Os Teoremas de Cavalieri 1. 2 Os Princípios de Cavalieri para áreas e volumes

Tamanho: px
Começar a partir da página:

Download "Os Teoremas de Cavalieri 1. 2 Os Princípios de Cavalieri para áreas e volumes"

Transcrição

1 Os Teoremas de Cavalieri 1 Roerto Rieiro Paterlini 1 Introdução O estudo de volumes de sólidos no ensino médio tem omo ase o Prinípio de Cavalieri Esse prinípio tamém pode ser usado para áreas de regiões do plano Eistem, inlusive, versões mais gerais desse prinípio, tanto para áreas omo para volumes, em que a razão entre os omprimentos ou áreas das fatias não preisa ser 1, mas pode ser uma razão positiva qualquer Não nos esqueçamos de que o Prinípio de Cavalieri, normalmente adotado omo postulado nos tetos para ensino da Matemátia Elementar, é na verdade um teorema Para demonstrá-lo é sufiiente usar alguns pouos oneitos da teoria de integração de funções reais O Prinípio de Cavalieri é adotado sem demonstração para evitar as difiuldades de se apresentar preoemente essa teoria As difiuldades fiam onentradas em uma únia afirmação, que é assumida omo plausível mediante uma oa epliação do professor A ideia traduzida por esse prinípio é fáil de entender, e paree que os estudantes do ensino médio não têm resistênia em aeitá-la Os Prinípios de Cavalieri para áreas e volumes Esses prinípios levam o nome do matemátio italiano Bonaventura Franeso Cavalieri ( ), que os hamava de método dos indivisíveis, e os divulgou (em versões mais restritas) através de seu famoso livro Geometria Indivisiilius, de 1635 Mas, na verdade, esse método é muito anterior a Cavalieri Era onheido dos antigos gregos, omo Demórito (46-37 ac) e Arquimedes (87-1 ac), que o utilizavam para oter volumes de sólidos Esses resultados eram depois demonstrados pelo método da dupla redução ao asurdo, já que na époa não tinham uma teoria de integração O mesmo faziam muitos matemátios dos séulos XVI e XVII Vejamos duas versões desse prinípio, uma para áreas e outra para volumes Prinípio de Cavalieri para áreas Sejam R e S regiões limitadas de um plano, e seja r uma reta desse plano Suponha que, para toda reta s paralela a r, as interseções de R e S om s sejam vazias ou segmentos tais que a razão entre seus omprimentos é onstante Então a razão entre as áreas de R e S é essa mesma onstante 1 Etensão de artigo puliado na Revista do Professor de Matemátia, n 7, quadrimestre de 1, págs 43 a 47 Departamento de Matemátia da UFSCar O autor agradee orreções do Prof Marus Viniius de Araújo Lima, do DM-UFSCar 1

2 É possível demonstrar esse resultado desde que as regiões não sejam muito ompliadas Em partiular, vale para disos e regiões elíptias A ideia iniial da demonstração é simples: estamos fatiando as duas regiões Se a quantidade de fatias for finita e se ada fatia de uma região tiver área sempre na mesma razão que a fatia orrespondente da outra região, então somamos as áreas das fatias de ada região e otemos o resultado A difiuldade é que, no Prinípio de Cavalieri, as fatias são segmentos Portanto não têm área, mas omprimentos, e sua quantidade é infinita Assim, para a demonstração, preisamos de uma ténia que permita oter a área de uma região através da soma dos omprimentos de infinitos segmentos Essa ténia é forneida pela teoria de integração de funções reais, estudada nos ursos de Cálulo Diferenial e Integral Prinípio de Cavalieri para volumes Sejam P e Q sólidos limitados, e seja α um plano Suponha que, para todo plano β paralelo a α, as interseções de P e Q om β sejam vazias ou regiões tais que a razão entre suas áreas é onstante Então a razão entre os volumes de P e Q é essa onstante É possível provar esse prinípio desde que os sólidos não sejam muito ompliados Em partiular, o resultado vale para os sólidos que ostumam ser estudados no ensino médio, omo poliedros, esferas e elipsoides Para fazer uma demonstração, novamente a teoria de integração de funções reais fornee a ténia neessária para oter o volume de um sólido através da soma das áreas de infinitas regiões 3 Os prinípios omo teoremas As demonstrações dos dois prinípios de Cavalieri onstituem uma apliação direta da teoria de integração de funções reais Oservamos iniialmente que os enuniados desses prinípios feitos aima não se preoupam em definir ondições sore as fronteiras das regiões e dos sólidos Mas saemos que é neessário impor ondições de integrailidade Entendemos que isso não é feito nos livros tetos do ensino ásio, primeiro para não desviar a atenção do estudante, segundo por que, naqueles ontetos, os prinípios são apliados para regiões e sólidos muito simples, que satisfazem naturalmente as ondições de integrailidade Vejamos então omo podemos enuniar os prinípios de Cavalieri na forma de teoremas Se R é uma região do plano, indiaremos sua área por a(r) Prinípio de Cavalieri para áreas Consideremos em um plano um sistema de oordenadas artesianas O, e seja R a região delimitada por =, = > e pelos gráfios das funções ontínuas = f 1 () e = f (),, om f 1 () f () para todo Seja S a região delimitada por =, = e pelos gráfios das funções ontínuas = g 1 () e = g (),, om g 1 () g () para todo Suponhamos que eista k > tal que f () f 1 () = k [g () g 1 ()] para todo Então a(r) = ka(s)

3 Demonstração Da teoria de integração de funções reais temos: [ ] f () a(r) = dd = d d = [f () f 1 ()] d = = o que demonstra a afirmação R f 1 () k [g () g 1 ()] d = k Se P é um sólido, indiaremos seu volume por v(p) [g () g 1 ()] d = = ka(s) Prinípio de Cavalieri para volumes Consideremos um sistema de oordenadas artesianas Oz, e seja P um sólido finito delimitado por z =, z = > e por uma quantidade finita de gráfios de funções ontínuas do tipo = f(, z) e = g(, z) Para ada t tal que t, seja P t a interseção de P om o plano z = t Seja Q outro sólido finito delimitado por z =, z = > e por uma quantidade finita de gráfios de funções ontínuas do tipo = f(, z) e = g(, z) Para ada t tal que t, seja Q t a interseção de Q om o plano z = t Suponhamos que eista k > tal que a(p t ) = ka(q t ) para todo t Então v(p) = kv(q) Demonstração Da teoria de integração de funções reais temos: v(p) = dddz = dd dz = = P o que demonstra a afirmação 4 Duas apliações ka(q z )dz = k P z a(q z )dz = = kv(q) a(p z )dz = Nesta seção veremos dois eemplos não usuais de apliação dos prinípios de Cavalieri, um para áreas, e outro para volumes Suponhamos que já temos definido o número π e que já saemos que a área do diso de raio r é πr Uma forma de oter esse resultado é aproimar a irunferênia por polígonos regulares insritos (método geométrio de Arquimedes) Otida a fórmula πr para a área do diso de raio r, o Prinípio de Cavalieri para áreas permite alular a área de qualquer elipse Área da elipse A área da região elíptia de semieios a e é πa Demonstração Suponhamos a >, e onsideremos, em um sistema de oordenadas O, a região semielíptia R dada por /a + / 1 e 3

4 R a Figura 1: Área da região elíptia S Sejam f 1 () = a 1 / e f () = a 1 /, para Consideremos o semidiso S dado por + e Sejam g 1 () = e g () =, para Notemos que f () f 1 () = a 1 = a = a [g () g 1 ()] Estamos assim em ondições de apliar o Prinípio de Cavalieri para áreas, om k = a/, e sendo r a reta = Com isso temos a(r) = a a(s) = a π = πa Essa é a área da região semielíptia Dupliando, segue o resultado Volume do elipsoide O volume do elipsoide de semieios a, e é 4 3 πa Demonstração Suponhamos a >, e onsideremos o semielipsóide P definido por a + + z 1, z z z P a Q Figura : Volume do elipsoide Note que esse sólido é delimitado pelos planos z =, z = e pelos gráfios de duas funções ontínuas do tipo = f(, z) (ou do tipo = g(, z)) Além disso, para ada t tal que t, a interseção P t de P om o plano z = t é dada por a + + t 1 a + 1 t = t 4

5 Seja d = ( t )/ = (1/) t Então P t é uma região elíptia dada por e, em virtude do resultado anterior, sua área é (ad) + (d) 1 π(ad)(d) = πad = a π( t ) Consideremos agora a semiesfera Q definida por + + z, z É fáil ver que esse sólido é delimitado pelos planos z =, z = e pelos gráfios de duas funções ontínuas do tipo = f(, z) (ou do tipo = g(, z)) Além disso, para ada t tal que t, a interseção Q t de Q om o plano z = t é dada por Seja r = t Então Q t é dado por + + t + t + r e sua área é πr = π( t ) Notemos que, para ada t tal que t, a(p t ) = a π( t ) = a a(q t) Estamos assim em ondições de apliar o Prinípio de Cavalieri para volumes om k = a/, sendo α o plano z = Temos então v(p) = kv(q) = a π3 = πa Esse é o volume do semielipsoide Dupliando, segue o resultado desejado 5 Referênias iliográfias [1] Eves, H, Introdução à História da Matemátia Tradução de Domingues, H H Campinas, Editora UNICAMP, 4 [] Eves, H, Two surprising Theorems on Cavalieri ongruene The College Mathematis Journal Vol, n, marh 1991 [3] Guidorizzi, H L, Um Curso de Cálulo volumes 1 e 3, 5 ạ edição Rio de Janeiro, LTC Editora, [4] Lima, E L et alii, A Matemátia do Ensino Médio Volumes 1, e 3 Coleção do Professor de Matemátia Rio de Janeiro, Soiedade Brasileira de Matemátia, 1996 [5] Saraiva, J C V, O volume do elipsóide no ensino médio Revista do Professor de Matemátia, número 5 (3), páginas 1 a 4, Soiedade Brasileira de Matemátia 5

Cálculo IV EP1 Aluno

Cálculo IV EP1 Aluno Fundação Centro de Ciênias e Eduação Superior a istânia do Estado do Rio de Janeiro Centro de Eduação Superior a istânia do Estado do Rio de Janeiro Cálulo IV EP Aluno Objetivos Aula Integrais uplas Compreender

Leia mais

Resolução da Prova 735 (Matemática B)

Resolução da Prova 735 (Matemática B) Resolução da Prova 75 (Matemátia B) 1. 1.1 Proposta da Isabel: margaridas rosas violetas 7 arranjos tipo A 11 8 56 7 arranjos tipo B 56 56 56 Total de flores neessárias 168 84 11 Proposta do Dinis: margaridas

Leia mais

Distâncias inacessíveis

Distâncias inacessíveis U UL L esse: http://fuvestibular.om.br/ Distânias inaessíveis Introdução Na ula 20 aprendemos a alular distânias que não podiam ser medidas diretamente. Nessa aula, os oneitos utilizados foram a semelhança

Leia mais

Polos Olímpicos de Treinamento. Aula 1. Curso de Álgebra - Nível 3 Prof. Antonio Caminha. Desigualdades 1

Polos Olímpicos de Treinamento. Aula 1. Curso de Álgebra - Nível 3 Prof. Antonio Caminha. Desigualdades 1 Polos Olímpios de Treinamento Curso de Álgebra - Nível 3 Prof Antonio Caminha Aula Desigualdades Nesta aula, aprenderemos e exeritaremos a desigualdade entre as médias aritmétia e geométria e a desigualdade

Leia mais

Polo Olímpico de Treinamento Intensivo UFPR Curso de Combinatória, Nível 3 2 o semestre de 2018

Polo Olímpico de Treinamento Intensivo UFPR Curso de Combinatória, Nível 3 2 o semestre de 2018 Polo Olímpio de Treinamento Intensivo UFPR Curso de Combinatória, Nível 3 2 o semestre de 2018 Vitor Emanuel Gulisz Grafos: Introdução Definição 1. Um grafo 1 é um par G = (V, A), onde V = {v 1,..., v

Leia mais

Material Teórico - Módulo de Geometria Espacial 2 - Volumes e Áreas de Prismas e Pirâmides. Terceiro Ano - Médio

Material Teórico - Módulo de Geometria Espacial 2 - Volumes e Áreas de Prismas e Pirâmides. Terceiro Ano - Médio Material Teórico - Módulo de Geometria Espacial 2 - Volumes e Áreas de Prismas e Pirâmides Pirâmides Terceiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto 12 de agosto

Leia mais

Associamos a esse paralelepípedo um número real, chamado volume, e definido por. V par = a b c.

Associamos a esse paralelepípedo um número real, chamado volume, e definido por. V par = a b c. Volumes Paralelepípedo Retângulo Dado um retângulo ABCD num plano α, consideremos um outro plano β paralelo à α. À reunião de todos os segmentos P Q perpendiculares ao plano α, com P sobre ABCD e Q no

Leia mais

Universidade do Estado do Rio de Janeiro. Cálculo I e Cálculo Diferencial I - Professora: Mariana G. Villapouca Aula 5 - Aplicações da derivada

Universidade do Estado do Rio de Janeiro. Cálculo I e Cálculo Diferencial I - Professora: Mariana G. Villapouca Aula 5 - Aplicações da derivada Universidade do Estado do Rio de Janeiro Cálulo I e Cálulo Diferenial I - Professora: Mariana G. Villapoua Aula 5 - Apliações da derivada Regra de L Hôspital: Suponha que f e g sejam deriváveis e que g

Leia mais

PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR 0 a Fase Profa. Maria Antônia Gouveia. QUESTÃO 0. Uma geladeira é vendida em n parelas iguais, sem juros. Caso se queira adquirir o produto, pagando-se ou parelas

Leia mais

MATEMÁTICA. OS MELHORES GABARITOS DA INTERNET: (19) O ELITE RESOLVE IME 2011 MATEMÁTICA - DISCURSIVAS

MATEMÁTICA. OS MELHORES GABARITOS DA INTERNET:  (19) O ELITE RESOLVE IME 2011 MATEMÁTICA - DISCURSIVAS OS MELHORES GAARITOS DA INTERNET: www.eliteampinas.om.r (9) 5-0 O ELITE RESOLVE IME 0 MATEMÁTICA - DISCURSIVAS MATEMÁTICA QUESTÃO 0 A ase de um prisma reto ACA C é um triângulo om o lado A igual ao lado

Leia mais

S o l u ç ã o d o s i m u l a d o 01

S o l u ç ã o d o s i m u l a d o 01 S o l u ç ã o d o s i m u l a d o 01 Questão 1 160% 100% 160. 6000 60% 6000 7,5% 160 esposta: Letra e UT SLUÇÃ 160% 100% 6,5% 100% % redução é 100-6,5 7,5% Questão Vamos usar a Média ritmétia 1 + Média

Leia mais

ANALYTICAL METHODS IN VIBRATION. Leonard Meirovitch Capitulo 1

ANALYTICAL METHODS IN VIBRATION. Leonard Meirovitch Capitulo 1 ANALYTICAL METHODS IN VIBRATION Leonard Meirovith Capitulo Comportamento de sistemas Um sistema é definido omo uma montagem de omponentes atuando omo um todo. Os omponentes são lassifiados e definidos

Leia mais

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA DE OUTUBRO DE 2016

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA DE OUTUBRO DE 2016 ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA 4 DE OUTUBRO DE 206 Convergênia uniforme implia onvergênia pontual, mas o reíproo não é verdadeiro. Exemplo anterior: Vimos que z k é pontualmente

Leia mais

Descobrindo medidas desconhecidas (II)

Descobrindo medidas desconhecidas (II) A UU L AL A Desobrindo medidas desonheidas (II) Q uem trabalha no ramo da meânia sabe que existem empresas espeializadas em reforma de máquinas. As pessoas que mantêm esse tipo de atividade preisam ter

Leia mais

As Equações de Maxwell e a Onda Eletromagnética

As Equações de Maxwell e a Onda Eletromagnética As Equações de Maxwell e a Onda Eletromagnétia Evandro Bastos dos antos 27 de Maio de 2017 1 Introdução Até agora vimos aqui quatro leis do no eletromagnetismo. A lei de Gauss na eletrostátia, E ˆnda =

Leia mais

Volume e Área de Superfície, Parte I

Volume e Área de Superfície, Parte I AULA 14 14.1 Introdução Nesta aula vamos trabalhar com os conceitos que você, aluno já está habituado: volume e área de superfície. Nesta aula, trataremos de volumes de sólidos simples como cilindros,

Leia mais

A. Brotas, J.C. Fernandes, Departamento de Física, Instituto Superior Técnico, Av Rovisco Pais Lisboa Codex, Portugal (July 17, 2003) Abstract

A. Brotas, J.C. Fernandes, Departamento de Física, Instituto Superior Técnico, Av Rovisco Pais Lisboa Codex, Portugal (July 17, 2003) Abstract ATRANSMISSÃO DO CALOR EM RELATIVIDADE A. Brotas, J.C. Fernandes, Departamento de Físia, Instituto Superior Ténio, Av Roviso Pais 1096. Lisboa Codex, Portugal (July 17, 003) Abstrat The simultaneous study

Leia mais

Volume de Sólidos. Principio de Cavalieri

Volume de Sólidos. Principio de Cavalieri Volume de Sólidos Principio de Cavalieri Volume Entenderemos por sólido qualquer um dos seguintes subconjuntos do espaço: cilindro, cone, esfera, poliedro (que iremos definir no próximo capítulo) ou qualquer

Leia mais

Macroeconomia Revisões de Derivadas para aplicação no cálculo de multiplicadores

Macroeconomia Revisões de Derivadas para aplicação no cálculo de multiplicadores Maroeonomia 64 Revisões de Derivadas para apliação no álulo de multipliadores Nota introdutória: O que se segue é uma pequena revisão do oneito de derivada e algumas regras de derivação que são utilizadas

Leia mais

Máquinas Elétricas. Introdução Parte II

Máquinas Elétricas. Introdução Parte II Máquinas Elétrias Introdução Parte II Introdução Nos átomos de ferro e de outros metais similares (obalto, níquel e algumas de suas ligas), os ampos magnétios tendem a estar estreitamente alinhados entre

Leia mais

Voo Nivelado - Avião a Jacto

Voo Nivelado - Avião a Jacto - Avião a Jato 763 º Ano da ieniatura em Engenharia Aeronáutia. oo de ruzeiro () O voo de uma aeronave é normalmente omposto por várias fases diferentes. As fases de voo que formam um programa de voo simples,

Leia mais

Sólidos Geométricos, Poliedros e Volume Prof. Lhaylla Crissaff

Sólidos Geométricos, Poliedros e Volume Prof. Lhaylla Crissaff Sólidos Geométricos, Poliedros e Volume 2017.1 Prof. Lhaylla Crissaff www.professores.uff.br/lhaylla Sólidos Geométricos Prisma Pirâmide Cilindro Cone Esfera Prisma Ex.: P é um pentágono. Prisma Prisma

Leia mais

Complementos de Análise Matemática

Complementos de Análise Matemática EOLA UPERIOR DE TENOLOGIA DE VIEU DEPARTAMENTO DE MATEMÁTIA Engenharia de Ambiente omplementos de Análise Matemátia (005/006) Eeríios de elementos de análise vetorial 1. Em ada uma das alíneas, esboe um

Leia mais

Números Reais. Víctor Arturo Martínez León b + c ad + bc. b c

Números Reais. Víctor Arturo Martínez León b + c ad + bc. b c Números Reais Víctor Arturo Martínez León (victor.leon@unila.edu.br) 1 Os números racionais Os números racionais são os números da forma a, sendo a e b inteiros e b 0; o conjunto b dos números racionais

Leia mais

A reta numérica. Matemática Básica. A reta numérica. Expansões decimais: exemplo 1. Folha 1. Humberto José Bortolossi. Parte 6

A reta numérica. Matemática Básica. A reta numérica. Expansões decimais: exemplo 1. Folha 1. Humberto José Bortolossi. Parte 6 Folha 1 Matemátia Básia Humberto José Bortolossi Departamento de Matemátia Apliada Universidade Federal Fluminense A reta numéria Parte 6 Parte 6 Matemátia Básia 1 Parte 6 Matemátia Básia 2 A reta numéria

Leia mais

Profa. Andréa Cardoso UNIFAL-MG MATEMÁTICA-LICENCIATURA 2015/1

Profa. Andréa Cardoso UNIFAL-MG MATEMÁTICA-LICENCIATURA 2015/1 Profa. Andréa Cardoso UNIFAL-MG MATEMÁTICA-LICENCIATURA 2015/1 Aula 29: O cálculo de áreas 15/06/2015 2 Cálculo de área na Antiguidade Antes do século XVII, estudavam-se figuras e sólidos geométricos com

Leia mais

O Teorema dos Números Primos (este programa é um oferecimento de ET)

O Teorema dos Números Primos (este programa é um oferecimento de ET) Seja p n o n-ésimo número primo: O eorema dos Números Primos Nível U este programa é um ofereimento de E Do que se trata? p = ao ontrário da rença popular, não é primo!, p = 3, p 3 = 5, p 4 = 7,... Uma

Leia mais

GA3X1 - Geometria Analítica e Álgebra Linear. Definição (Segmentos orientados de mesmo comprimento, direção e sentido):

GA3X1 - Geometria Analítica e Álgebra Linear. Definição (Segmentos orientados de mesmo comprimento, direção e sentido): G3X1 - Geometria nalítica e Álgebra Linear 3 Vetores 3.1 Introdução efinição (Segmento orientado): Um segmento orientado é um par ordenado (,) de pontos do espaço. é a origem e é a etremidade do segmento

Leia mais

Fabio Augusto Camargo

Fabio Augusto Camargo Universidade Federal de São Carlos Centro de Ciências Exatas e de Tecnologia Departamento de Matemática Introdução à Topologia Autor: Fabio Augusto Camargo Orientador: Prof. Dr. Márcio de Jesus Soares

Leia mais

MAT Geometria Euclidiana Plana. Um pouco de história

MAT Geometria Euclidiana Plana. Um pouco de história Geometria Euclidiana Plana Um pouco de história Prof a. Introdução Estudo axiomático da geometria estudada no ensino fundamental e médio, a Geometria Euclidiana Plana. Método axiomático (dedutivo): utilizado

Leia mais

UFRJ - Instituto de Matemática

UFRJ - Instituto de Matemática UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática www.pg.im.ufrj.br/pemat Mestrado em Ensino de Matemática Seleção 9 Etapa Questão. Determine se as afirmações abaio são verdadeiras

Leia mais

Material Teórico - Módulo: Geometria Espacial 3 - Volumes e Áreas de Cilindros, Cones e Esferas. Esfera - Parte I. Terceiro Ano - Médio

Material Teórico - Módulo: Geometria Espacial 3 - Volumes e Áreas de Cilindros, Cones e Esferas. Esfera - Parte I. Terceiro Ano - Médio Material Teórico - Módulo: Geometria Espacial 3 - Volumes e Áreas de Cilindros, Cones e Esferas Esfera - Parte I Terceiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto

Leia mais

CONHECIMENTOS ESPECÍFICOS

CONHECIMENTOS ESPECÍFICOS Texto e figura para as questões 41 e 4 CONHECIMENTOS ESPECÍFICOS Texto e figura para as questões 4 e 44 ω L α β s A figura aima esquematiza o experimento de Fouault para a medida da veloidade da luz. O

Leia mais

LIMITE DE UMA FUNÇÃO II

LIMITE DE UMA FUNÇÃO II LIMITE DE UMA FUNÇÃO II Nice Maria Americano Costa Pinto LIMITES À ESQUERDA E À DIREITA Se a função f() tende ao ite b, quando tende ao valor a por valores inferiores a a, diz-se que b éo ite à esquerda

Leia mais

Aprendizagem de Máquina

Aprendizagem de Máquina Aprendizagem de Máquina Alessandro L. Koerih / Aleu S Britto Programa de Pós-Graduação em Informátia Pontifíia Universidade Católia do Paraná (PUCPR) Aprendizagem Bayesiana Plano de Aula Introdução Teorema

Leia mais

AULA Paralelismo e perpendicu- 11 larismo

AULA Paralelismo e perpendicu- 11 larismo AULA Paralelismo e perpendicu- 11 larismo 11.1 Introdução Nesta aula estudaremos as noções de paralelismo e perpendicularismo. Vamos assumir que o aluno tenha o conhecimento de todos os resultados concernentes

Leia mais

Descrevendo Regiões no Plano Cartesiano e no Espaço Euclidiano

Descrevendo Regiões no Plano Cartesiano e no Espaço Euclidiano Descrevendo Regiões no Plano Cartesiano e no Espaço Euclidiano Americo Cunha Débora Mondaini Ricardo Sá Earp Departamento de Matemática Pontifícia Universidade Católica do Rio de Janeiro Regiões no Plano

Leia mais

Poliedros AULA Introdução Denições

Poliedros AULA Introdução Denições AULA 13 13.1 Introdução Nesta aula estudaremos os sólidos formados por regiões do espaço (faces), chamados poliedros. O conceito de poliedro está para o espaço assim como o conceito de polígono está para

Leia mais

com 3 Incógnitas A interseção do plano paralelo ao plano yz, passando por P, com o eixo x determina a coordenada x.

com 3 Incógnitas A interseção do plano paralelo ao plano yz, passando por P, com o eixo x determina a coordenada x. Interpretação Geométrica de Sistemas Lineares com 3 Incógnitas Reginaldo J. Santos Departamento de Matemática Instituto de Ciências Eatas Universidade Federal de Minas Gerais http://www.mat.ufmg.br/~regi

Leia mais

Estudo Dirigido de Matemática 2 o Trimestre

Estudo Dirigido de Matemática 2 o Trimestre Nome: Nº Colégio Nossa Senhora das Dores 1º ano EM Prof. Manuel Data: / /009 Estudo Dirigido de Matemátia o Trimestre Prezado(a) aluno(a), Devido à interrupção das aulas durante o período ompreendido entre

Leia mais

O Plano no Espaço. Sumário

O Plano no Espaço. Sumário 17 Sumário 17.1 Introdução....................... 2 17.2 Equações paramétricas do plano no espaço..... 2 17.3 Equação cartesiana do plano............. 15 17.4 Exercícios........................ 21 1 Unidade

Leia mais

MATEMÁTICA A - 10o Ano Geometria Propostas de resolução

MATEMÁTICA A - 10o Ano Geometria Propostas de resolução MATEMÁTIA A - 10o Ano Geometria Propostas de resolução Eercícios de eames e testes intermédios 1. omo os pontos A, B e têm abcissa 1, todos pertencem ao plano de equação = 1. Assim a secção produida no

Leia mais

Material Teórico - Módulo: Vetores em R 2 e R 3. Módulo e Produto Escalar - Parte 2. Terceiro Ano - Médio

Material Teórico - Módulo: Vetores em R 2 e R 3. Módulo e Produto Escalar - Parte 2. Terceiro Ano - Médio Material Teórico - Módulo: Vetores em R 2 e R 3 Módulo e Produto Escalar - Parte 2 Terceiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto Nesta segunda parte, veremos

Leia mais

Material Teórico - Módulo: Geometria Espacial 3 - Volumes e Áreas de Cilindros, Cones e Esferas. Esfera - Parte 2. Terceiro Ano - Médio

Material Teórico - Módulo: Geometria Espacial 3 - Volumes e Áreas de Cilindros, Cones e Esferas. Esfera - Parte 2. Terceiro Ano - Médio Material Teórico - Módulo: Geometria Espacial - Volumes e Áreas de Cilindros, Cones e Esferas Esfera - Parte 2 Terceiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto

Leia mais

(A, σ, ε) Fig.3.1-Solicitação duma barra à tracção

(A, σ, ε) Fig.3.1-Solicitação duma barra à tracção APÍTULO III RLAÇÕS TNSÕS-DFORMAÇÕS.. RSUMO DA TORIA... Lei de Hooke Generalizada A primeira formulação de uma ligação entre a deformação e as forças apliadas a um orpo linear, foi proposta por R. Hooke,

Leia mais

Material Teórico - Módulo: Geometria Espacial 3 - Volumes e Áreas de Cilindros, Cones e Esferas. Cilindro. Terceiro Ano - Médio

Material Teórico - Módulo: Geometria Espacial 3 - Volumes e Áreas de Cilindros, Cones e Esferas. Cilindro. Terceiro Ano - Médio Material Teórico - Módulo: Geometria Espacial 3 - Volumes e Áreas de Cilindros, Cones e Esferas Cilindro Terceiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto É comum

Leia mais

Aprendizagem de Máquina

Aprendizagem de Máquina Aprendizagem de Máquina Alessandro L. Koerih Programa de Pós-Graduação em Informátia Pontifíia Universidade Católia do Paraná (PUCPR Aprendizagem Bayesiana Plano de Aula Introdução Teorema de Bayes Classifiador

Leia mais

Ainda Sobre o Teorema de Euler para Poliedro Convexos

Ainda Sobre o Teorema de Euler para Poliedro Convexos 1 Introdução Ainda Sobre o Teorema de Euler para Poliedro Convexos Elon Lages Lima Instituto de M atemática Pura e Aplicada Estr. D. Castorina, 110 22460 Rio de Janeiro RJ O número 3 da RPM traz um artigo

Leia mais

Um pouco de história. Ariane Piovezan Entringer. Geometria Euclidiana Plana - Introdução

Um pouco de história. Ariane Piovezan Entringer. Geometria Euclidiana Plana - Introdução Geometria Euclidiana Plana - Um pouco de história Prof a. Introdução Daremos início ao estudo axiomático da geometria estudada no ensino fundamental e médio, a Geometria Euclidiana Plana. Faremos uso do

Leia mais

Comprimento do Arco. Carina Cortielha Maria Tereza Dias

Comprimento do Arco. Carina Cortielha Maria Tereza Dias UNIVERSIDDE FEDERL DE MINS GERIS INSTITUTO DE IÊNIS EXTS FUNDMENTOS DE GEOMETRI PLN E DESENHO GEOMÉTRIO omprimento do rco arina ortielha Maria Tereza Dias Teorema 1: O comprimento do arco de circunferência

Leia mais

AULA Introdução a Geometria Es- 10 pacial: Pontos, Retas e Planos

AULA Introdução a Geometria Es- 10 pacial: Pontos, Retas e Planos AULA Introdução a Geometria Es- 10 pacial: Pontos, Retas e Planos 10.1 Introdução O ensino de Geometria para alunos do segundo ano do segundo grau faz o aluno se deparar com guras geométricas tridimensionais.

Leia mais

(versão preliminar) exceto possivelmente para x = a. Dizemos que o limite de f(x) quando x tende para x = a é um numero L, e escrevemos

(versão preliminar) exceto possivelmente para x = a. Dizemos que o limite de f(x) quando x tende para x = a é um numero L, e escrevemos LIMITE DE FUNÇÕES REAIS JOSÉ ANTÔNIO G. MIRANDA versão preinar). Revisão: Limite e Funções Continuas Definição Limite de Seqüências). Dizemos que uma seqüência de números reais n convergente para um número

Leia mais

Transmissão de Calor Condução Estacionária: Alhetas P.J. Oliveira Departamento Engenharia Electromecânica, UBI, Outubro 2014

Transmissão de Calor Condução Estacionária: Alhetas P.J. Oliveira Departamento Engenharia Electromecânica, UBI, Outubro 2014 Transmissão de Calor Condução Estaionária: Alhetas P.J. Oliveira Departamento Engenharia Eletromeânia, UBI, Outuro 04 Alhetas são extensões ou protuerânias artifiiais fixadas sore as superfíies de transferênia

Leia mais

Unidade 22 - Teorema espectral para operadores simétricos, reconhecimento de cônicas. A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa

Unidade 22 - Teorema espectral para operadores simétricos, reconhecimento de cônicas. A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa MA33 - Introdução à Álgebra Linear Unidade 22 - Teorema espectral para operadores simétricos, reconhecimento de cônicas A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa PROFMAT - SBM 10 de agosto

Leia mais

Polos Olímpicos de Treinamento. Aula 9. Curso de Geometria - Nível 3. Prof. Cícero Thiago

Polos Olímpicos de Treinamento. Aula 9. Curso de Geometria - Nível 3. Prof. Cícero Thiago Polos Olímpios de Treinamento urso de Geometria - Nível 3 Prof. íero Thiago ula 9 Relações métrias no triângulo. Teorema 1. (Lei dos Senos) Seja um triângulo tal que = a, = b e =. Seja R o raio da irunferênia

Leia mais

MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I Gabarito da 2 a Prova - 1 o semestre de 2015

MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I Gabarito da 2 a Prova - 1 o semestre de 2015 MAT27 ÁLGEBRA LINEAR PARA ENGENHARIA I Gabarito da 2 a Prova - 1 o semestre de 201 Nesta prova considera-se fixada uma orientação do espaço e um sistema de coordenadas Σ (O, E) em E 3, em que E é uma base

Leia mais

Resoluções das atividades

Resoluções das atividades Resoluções das atividades ódulo Geometria spacial I 01 tividades para sala Um plano divide o espaço em dois semiespaços opostos, dos quais ele é origem. Observe os casos: I. α 17 d 17 itágoras ( 17) =

Leia mais

Posição relativa entre retas e círculos e distâncias

Posição relativa entre retas e círculos e distâncias 4 Posição relativa entre retas e círculos e distâncias Sumário 4.1 Distância de um ponto a uma reta.......... 2 4.2 Posição relativa de uma reta e um círculo no plano 4 4.3 Distância entre duas retas no

Leia mais

Cálculo II Segunda Aula: Aplicações das Integrais Definidas

Cálculo II Segunda Aula: Aplicações das Integrais Definidas Cálculo II Segunda Aula: Aplicações das Integrais Definidas Prof. Jefferson Abrantes (Universidade Federal de Campina Grande) Unidade Acadêmica de Matemática-UAMat Campina Grande-PB Volumes por seções

Leia mais

Cálculo III-A Módulo 1 Tutor

Cálculo III-A Módulo 1 Tutor Eercício : Calcule as integrais iteradas: Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Cálculo III-A Módulo Tutor a) e dd b) dd Solução: a) Temos:

Leia mais

SOBRE O PAPEL DA RESOLUÇÃO LITERAL DE PRO- BLEMAS NO ENSINO DA FÍSICA: EXEMPLOS EM ME- CÂNICA +

SOBRE O PAPEL DA RESOLUÇÃO LITERAL DE PRO- BLEMAS NO ENSINO DA FÍSICA: EXEMPLOS EM ME- CÂNICA + SOBRE O PAPEL DA RESOLUÇÃO LITERAL DE PRO- BLEMAS NO ENSINO DA FÍSICA: EXEMPLOS EM ME- CÂNICA + Luiz O.Q. Peduzzi Sônia Silveira Peduzzi Departamento de Físia - UFSC Florianópolis - SC Resumo Neste trabalho

Leia mais

Capítulo I Geometria no Plano e no Espaço

Capítulo I Geometria no Plano e no Espaço Resumo Té CaPítulo ICddf º ANO MATEMÁTICA RESUMO TEÓRICO Capítulo I Geometria no Plano e no Espaço (A) REVISÕES TEOREMA DE PITÁGORAS a e b são atetos é a hipotenusa Num triângulo retângulo verifia-se sempre

Leia mais

FINANCIAMENTOS A JUROS SIMPLES E COMPOSTOS

FINANCIAMENTOS A JUROS SIMPLES E COMPOSTOS FINANCIAMENTOS A JUOS SIMPLES E COMPOSTOS Samuel Hazzan Professor da EAESP/FGV, EESP/FGV e FEA/PUC Quando um apital C é finaniado a uma taxa i por período, para pagamento únio após n períodos, são utilizadas

Leia mais

Avaliação 2 - MA Gabarito

Avaliação 2 - MA Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL Avaliação - MA1-015 - Gabarito Questão 01 [,00 ] Considere um cilindro sólido de altura R, cujas bases são dois círculos de raio R, do qual são retirados

Leia mais

Ângulos entre retas Retas e Planos Perpendiculares. Walcy Santos

Ângulos entre retas Retas e Planos Perpendiculares. Walcy Santos Ângulos entre retas Retas e Planos Perpendiculares Walcy Santos Ângulo entre duas retas A idéia do ângulo entre duas retas será adaptado do conceito que temos na Geometria Plana. Se duas retas são concorrentes

Leia mais

Material Teórico - Módulo: Geometria Espacial 3 - Volumes e Áreas de Cilindros, Cones e Esferas. Cone. Terceiro Ano - Médio

Material Teórico - Módulo: Geometria Espacial 3 - Volumes e Áreas de Cilindros, Cones e Esferas. Cone. Terceiro Ano - Médio Material Teórico - Módulo: Geometria Espacial - Volumes e Áreas de Cilindros, Cones e Esferas Cone Terceiro Ano - Médio Autor: Prof. Anelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto Uma taça, a ponta

Leia mais

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial 178 Capítulo 10 Equação da reta e do plano no espaço 1. Equações paramétricas da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que

Leia mais

OS PRISMAS. 1) Conceito :

OS PRISMAS. 1) Conceito : 1 SÍNTESE DE CONTEÚDO MATEMÁTICA SEGUNDA SÉRIE - ENSINO MÉDIO ASSUNTO : OS PRISMAS NOME :...NÚMERO :... TURMA :... ============================================================ OS PRISMAS 1) Conceito :

Leia mais

Eletromagnetismo II 1 o Semestre de 2007 Noturno - Prof. Alvaro Vannucci. 23 aula 12jun/2007

Eletromagnetismo II 1 o Semestre de 2007 Noturno - Prof. Alvaro Vannucci. 23 aula 12jun/2007 Eletromagnetismo II o Semestre de 7 Noturno - Prof. Alaro annui aula jun/7 imos: Para uma distribuição arbitrária de argas em moimento, em torno da origem, os poteniais etor e esalar orrespondentes são:

Leia mais

Exemplo para Fixar a Matéria Vista Até Agora: Modelagem de Reações Químicas

Exemplo para Fixar a Matéria Vista Até Agora: Modelagem de Reações Químicas Exemplo para Fixar a Matéria Vista Até Agora: Modelagem de eações Químias. Introdução Em uma reação químia, um onjunto de ompostos químios hamados reagentes e indiados aqui por i se ombina para formar

Leia mais

Questões da 1ª avaliação de MA 13 Geometria, 2016

Questões da 1ª avaliação de MA 13 Geometria, 2016 uestões da 1ª avaliação de M 13 Geometria, 26 1. região na figura abaixo representa um lago. Descreva um processo pelo qual será possível medir a distância entre os pontos e (só medição fora do lago é

Leia mais

Cálculo III-A Módulo 1

Cálculo III-A Módulo 1 Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Prezado aluno, Cálculo III-A Módulo Seja bem-vindo à nossa disciplina. Este teto possui - salvo

Leia mais

Geometria Espacial Curso de Licenciatura em Matemática parte I. Prof.a Tânia Preto Departamento Acadêmico de Matemática UTFPR

Geometria Espacial Curso de Licenciatura em Matemática parte I. Prof.a Tânia Preto Departamento Acadêmico de Matemática UTFPR Geometria Espacial Curso de Licenciatura em Matemática parte I Prof.a Tânia Preto Departamento Acadêmico de Matemática UTFPR - 2014 1 1. Conceitos Primitivos e Postulados L1. Noções 1. Conceitos primitivos:

Leia mais

Quantos Dígitos...? 1

Quantos Dígitos...? 1 1 Introdução Quantos Dígitos? 1 Roberto Ribeiro Paterlini Departamento de Matemática da UFSCar É muito comum encontrarmos, em textos de Matemática para o 1 e 2 graus, questões sobre contagem de dígitos

Leia mais

Retas e círculos, posições relativas e distância de um ponto a uma reta

Retas e círculos, posições relativas e distância de um ponto a uma reta Capítulo 3 Retas e círculos, posições relativas e distância de um ponto a uma reta Nesta aula vamos caracterizar de forma algébrica a posição relativa de duas retas no plano e de uma reta e de um círculo

Leia mais

Curso de Férias de IFVV (Etapa 3) INTEGRAIS DUPLAS

Curso de Férias de IFVV (Etapa 3) INTEGRAIS DUPLAS Curso de Férias de IFVV (Etapa ) INTEGAIS UPLAS VOLUMES E INTEGAIS UPLAS Objetivando resolver o problema de determinar áreas, chegamos à definição de integral definida. A idéia é aplicar procedimento semelhante

Leia mais

Método Simplex Resolução Algébrica. Prof. Ricardo Santos

Método Simplex Resolução Algébrica. Prof. Ricardo Santos Método Simple Resolução Algébria Prof. Riardo Santos Método Simple Dada uma solução fatível: Essa solução é ótima? Caso não seja ótima omo determinar uma melhor? Considere uma solução básia fatível: em

Leia mais

Prof. Dr. Lucas Barboza Sarno da Silva

Prof. Dr. Lucas Barboza Sarno da Silva Prof. Dr. Luas Barboza Sarno da Sila Transformações de Lorentz Transformações de Galileu y z t Posições: ' ut z' t' y' Desree muito bem a realidade para u tendendo a 0. S, S ' ut ' se ontrai ' ' ut ut

Leia mais

Instituto Superior Técnico PROPAGAÇÃO & ANTENAS. Projecto 2014 / 2015

Instituto Superior Técnico PROPAGAÇÃO & ANTENAS. Projecto 2014 / 2015 Instituto Superior Ténio PROPAGAÇÃO & ANTENAS Projeto 4 / 5 Prof Carlos R Paiva Ano Letivo 4/5 Introdução Este trabalho entra-se sobre a propagação de impulsos em fibras óptias onvenionais, de perfil em

Leia mais

CÁLCULO I - MAT Estude a função dada com relação à concavidade e pontos de inflexão. Faça o esboço do gráfico de cada uma das funções.

CÁLCULO I - MAT Estude a função dada com relação à concavidade e pontos de inflexão. Faça o esboço do gráfico de cada uma das funções. UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e da Natureza Centro Interdisciplinar de Ciências da Natureza CÁLCULO I - MAT0009 9 a Lista de eercícios.

Leia mais

Unidade 10 Geometria Espacial. Esfera

Unidade 10 Geometria Espacial. Esfera Unidade 10 Geometria Espacial Esfera Esfera Na série anterior, você estudou dois dos chamadas corpos redondos: o cilindro e o cone Estudaremos outro sólido que sem dúvida, aparece com extrema frequência

Leia mais

ITA 2004 MATEMÁTICA. Você na elite das universidades! ELITE

ITA 2004 MATEMÁTICA. Você na elite das universidades! ELITE www.elitecampinas.com.br Fone: () -7 O ELITE RESOLVE IME PORTUGUÊS/INGLÊS Você na elite das universidades! ITA MATEMÁTICA www.elitecampinas.com.br Fone: () -7 O ELITE RESOLVE ITA MATEMÁTICA GABARITO ITA

Leia mais

Material Teórico - Módulo de Geometria Espacial 2 - Volumes e Áreas de Prismas e Pirâmides. Volumes de Sólidos Semelhantes. Terceiro Ano - Médio

Material Teórico - Módulo de Geometria Espacial 2 - Volumes e Áreas de Prismas e Pirâmides. Volumes de Sólidos Semelhantes. Terceiro Ano - Médio Material Teórico - Módulo de Geometria Espacial - Volumes e Áreas de Prismas e Pirâmides Volumes de Sólidos Semelhantes Terceiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha

Leia mais

MATEMÁTICA A - 11o Ano Geometria - Equações de retas e planos

MATEMÁTICA A - 11o Ano Geometria - Equações de retas e planos MTMÁTI - 11o no Geometria - quações de retas e planos ercícios de eames e testes intermédios 1. Na figura ao lado, está representado, num referencial o.n., um cilindro de revolução de altura 3 o ponto

Leia mais

Cilindro. MA13 - Unidade 23. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT

Cilindro. MA13 - Unidade 23. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Cilindro MA13 - Unidade 23 Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Cilindro Em um plano H considere uma curva simples fechada C e seja r uma

Leia mais

MAS AFINAL O QUE É A FORÇA CENTRÍFUGA?

MAS AFINAL O QUE É A FORÇA CENTRÍFUGA? 5º DESAIO MAS AINAL O QUE É A ORÇA CENTRÍUGA? Aabámos de ver o filme relativo ao tereiro desafio proposto e, antes sequer de pensar no problema em ausa, demos por nós (e passando a expressão) a ROERMO-NOS

Leia mais

Hewlett-Packard. Cilindros. Aulas 01 a 02. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard. Cilindros. Aulas 01 a 02. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hewlett-Packard Cilindros Aulas 01 a 02 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Sumário Cilindros... 1 Cilindro... 1 Elementos do cilindro... 1 O cilindro possui:... 1 Classificação... 1 O cilindro

Leia mais

Avaliação 1 Solução Geometria Espacial MAT 050

Avaliação 1 Solução Geometria Espacial MAT 050 Avaliação 1 Solução Geometria Espacial MAT 050 6 de abril de 2018 As respostas das quatro questões a seguir devem ser entregue até o final da aula de hoje: 1. (3 pontos) Mostre que por dois pontos dados

Leia mais

Análise I Solução da 1ª Lista de Exercícios

Análise I Solução da 1ª Lista de Exercícios FUNDAÇÃO EDUCACIONAL SERRA DOS ÓRGÃOS CENTRO UNIVERSITÁRIO SERRA DOS ÓRGÃOS Centro de Ciências e Tecnologia Curso de Graduação em Matemática Análise I 0- Solução da ª Lista de Eercícios. ATENÇÃO: O enunciado

Leia mais

Seja f um endomorfismo de um espaço vectorial E de dimensão finita.

Seja f um endomorfismo de um espaço vectorial E de dimensão finita. 6. Valores e Vectores Próprios 6.1 Definição, exemplos e propriedades Definição Seja f um endomorfismo de um espaço vectorial E, com E de dimensão finita, e seja B uma base arbitrária de E. Chamamos polinómio

Leia mais

d) Por dois pontos distintos passa uma única reta

d) Por dois pontos distintos passa uma única reta INTRODUÇÃO À GEOMETRIA Ponto, reta e plano Você já tem ideia intuitiva sobre ponto, reta e plano. Vejamos alguns exemplos: Um furo de agulha num papel dá ideia de ponto. Uma corda bem esticada dá ideia

Leia mais

Capítulo 1 Números Reais

Capítulo 1 Números Reais Departamento de Matemática Disciplina MAT154 - Cálculo 1 Capítulo 1 Números Reais Conjuntos Numéricos Conjunto dos naturais: N = {1,, 3, 4,... } Conjunto dos inteiros: Z = {..., 3,, 1, 0, 1,, 3,... } {

Leia mais

Aprendizagem de Máquina

Aprendizagem de Máquina Aprendizagem de Máquina Alessandro L. Koerih Programa de Pós-Graduação em Informátia Pontifíia Universidade Católia do Paraná (PUCPR Aprendizagem Bayesiana Plano de Aula Introdução Teorema de Bayes Classifiador

Leia mais

Comece apresentando as partes do triângulo retângulo usadas na trigonometria.

Comece apresentando as partes do triângulo retângulo usadas na trigonometria. ós na ala de Aula - Matemátia 6º ao 9º ano - unidade 7 As atividades propostas nas aulas a seguir têm omo objetivo proporionar ao aluno ondições de ompreender, de forma prátia, as razões trigonométrias

Leia mais

UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL

UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL UNIVERSIDADE DE SÃO PAULO Esola de Engenharia de Lorena EEL LOB0 - FÍSICA IV Prof. Dr. Dural Rodrigues Junior Departamento de Engenharia de Materiais (DEMAR Esola de Engenharia de Lorena (EEL Uniersidade

Leia mais

Sistema de injecção HIT-RE 500 com varão nervurado

Sistema de injecção HIT-RE 500 com varão nervurado Sistema de injeção HIT-RE 500 om varão nervurado Caraterístias: Material: Varão nervurado: Cartuho: Dispensador: - material base: betão - sistema de injeção om elevada apaidade de arga - bom desempenho

Leia mais

Cones e raios extremos

Cones e raios extremos Cones e raios extremos Marina Andretta ICMC-USP 7 de novembro de 2016 Baseado no livro Introduction to Linear Optimization, de D. Bertsimas e J. N. Tsitsiklis. Marina Andretta (ICMC-USP) sme0211 - Otimização

Leia mais

9 ạ Lista de Exercícios de Cálculo II Integrais Triplas: Coordenadas Retangulares, Cilíndricas e Esféricas; Mudança de Variáveis

9 ạ Lista de Exercícios de Cálculo II Integrais Triplas: Coordenadas Retangulares, Cilíndricas e Esféricas; Mudança de Variáveis 9 ạ Lista de Exercícios de Cálculo II Integrais Triplas: Coordenadas Retangulares, Cilíndricas e Esféricas; Mudança de Variáveis Professora: Michelle Pierri Exercício 1 Encontre o volume do sólido limitado

Leia mais