prova Final Unificada de Cálculo IV Dezembro de 2010 Gabarito da Prova Final Unificada de Cálculo IV Dezembro de a Questão: (5 pts) Dentre as três séries alternadas abaixo, diga se convergem absolutamente, se convergem condicionalmente ou se divergem Justifique

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I Complementos ao texto de apoio às aulas. Amélia Bastos, António Bravo Julho 24 Introdução O texto apresentado tem por objectivo ser um complemento ao texto de apoio ao

Leia mais

SME306 - Métodos Numéricos e Computacionais II Prof. Murilo F. Tomé. (α 1)z + 88 ]

SME306 - Métodos Numéricos e Computacionais II Prof. Murilo F. Tomé. (α 1)z + 88 ] SME306 - Métodos Numéricos e Computacionais II Prof. Murilo F. Tomé 1 o sem/2016 Nome: 1 a Prova - 07/10/2016 Apresentar todos os cálculos - casas decimais 1. Considere a família de funções da forma onde

Leia mais

C alculo Num erico Integra c ao Num erica Ana Paula Ana Paula C alculo Num erico

C alculo Num erico Integra c ao Num erica Ana Paula Ana Paula C alculo Num erico Integração Numérica Sumário 1 Introdução 2 Fórmulas Fechadas de Newton-Cotes 3 Análise do Erro Introdução Introdução Introdução Introdução Serão estudados aqui métodos numéricos para calcular uma aproximação

Leia mais

Lista 1 - Cálculo Numérico - Zeros de funções

Lista 1 - Cálculo Numérico - Zeros de funções Lista 1 - Cálculo Numérico - Zeros de funções 1.) De acordo com o teorema de Bolzano, se uma função contínua f(x) assume valores de sinais opostos nos pontos extremos do intervalo [a, b], isto é se f(a)

Leia mais

Homero Ghioti da Silva. 23 de Maio de 2016 FACIP/UFU. Homero Ghioti da Silva (FACIP/UFU) 23 de Maio de / 16

Homero Ghioti da Silva. 23 de Maio de 2016 FACIP/UFU. Homero Ghioti da Silva (FACIP/UFU) 23 de Maio de / 16 Homero Ghioti da Silva FACIP/UFU 23 de Maio de 2016 Homero Ghioti da Silva (FACIP/UFU) 23 de Maio de 2016 1 / 16 Interpolação Polinomial por Diferençãs Divididas Finitas (DDF) ou interpolação de Newton

Leia mais

A. Equações não lineares

A. Equações não lineares A. Equações não lineares 1. Localização de raízes. a) Verifique se as equações seguintes têm uma e uma só solução nos intervalos dados: i) (x - 2) 2 ln(x) = 0, em [1, 2] e [e, 4]. ii) 2 x cos(x) (x 2)

Leia mais

O domínio [ 1, 1] é simétrico em relação a origem.

O domínio [ 1, 1] é simétrico em relação a origem. QUESTÕES-AULA 33 1. Determine quais das funções abaixo são pares, quais são impares e quais não são pares nem impares. Justifique as suas respostas. (a) g : [ 3, 3] R, x x 3 (b) h : ( 3, 3) R, x x 3 x

Leia mais

Definição: Uma função de uma variável x é uma função polinomial complexa se pudermos escrevê-la na forma n

Definição: Uma função de uma variável x é uma função polinomial complexa se pudermos escrevê-la na forma n POLINÔMIO I 1. DEFINIÇÃO Polinômios de uma variável são expressões que podem ser escritas como soma finita de monômios do tipo : a t k k onde k, a podem ser números reais ou números complexos. Exemplos:

Leia mais

Exame de Análise Numérica, 1ª Parte/ 1º Teste (LMAC, MMA) Instituto Superior Técnico, 30 de Janeiro de 2017, 18h30-19h45-21h00

Exame de Análise Numérica, 1ª Parte/ 1º Teste (LMAC, MMA) Instituto Superior Técnico, 30 de Janeiro de 2017, 18h30-19h45-21h00 Exame de Análise Numérica, ª Parte/ º Teste (LMAC, MMA) Instituto Superior Técnico, 0 de Janeiro de 07, 8h0-9h5-h00.) [.0] Considere f(x) = x 0 g(t)dt que verica f() = g() = 0, e ainda f() = g (). a) Determine

Leia mais

1. Converta os seguintes números decimais para sua forma binária: (a) 22 (b) 255 (c) 256 (d) 0.11 (e) (f)

1. Converta os seguintes números decimais para sua forma binária: (a) 22 (b) 255 (c) 256 (d) 0.11 (e) (f) 1 a Lista de Exercícios de Cálculo Numérico Prof a. Vanessa Rolnik 1. Converta os seguintes números decimais para sua forma binária: (a) 22 (b) 255 (c) 256 (d).11 (e).8125 (f) 4.69375 2. Converta os seguintes

Leia mais

Notas Sobre Sequências e Séries Alexandre Fernandes

Notas Sobre Sequências e Séries Alexandre Fernandes Notas Sobre Sequências e Séries 2015 Alexandre Fernandes Limite de seqüências Definição. Uma seq. (s n ) converge para a R, ou a R é limite de (s n ), se para cada ɛ > 0 existe n 0 N tal que s n a < ɛ

Leia mais

Álgebra Linear - 2 a lista de exercícios Prof. - Juliana Coelho

Álgebra Linear - 2 a lista de exercícios Prof. - Juliana Coelho Álgebra Linear - 2 a lista de exercícios Prof. - Juliana Coelho 1 - Verifique que os conjuntos V abaixo com as operações dadas não são espaços vetoriais explicitando a falha em alguma das propriedades.

Leia mais

{ 1 se x é racional, 0 se x é irracional. cos(k!πx) = cos(mπ) = ±1. { 1 se x Ak

{ 1 se x é racional, 0 se x é irracional. cos(k!πx) = cos(mπ) = ±1. { 1 se x Ak Solução dos Exercícios Capítulo 0 Exercício 0.: Seja f k : [0, ] R a função definida por Mostre que f k (x) = lim j (cos k!πx)2j. { f k (x) = se x {/k!, 2/k!,..., }, 0 senão e que f k converge pontualmente

Leia mais

Cap. 4- Interpolação Numérica Definições. Censos de BH. Qual o número de habitantes na cidade de Belo Horizonte em 1975?

Cap. 4- Interpolação Numérica Definições. Censos de BH. Qual o número de habitantes na cidade de Belo Horizonte em 1975? Cap. 4- Interpolação Numérica 4.1. Definições Censos de BH População em BH (Habitantes,5,,, 1,5, 1,, 5, 194 196 198 Ano Ano 195 196 197 198 1991 1996 1 No. habitantes 5.74 68.98 1.5. 1.78.855..161.91.71.8.56.75.444

Leia mais

1 Funções quadráticas para ajudar nas contas

1 Funções quadráticas para ajudar nas contas Funções quadráticas e polinômios Carlos Shine No que segue na parte teórica, f(x) = ax 2 +bx+c, a 0, a,b,c R. Seja também = b 2 4ac o discriminante de f. 1 Funções quadráticas para ajudar nas contas (Equação

Leia mais

Aula 16. Integração Numérica

Aula 16. Integração Numérica CÁLCULO NUMÉRICO Aula 16 Integração Numérica Integração Numérica Cálculo Numérico 3/41 Integração Numérica Em determinadas situações, integrais são difíceis, ou mesmo impossíveis de se resolver analiticamente.

Leia mais

Funções Geratrizes. Rafael Kazuhiro Miyazaki - 21 de Janeiro de 2019

Funções Geratrizes. Rafael Kazuhiro Miyazaki - 21 de Janeiro de 2019 Funções Geratrizes Rafael Kazuhiro Miyazaki - rafaelkmiyazaki@gmail.com 21 de Janeiro de 2019 1 Introdução Uma função geratriz (ou geradora) é uma função que carrega uma certa informação em sua série de

Leia mais

UNIVERSIDADE FEDERAL DO ABC

UNIVERSIDADE FEDERAL DO ABC UNIVERSIDADE FEDERAL DO ABC BC49 Cálculo Numérico - LISTA 5 - Integração numérica (Profs. André Camargo, Feodor Pisnitchenko, Marijana Brtka, Rodrigo Fresneda). Calcule as integrais a seguir pela regra

Leia mais

Primitivação de funções reais de variável real

Primitivação de funções reais de variável real Capítulo 3 Sugere-se a seguinte bibliografia adicional que completa o estudo a efectuar nas aulas teóricas e nas aulas práticas: Maria Aldina C. Silva e M. dos Anjos F. Saraiva. Primitivação. Edições Asa,

Leia mais

Funções I. Alan Anderson. 1 Denição, Intuição e Primeiro Exemplo

Funções I. Alan Anderson. 1 Denição, Intuição e Primeiro Exemplo Funções I Alan Anderson 30 de maio de 2016 1 Denição, Intuição e Primeiro Exemplo Começaremos com dois conjuntos não-vazios A e B. Intuitivamente, uma função f : A B é uma relação entre conjuntos de A

Leia mais

Cálculo Numérico BCC760 Integração Numérica

Cálculo Numérico BCC760 Integração Numérica Cálculo Numérico BCC76 ntegração Numérica Departamento de Computação Página da disciplina http://www.decom.ufop.br/bcc76/ 1 ntegração Numérica - Motivação Suponha que queremos obter uma folha de papelão

Leia mais

Matemática Computacional - Exercícios

Matemática Computacional - Exercícios Matemática Computacional - Exercícios 1 o semestre de 2007/2008 - Engenharia Biológica Teoria de erros e Representação de números no computador Nos exercícios deste capítulo os números são representados

Leia mais

Polinómio e série de Taylor

Polinómio e série de Taylor Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE MATEMÁTICA II - o Semestre 05/06 Exercícios Suplementares (Eng a Física Tecnológica, Matemática Aplicada e Computação

Leia mais

Fórmulas de Taylor - Notas Complementares ao Curso de Cálculo I

Fórmulas de Taylor - Notas Complementares ao Curso de Cálculo I Fórmulas de Taylor - Notas Complementares ao Curso de Cálculo I Gláucio Terra Sumário 1 Introdução 1 2 Notações 1 3 Notas Preliminares sobre Funções Polinomiais R R 2 4 Definição do Polinômio de Taylor

Leia mais

Exame/Teste (1) de Análise Numérica (LMAC, MEIC, MMA) Instituto Superior Técnico, 12 de Janeiro de 2011, 18h30-20h00 (1º Teste)

Exame/Teste (1) de Análise Numérica (LMAC, MEIC, MMA) Instituto Superior Técnico, 12 de Janeiro de 2011, 18h30-20h00 (1º Teste) Exame/Teste () de Análise Numérica (LMAC, MEIC, MMA) Instituto Superior Técnico, de Janeiro de, 8h-h (º Teste) ) [] Seja f(x) = e x a) Determine um p n polinómio interpolador de f nos nós {, }, tal que

Leia mais

1 Álgebra linear matricial

1 Álgebra linear matricial MTM510019 Métodos Computacionais de Otimização 2018.2 1 Álgebra linear matricial Revisão Um vetor x R n será representado por um vetor coluna x 1 x 2 x =., x n enquanto o transposto de x corresponde a

Leia mais

Ajuste de mínimos quadrados

Ajuste de mínimos quadrados Capítulo 5 Ajuste de mínimos quadrados 5 Ajuste de mínimos quadrados polinomial No capítulo anterior estudamos como encontrar um polinômio de grau m que interpola um conjunto de n pontos {{x i, f i }}

Leia mais

PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL

PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL. Introdução Considere f uma função, não constante, de uma variável real ou complexa, a equação f(x) = 0 será denominada equação de uma incógnita. EXEMPLO e x + senx

Leia mais

UNIVERSIDADE FEDERAL DO ABC

UNIVERSIDADE FEDERAL DO ABC UNIVERSIDADE FEDERAL DO ABC BC49 Cálculo Numérico - LISTA 5 - Integração numérica (Profs. André Camargo, Feodor Pisnitchenko, Marijana Brtka, Rodrigo Fresneda). Calcule as integrais a seguir pela regra

Leia mais

Cálculo II (Primitivas e Integral)

Cálculo II (Primitivas e Integral) Cálculo II (Primitivas e Integral) Antônio Calixto de Souza Filho Escola de Artes, Ciências e Humanidades Universidade de São Paulo 5 de março de 2013 1 A integral de Riemann subject A integral de Riemann

Leia mais

ÁLGEBRA LINEAR I - MAT0032

ÁLGEBRA LINEAR I - MAT0032 UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e Da Natureza Centro Interdisciplinar de Ciências da Natureza ÁLGEBRA LINEAR I - MAT32 12 a Lista de exercícios

Leia mais

Cálculo avançado. 1 TOPOLOGIA DO R n LISTA DE EXERCÍCIOS

Cálculo avançado. 1 TOPOLOGIA DO R n LISTA DE EXERCÍCIOS LISTA DE EXERCÍCIOS Cálculo avançado 1 TOPOLOGIA DO R n 1. Considere o produto interno usual, no R n. ostre que para toda aplicação linear f : R n R existe um único vetor y R n tal que f (x) = x, y para

Leia mais

Cálculo II (Primitivas e Integral)

Cálculo II (Primitivas e Integral) Cálculo II (Primitivas e Integral) Antônio Calixto de Souza Filho Escola de Artes, Ciências e Humanidades Universidade de São Paulo 5 de março de 2013 1 Aplicações de Integrais subject Aplicações de Integrais

Leia mais

Resolução do Exame Tipo

Resolução do Exame Tipo Departamento de Matemática e Engenharias Análise e Computação Numérica Resolução do Exame Tipo 1. O computador IBM 3090 possuía um sistema de vírgula flutuante F F(16, 5, 65, 62) (em precisão simples),

Leia mais

Lista 1. 9 Se 0 < x < y e n N então 0 < x n < y n.

Lista 1. 9 Se 0 < x < y e n N então 0 < x n < y n. UFPR - Universidade Federal do Paraná Departamento de Matemática CM095 - Análise I Prof. José Carlos Eidam Lista 1 Em toda a lista, K denota um corpo ordenado qualquer. Corpos ordenados 1. Verifique as

Leia mais

f(x) = 1 + 2x + 3x 2.

f(x) = 1 + 2x + 3x 2. Interpolação e ajuste não-segmentados 1 Introdução O problema geral da interpolação pode ser denido da seguinte forma: Seja F uma família de funções f : D E e {(x i, y i )} N i1 um conjunto de pares ordenados

Leia mais

6 Ajuste de mínimos quadrados

6 Ajuste de mínimos quadrados 6 Ajuste de mínimos quadrados polinomial No capítulo anterior estudamos como encontrar um polinômio de grau m que interpola um conjunto de n pontos {{x i, f i }} n Tipicamente quando m < n esse polinômio

Leia mais

A = B, isto é, todo elemento de A é também um elemento de B e todo elemento de B é também um elemento de A, ou usando o item anterior, A B e B A.

A = B, isto é, todo elemento de A é também um elemento de B e todo elemento de B é também um elemento de A, ou usando o item anterior, A B e B A. Capítulo 1 Números Reais 1.1 Conjuntos Numéricos Um conjunto é uma coleção de elementos. A relação básica entre um objeto e o conjunto é a relação de pertinência: quando um objeto x é um dos elementos

Leia mais

Autores: Interpolação por Spline Cúbica e Método de Integração de Simpson para Cálculo de Campo Magnético PLANO BÁSICO: MÉTODOS NUMÉRICOS

Autores: Interpolação por Spline Cúbica e Método de Integração de Simpson para Cálculo de Campo Magnético PLANO BÁSICO: MÉTODOS NUMÉRICOS UNIVERSIDADE FEDERAL DO CEARÁ - UFC CENTRO DE TECNOLOGIA CT DEPARTAMENTO DE ENGENHARIA ELÉTRICA DEE PROGRAMA DE EDUCAÇÃO TUTORIAL - PET PLANO BÁSICO: MÉTODOS NUMÉRICOS Interpolação por Spline Cúbica e

Leia mais

C alculo Num erico Erro de Integra c ao Num erica Ana Paula Ana Paula C alculo Num erico

C alculo Num erico Erro de Integra c ao Num erica Ana Paula Ana Paula C alculo Num erico Erro de Integração Numérica Sumário 1 Revisão 2 Erro na Interpolação 3 Erro de Integração 4 Análise dos Erros das Fórmulas Repetidas Revisão Revisão Revisão Revisão Forma de Newton P n (x) =f[x 0 ] + (x

Leia mais

PUC-GOIÁS - Departamento de Computação

PUC-GOIÁS - Departamento de Computação PUC-GOIÁS - Departamento de Computação Fundamentos IV/Enfase Clarimar J. Coelho Goiânia, 28/05/2014 O que é interpolação polinomial? Ideia básica Permite construir um novo conjunto de dados a partir de

Leia mais

Princípio da boa ordenação. Aula 03. Princípio da boa ordenação. Princípio da boa ordenação. Indução Finita e Somatórios

Princípio da boa ordenação. Aula 03. Princípio da boa ordenação. Princípio da boa ordenação. Indução Finita e Somatórios Princípio da boa ordenação Aula 0 Indução Finita e Somatórios Prof. Marco Aurélio Stefanes marco em dct.ufms.br www.dct.ufms.br/ marco Aula 0 p. 1 Aula 0 p. Princípio da boa ordenação Princípio da boa

Leia mais

Integrais. ( e 12/ )

Integrais. ( e 12/ ) Integrais (21-04-2009 e 12/19-05-2009) Já estudámos a determinação da derivada de uma função. Revertamos agora o processo de derivação, isto é, suponhamos que nos é dada uma função F e que pretendemos

Leia mais

Lista de Exercícios de Métodos Numéricos

Lista de Exercícios de Métodos Numéricos Lista de Exercícios de Métodos Numéricos 1 de outubro de 010 Para todos os algoritmos abaixo assumir n = 0, 1,, 3... Bisseção: Algoritmo:x n = a+b Se f(a) f(x n ) < 0 então b = x n senão a = x n Parada:

Leia mais

SME0300 Cálculo Numérico Aula 20

SME0300 Cálculo Numérico Aula 20 SME0300 Cálculo Numérico Aula 20 Maria Luísa Bambozzi de Oliveira marialuisa @ icmc usp br Sala: 3-241 Página da disciplina: tidia-aeuspbr 29 de outubro de 2015 Aula Passada Aproximação de Funções: Método

Leia mais

Binomiais e Primos. p p 2 + p 3 + p k. Demonstração. No produto n! = n, apenas os múltiplos de p contribuem com um fator p.

Binomiais e Primos. p p 2 + p 3 + p k. Demonstração. No produto n! = n, apenas os múltiplos de p contribuem com um fator p. Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 3 Carlos Gustavo Moreira Aula 16 Binomiais e Primos Começamos lembrando a Proposição 1 (Fatores do Fatorial) Seja p um primo Então a maior

Leia mais

Métodos Numéricos. Turma CI-202-X. Josiney de Souza.

Métodos Numéricos. Turma CI-202-X. Josiney de Souza. Métodos Numéricos Turma CI-202-X Josiney de Souza josineys@inf.ufpr.br Agenda do Dia Aula 20 (09/11/15) Interpolação: Introdução Características Interpolação Linear: Introdução Características Exercícios

Leia mais

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Departamento de Ciência da ComputaçãoUFRJ. Cálculo Numérico. S. C. Coutinho. Provas e gabaritos

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Departamento de Ciência da ComputaçãoUFRJ. Cálculo Numérico. S. C. Coutinho. Provas e gabaritos UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Departamento de Ciência da ComputaçãoUFRJ Cálculo Numérico S. C. Coutinho Provas e gabaritos Lembre-se: Nas provas não são aceitas respostas sem justicativa. Você

Leia mais

Métodos Numéricos Interpolação / Aproximação. Renato S. Silva, Regina C. Almeida

Métodos Numéricos Interpolação / Aproximação. Renato S. Silva, Regina C. Almeida Métodos Numéricos Interpolação / Aproximação Renato S. Silva, Regina C. Almeida Interpolação / Aproximação situação: uma fábrica despeja dejetos no leito de um rio; objetivo: determinar a quantidade de

Leia mais

Funções Polinomiais com Coeficientes Complexos. Dispositivo de Briot-Ruffini. 3 ano E.M. Professores Cleber Assis e Tiago Miranda

Funções Polinomiais com Coeficientes Complexos. Dispositivo de Briot-Ruffini. 3 ano E.M. Professores Cleber Assis e Tiago Miranda Funções Polinomiais com Coeficientes Complexos Dispositivo de Briot-Ruffini 3 ano E.M. Professores Cleber Assis e Tiago Miranda Funções Polinomiais com Coeficientes Complexos Dispositivo de Briot-Ruffini

Leia mais

parciais primeira parte

parciais primeira parte MÓDULO - AULA 3 Aula 3 Técnicas de integração frações parciais primeira parte Objetivo Aprender a técnica de integração conhecida como frações parciais. Introdução A técnica que você aprenderá agora lhe

Leia mais

Orientador: Daniel Norberto Kozakevich

Orientador: Daniel Norberto Kozakevich JOÃO LUÍS GONÇALVES Introdução à Aproximação de Funções Trabalho de Conclusão de Curso apresentado ao Curso de Matemática - Habilitação Licenciatura Departamento de Matemática Centro de Ciências Físicas

Leia mais

Cálculo Numérico. Resumo e Exercícios P2

Cálculo Numérico. Resumo e Exercícios P2 Cálculo Numérico Resumo e Exercícios P2 Fórmulas e Resumo Teórico P2 Interpolação Em um conjunto de n pontos (x #, y # ), consiste em encontrar uma função f tal que f x # = y # para todo i = 1,2,, n. Na

Leia mais

Universidade Federal do ABC Centro de Matemática, Computação e Cognição Análise na Reta (2017) Curso de Verão

Universidade Federal do ABC Centro de Matemática, Computação e Cognição Análise na Reta (2017) Curso de Verão Lista L1 Preliminares Observações: Universidade Federal do ABC Centro de Matemática, Computação e Cognição Análise na Reta (017) Curso de Verão Esta lista corresponde a um conjunto de exercícios selecionados

Leia mais

FFCLRP-USP Regra de L Hospital e Lista - CALCULO DIFERENCIAL E INTEGRAL I

FFCLRP-USP Regra de L Hospital e Lista - CALCULO DIFERENCIAL E INTEGRAL I FFCLRP-USP Regra de L Hospital e Lista - CALCULO DIFERENCIAL E INTEGRAL I Professor Dr. Jair Silvério dos Santos 1 Teorema de Michel Rolle Teorema 0.1. (Rolle) Se f : [a;b] R for uma função contínua em

Leia mais