Justifique convenientemente as suas respostas e indique os principais cálculos

Tamanho: px
Começar a partir da página:

Download "Justifique convenientemente as suas respostas e indique os principais cálculos"

Transcrição

1 Ano lectivo 006/07 Exame de Geometria Diferencial 5/7/07 Justifique convenientemente as suas respostas e indique os principais cálculos Duração: h30m Soluções 1. Determine: a) Uma parametrização da curva de nível definida pela equação cartesiana x 4 + y 9 1. b) Para a espiral logarítmica γt) e t cos t, e t sin t), o ângulo em cada t entre o vector γt) e o vector tangente a γ no ponto γt). c) Uma reparametrização por comprimento de arco da hélice γt) e t cos t, e t sin t, e t ), t R. d) O comprimento de arco da ciclóide γt) t sin t, 1 cos t) correspondente a uma revolução completa da circunferência que a gera.. Sejam r, a, b, c constantes reais, com r 0, e considere a curva γ : R R 3 definida por γt) r cos t, r sin t, a sin t + b cos t + c). a) Prove que γ é uma curva plana. b) Será possível que γr) seja circular? 3. Considere o conjunto S {x, y, z) R 3 y 3 + y 4z 0}. a) Mostre que S é uma superfície. b) Determine os pontos de S onde o plano tangente é paralelo à recta definida pelas equações x 0, y z. 4. Seja σ : R π, π) R 3 u, v) cos v, sin v, u) uma parametrização do cilindro C {x, y, z) R 3 x + y 1} e seja P a superfície plana {x, y, z) R 3 x 1, π < y < π}. Considere o difeomorfismo f : C P que a cada ponto σu, v) do cilindro faz corresponder o ponto 1, v, u) de P. a) Mostre que f é uma isometria. ) b) Qual é a distância, em C, entre os pontos, e 1 )?, 3 Determine uma parametrização de uma curva em C, com esse comprimento, que os una.

2 5. Seja γ : 0, 1) R 3 uma curva regular, parametrizada por comprimento de arco, cuja curvatura nunca se anula, e considere a superfície S γ parametrizada por σ : 0, 1) 0, 1) S γ s, u) γs) + u T γ s). a) Prove que, para cada s 0 0, 1), todos os pontos σs 0, u), com u 0, 1), admitem o mesmo plano tangente. b) Seja p σs, u) um ponto arbitrário de S γ. Mostre que Kp) 0 e Hp) Classifique os pontos de S γ. τ γs) u κ γ s). Departamento de Matemática da Universidade de Coimbra

3 Ano lectivo 006/07 Exame de Geometria Diferencial 5/7/07 Sugestão de resolução 1. a) Numa parametrização γt) γ 1 t), γ t)) da elipse componentes γ 1 e γ terão que satisfazer } {x, y) R x 4 + y 9 1 as γ 1 t) 4 + γ t) 9 para todos os valores de t no intervalo onde a curva está definida). Como 1 cos t + sin t 1 cos t) 4 uma solução óbvia será γ 1 t) cos t e γ t) 3 sin t. b) Sendo θt) esse ângulo, temos cos θt) Portanto, θt) π 4. γt) T t)) γt) + γt) γ t)) γt) γ t) 3 sin t), 9 et cos t, e t sin t) e t cos t sin t), e t cos t + sin t))) e t e t ) e t e t. c) Como γ t) e t cos t e t sin t, e t sin t + e t cos t, e t ), então γ t) e t cos t sin t) + e t cos t + sin t) + e t e t + e t + e t 3e t. Portanto, a função comprimento de arco a partir de γ0) 1, 0, 1) é dada por st) t 0 γ u) du t 0 3 e u du 3 [e u ] ut u0 3 e t 1). Trata-se de uma função estritamente crescente. Como lim t + st) + e lim t st) 3, então sr) 3, + ) e s : R 3, + ) é uma bijecção. Determinemos a sua função inversa. Como 3 e t 1) u e t u ) u + 1 t ln , então s 1 u) ln u ). Finalmente, a composição γ s 1 : 3, + ) R é a reparametrização por comprimento de arco pedida: γ s 1 )u) u + 1) cosln u + 1)), u + 1) sinln u ) u + 1)),

4 d) O parâmetro t na parametrização γt) t sin t, 1 cos t) da ciclóide corresponde ao ângulo de rotação da circunferência geratriz desde o início do seu movimento. Assim, uma revolução completa corresponde a t [0, π]. Como γ t) 1 cos t, sin t), então γ t) 4 cos t) 81 cos t). Mas t cos t cos + t ) cos t t sin t cos 1 cos t ) pelo que γ t) 8 cos ) t ) 16 1 cos t 16 sin t. Então o comprimento de arco é igual a π 0 4 sin t [ dt 8 cos t ] tπ 16. t0 cos t 1,. a) Calculemos a torsão de γ: τ γ t) [γ t), γ t), γ t)] γ t) γ t) γ t) γ t) γ t)) γ t) γ t). Como γ t) r sin t, r cos t, a cos t b sin t), γ t) r cos t, r sin t, a sin t b cos t) γ t) r sin t, r cos t, a cos t + b sin t), então γ t) γ t) br, ar, r ). Portanto, br, ar, r ) r sin t, r cos t, a cos t + b sin t) ) τ γ t) o que garante que γ é plana. br, ar, r ) 0, b) Sendo γ uma curva plana, a sua imagem será uma circunferência se e só se a sua curvatura for uma função constante, não nula. Determinemos então κ γ t): κ γ t) γ t) γ t) b γ t) 3 r + a r + r 4 γ t) 3 r a + b + r. r + a cos t + b sin t ab cos t sin t) 3 É então evidente que, por exemplo, sempre que a b 0 e r 0, κ γ t) e, consequentemente a imagem de γ é uma circunferência de raio r. Em conclusão, é possível que γr) seja circular. Nota: se quisermos determinar exactamente todos os valores de r, a, b, c para os quais a imagem de γ é uma circunferência, bastará determinar quando é que a derivada de κ γ é a função nula e simultaneamente κ γ não se anula.) 3. a) S {x, y, z) R 3 y 3 + y 4z 0} f 1 {0}), onde f : R 3 R é a função suave dada por fx, y, z) y 3 + y 4z. O gradiente f x, y, z) de f no ponto x, y, z) é o vector 0, 3y + 1, 4), que nunca se anula, pelo que 0 é um valor regular de f. Isto mostra que S é uma superfície. r r ) 3 1 r

5 b) Como o espaço vectorial tangente em cada ponto p S é dado por < f p) > então o plano tangente em p p 1, p, p 3 ) será paralelo à recta x 0, y z precisamente quando o vector f p) for ortogonal à recta x 0, y z, ou seja, quando o vector f p) for ortogonal ao vector 0, 1, 1). Isso acontece quando 0, 3p + 1, 4) 0, 1, 1) ) 0 3p 3 0 p 1. Portanto, o plano tangente é paralelo à recta definida pelas equações x 0, y z nos pontos p 1, ±1, p 3 ) de S, ou seja, nos pontos p 1, 1, 1 ) e p 1, 1, 1 ), p 1 R. 4. a) Os mapas σ : R π, π) R 3 u, v) cos v, sin v, u) σ : R π, π ) R3 u, v) cos v, sin v, u) constituem um atlas de C e a sua primeira forma fundamental é a matriz identidade. De facto: donde v σ u, v) u, v) 0, 0, 1), u u σ u, v) u, v) sin v, cos v, 0), v Eu, v) Ẽu, v) 0, 0, 1) 0, 0, 1)) 1, F u, v) F u, v) 0, 0, 1) sin v, cos v, 0)) 0 e Gu, v) Gu, v) sin v, cos v, 0) sin v, cos v, 0)) 1. Por outro lado, f σ)u, v) f σ)u, v) 1, v, u) têm também como primeira forma fundamental a matriz identidade. Logo, f é uma isometria. b) Sejam A f, ) fσ, π 4 )) 1, π 4, ) e B f 1 ) fσ3, π 3 )) 1, π 3, 3). Como f é uma isometria, o comprimento do caminho mais curto em C entre os pontos, ) e 1, 3) é igual à distância de A a B na superfície plana P, isto é, a B A 0, 11π 1, 5) 11π 1 ) + 5. O caminho mais curto em P ligando A a B é o segmento de recta γ 1 t) A + tb A) 1, π π ) t, + 5t t [0, 1], 1 pelo que o caminho mais curto em C ligando, ) a 1, 3) é a curva parametrizada por γ t) f 1 γ 1 t)) f 1 1, π π ) t, + 5t 1 σ + 5t, π π ) 1 t cos π π 1 t), sin π π 1 ) t), + 5t t [0, 1].

6 5. a) Calculemos os dois vectores directores do plano tangente a S γ num ponto genérico σs, u): s s, u) T γs) + u T γs) T γ s) + u κ γ s) N γ s) u s, u) T γs). Portanto, fazendo s s 0, para cada u em 0, 1) o plano tangente passa pelo ponto σs 0, u) γs 0 ) + ut γ s 0 ) e tem a direcção dos vectores T γ s 0 ) + u κ γ s 0 ) N γ s 0 ) e T γ s 0 ). Como s s 0, u) u s 0, u) u κ γ s 0 ) B γ s 0 ), então esse plano é o plano que passa pelo ponto σs 0, u) e é ortogonal a B γ s 0 ) que não depende de u). Apesar dos pontos σs 0, u) dependerem de u 0, 1), estes pontos percorrem o vector T γ s 0 ) de uma extremidade à outra, que é um dos vectores directores do plano, ou seja, percorrem um segmento de recta paralelo a uma das direcções do plano. Portanto, para qualquer u 0, 1), o plano tangente em σs 0, u) é sempre o mesmo: é o plano que passa pelo ponto γs 0 ) e é ortogonal a B γ s 0 ), ou seja, é precisamente o plano osculador à curva γ em γs 0 ). b) Dos cálculos já realizados na alínea anterior obtemos imediatamente a primeira forma fundamental de σ: Es, u) ) s, u) s, u) s s T γ s) T γ s)) + u κ γ s) N γ s) N γ s)) 1 + u κ γ s), F s, u) Gs, u) ) s, u) s, u) T γ s) T γ s)) 1, s u ) s, u) s, u) T γ s) T γ s)) 1. u u Por outro lado, s, u) s u s, u) T γs) T γ s)) + u κ γ s)n γ s) T γ s)) u κ γ s) B γ s). Então Como Ns, u) s s s, u) u s, u) s, u) u s, u) B γs). σ s s, u) T γs) + u κ γs) N γ s) + u κ γ s) N γs) u κ γ s) T γ s) + κ γ s) + u κ γs)) N γ s) + u κ γ s) τ γ s) B γ s), σ u s s, u) κ γs)n γ s), σ s, u) u 0, então ) σ es, u) s, u) Ns, u) u κ s γ s) τ γ s),

7 ) σ fs, u) s, u) Ns, u) 0, u s ) σ gs, u) s, u) Ns, u) 0. u Finalmente, Ks, u) es, u)gs, u) fs, u) Es, u)gs, u) F s, u) 0, Es, u)gs, u) fs, u)f s, u) + Gs, u)es, u) Hs, u) Es, u)gs, u) F s, u) ) uκ γs)τ γ s) u κ γ s) τ γ s) u κ γ s). Portanto, S γ não possui pontos elípticos nem pontos hiperbólicos. Para qualquer u 0, 1), se τ γ s) 0, o ponto σs, u) é planar; se τ γ s) 0, o ponto σs, u) é parabólico. Departamento de Matemática da Universidade de Coimbra

Justifique convenientemente as suas respostas e indique os principais cálculos

Justifique convenientemente as suas respostas e indique os principais cálculos Ano lectivo 006/07 Exame de Geometria Diferencial 0/7/07 Justifique convenientemente as suas respostas e indique os principais cálculos Duração: h30m Soluções 1. Em cada uma das alíneas seguintes indique

Leia mais

Justifique convenientemente as suas respostas e indique os principais cálculos. t (e t cos t, e t sin t).

Justifique convenientemente as suas respostas e indique os principais cálculos. t (e t cos t, e t sin t). Ano lectivo 004/05 Exame de Geometria Diferencial 6/7/05 Justifique convenientemente as suas respostas e indique os principais cálculos Duração: h30m Soluções 1. Considere a espiral logaritmica γ : R +

Leia mais

3. Algumas classes especiais de superfícies

3. Algumas classes especiais de superfícies 3. ALGUMAS CLASSES ESPECIAIS DE SUPERFÍCIES 77 3. Algumas classes especiais de superfícies Nesta secção descrevemos algumas das classes de superfícies mais simples. Superfícies quádricas As superfícies

Leia mais

6. A aplicação de Gauss e a segunda forma fundamental

6. A aplicação de Gauss e a segunda forma fundamental 116 SUPERFÍCIES EM R3 6. A aplicação de Gauss e a segunda forma fundamental Nesta secção estudaremos a chamada aplicação de Gauss e introduziremos diversas maneiras de medir a curvatura de uma superfície.

Leia mais

2. O que é uma curva?

2. O que é uma curva? 8 CURVAS EM R 3 2. O que é uma curva? Vamos começar por discutir duas formulações matemáticas da noção intuitiva de curva. Daremos alguns exemplos de curvas de cada tipo e modos práticos de passar de um

Leia mais

PARAMETRIZAÇÃO DE CURVA:

PARAMETRIZAÇÃO DE CURVA: PARAMETRIZAÇÃO DE CURVA: parametrizar uma curva C R n (n=2 ou 3), consiste em definir uma função vetorial: r : I R R n (n = 2 ou 3), onde I é um intervalo e r(i) = C. Equações paramétricas da curva C de

Leia mais

3. Quanto é que uma curva curva? Curvatura e torsão; triedro de Frenet-Serret

3. Quanto é que uma curva curva? Curvatura e torsão; triedro de Frenet-Serret 3. CURVATURA E TORSÃO; TRIEDRO DE FRENET-SERRET 23 3. Quanto é que uma curva curva? Curvatura e torsão; triedro de Frenet-Serret Nesta secção associamos a cada curva duas funções escalares, chamadas curvatura

Leia mais

Lista de Exercícios de Cálculo Infinitesimal II

Lista de Exercícios de Cálculo Infinitesimal II Lista de Exercícios de Cálculo Infinitesimal II 10 de Setembro de 2003 Questão 1 Determine as representações explícitas em coordenadas polares das seguintes curvas: a) O círculo de raio a centrado em (a,

Leia mais

MAT0326 Geometria Diferencial I

MAT0326 Geometria Diferencial I MAT036 Geometria Diferencial I Segunda Prova 06/11/01 Soluções Questão 1 Valor: 3.0 pontos. Considere a superfície S, de Enneper, parametrizada por Xu, v = u u3 3 + uv, v v3 3 + u v, u v. a. Determine

Leia mais

7. O Teorema Egregium de Gauss

7. O Teorema Egregium de Gauss 138 SUPERFÍCIES EM R3 7. O Teorema Egregium de Gauss Estamos agora em condições de provar um dos teoremas mais importantes do século XIX. Os matemáticos no final do século XVIII, como Euler e Monge, já

Leia mais

Lista de Exercícios 1

Lista de Exercícios 1 UFS - PROMAT Disciplina: Geometria Diferencial Professor: Almir Rogério Silva Santos Lista de Exercícios. Seja α : I R 3 uma curva regular. (a) Mostre que α é uma reta se α (t) e α (t) são linearmente

Leia mais

Cálculo Diferencial e Integral II

Cálculo Diferencial e Integral II Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral II Ficha de trabalho 1 (versão de 6/0/009 (Esboço de Conjuntos. Topologia. Limites. Continuidade

Leia mais

Apontamentos de GEOMETRIA DIFERENCIAL. Jorge Picado

Apontamentos de GEOMETRIA DIFERENCIAL. Jorge Picado Apontamentos de GEOMETRIA DIFERENCIAL Jorge Picado Departamento de Matemática Universidade de Coimbra 2003 Os apontamentos que se seguem contêm as notas das aulas da disciplina de Geometria Diferencial.

Leia mais

MAT Geometria Diferencial 1 - Lista 2

MAT Geometria Diferencial 1 - Lista 2 MAT036 - Geometria Diferencial 1 - Lista Monitor: Ivo Terek Couto 19 de outubro de 016 1 Superfícies - parte ; Exercício 1. Mostre que, em um ponto hiperbólico, as direções principais bissectam as direções

Leia mais

2 o TESTE DE DE CÁLCULO DIFERENCIAL E INTEGRAL II LCEIC-Taguspark, LCERC, LCEGI, LCEE 10 de Maio de 2008 (9:00) Teste 202.

2 o TESTE DE DE CÁLCULO DIFERENCIAL E INTEGRAL II LCEIC-Taguspark, LCERC, LCEGI, LCEE 10 de Maio de 2008 (9:00) Teste 202. Instituto Superior Técnico Departamento de Matemática 2 o semestre 07/08 2 o TESTE DE DE CÁLCULO DIFERENCIAL E INTEGRAL II LCEIC-Taguspark, LCERC, LCEGI, LCEE 10 de Maio de 2008 (9:00) Teste 202 Nome:

Leia mais

LISTA 6 DE GEOMETRIA DIFERENCIAL 2008

LISTA 6 DE GEOMETRIA DIFERENCIAL 2008 LISTA 6 DE GEOMETRIA DIFERENCIAL 2008 RICARDO SA EARP (1) Considere a esfera unitária S 2 = {x 2 + y 2 + z 2 = 1} em R 3. (a) Mostre que a projeção estereográfica usual do pólo norte é dada por Π N (x,

Leia mais

Vectores e Geometria Analítica

Vectores e Geometria Analítica Capítulo 1 Vectores e Geometria Analítica 1.1 Vectores em R 2 e R 3. Exercício 1.1.1 Determine um vector unitário que tenha a mesma direcção e sentido que o vector u e outro que que tenha sentido contrário

Leia mais

(a) Determine a velocidade do barco em qualquer instante.

(a) Determine a velocidade do barco em qualquer instante. NOME: UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Instituto de Matemática PRIMEIRA PROVA UNIFICADA CÁLCULO II Politécnica, Engenharia Química - 10/10/2013. 1 a QUESTÃO : Um barco a vela de massa m = 1 parte

Leia mais

Notas de Aula. Geometria Diferencial

Notas de Aula. Geometria Diferencial Notas de Aula Geometria Diferencial Rodney Josué Biezuner 1 Departamento de Matemática Instituto de Ciências Exatas (ICEx) Universidade Federal de Minas Gerais (UFMG) Notas de aula do curso Geometria Diferencial

Leia mais

Lista de Exercícios de Cálculo 3 Terceira Semana

Lista de Exercícios de Cálculo 3 Terceira Semana Lista de Exercícios de Cálculo 3 Terceira Semana Parte A 1. Reparametrize as curvas pelo parâmetro comprimento de arco medido a partir do ponto t = 0 na direção crescente de t. (a) r(t) = ti + (1 3t)j

Leia mais

Superfícies Quádricas

Superfícies Quádricas Superfícies Quádricas Jorge M. V. Capela, Marisa V. Capela Instituto de Química - UNESP Araraquara, SP capela@iq.unesp.br Araraquara, SP - 2017 1 Superfícies de Revolução São superfícies criadas pela rotação

Leia mais

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-454 Cálculo Diferencial e Integral II (Escola Politécnica) Primeira Lista de Exercícios - Professor: Equipe de Professores BONS ESTUDOS!.

Leia mais

CURVATURA DE CURVAS PLANAS

CURVATURA DE CURVAS PLANAS CURVATURA DE CURVAS PLANAS PROFESSOR RICARDO SÁ EARP (1) A tractrix. Vamos continuar com o traçado das curvas planas, agora incluindo o estudo da curvatura ao roteiro sugerido no exercício 1 da lista sobre

Leia mais

SUBVARIEDADES RIEMANNIANAS DO ESPAÇO EUCLIDEANO

SUBVARIEDADES RIEMANNIANAS DO ESPAÇO EUCLIDEANO SUBVARIEDADES RIEMANNIANAS DO ESPAÇO EUCLIDEANO PROFESSOR RICARDO SÁ EARP (1) Superfícies regradas. Seja I um intervalo aberto da reta. Uma superfície imersa regrada S em R 3 é a imagem de uma imersão

Leia mais

Apontamentos de GEOMETRIA DIFERENCIAL. Jorge Picado

Apontamentos de GEOMETRIA DIFERENCIAL. Jorge Picado Apontamentos de GEOMETRIA DIFERENCIAL Jorge Picado Departamento de Matemática Universidade de Coimbra 2006 Os apontamentos que se seguem contêm as notas das aulas da disciplina de Geometria Diferencial.

Leia mais

5. Teorema fundamental das curvas

5. Teorema fundamental das curvas 48 CURVAS EM R 3 5. Teorema fundamental das curvas Nesta secção provaremos a versão geral do Teorema Fundamental das Curvas, que mostra que uma curva parametrizada por comprimento de arco fica essencialmente

Leia mais

MAT Geometria Diferencial 1 - Lista 1

MAT Geometria Diferencial 1 - Lista 1 MAT0326 - Geometria Diferencial - Lista Monitor: Ivo Terek Couto 9 de outubro de 206 Observação. Assuma que todas as curvas e superfícies são diferenciáveis. Aquecimento Exercício. Seja α : I R R 3 uma

Leia mais

LISTA 6 DE GEOMETRIA DIFERENCIAL 2007

LISTA 6 DE GEOMETRIA DIFERENCIAL 2007 LISTA 6 DE GEOMETRIA DIFERENCIAL 2007 RICARDO SA EARP Vamos tratar a Geometria Diferencial das curvas e superfícies de R 3. Vamos aplicar as equações de compatibilidade; equação de curvatura de Gauss e

Leia mais

Geometria Diferencial

Geometria Diferencial Geometria Diferencial Exercícios sobre curvas planas e espaciais - 2007 Versão compilada no dia 20 de Setembro de 2007. Departamento de Matemática - UEL Prof. Ulysses Sodré: ulysses(a)uel(pt)br Matemática

Leia mais

4. Curvas planas. T = κn, N = κt, B = 0.

4. Curvas planas. T = κn, N = κt, B = 0. 4. CURVAS PLANAS 35 4. Curvas planas Nesta secção veremos que no caso planar é possível refinar a definição de curvatura, de modo a dar-lhe uma interpretação geométrica interessante. Provaremos ainda o

Leia mais

Matemática. Lic. em Enologia, 2009/2010

Matemática. Lic. em Enologia, 2009/2010 Universidade de Trás-os-Montes e Alto Douro Matemática Lic. em Enologia, 009/00 a Parte: Álgebra Linear Vectores em R n e em C n. Sejam u = (, 7,, v = ( 3, 0, 4 e w = (0, 5, 8. Calcule: a 3u 4v b u + 3v

Leia mais

Cálculo 3A Lista 6. Exercício 1: Apresente uma parametrização diferenciável para as seguintes curvas planas:

Cálculo 3A Lista 6. Exercício 1: Apresente uma parametrização diferenciável para as seguintes curvas planas: Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada álculo 3A Lista 6 Eercício : Apresente uma parametrização diferenciável para as seguintes curvas

Leia mais

Apontamentos de Geometria Diferencial. Jorge Picado

Apontamentos de Geometria Diferencial. Jorge Picado Apontamentos de Geometria Diferencial Curvas e Superfícies em R 3 Jorge Picado Departamento de Matemática Universidade de Coimbra 2006 Versão de 26 de Novembro de 2006 Os apontamentos que se seguem contêm

Leia mais

(b) a quantidade de cloro no tanque no instante t;

(b) a quantidade de cloro no tanque no instante t; NOME: Universidade Federal do Rio de Janeiro Instituto de Matemtica Departamento de Mtodos Matemticos Gabarito da a Prova de Cálculo II - 06//0 a QUESTÃO : Um tanque possui 0 litros de solução com cloro

Leia mais

1.2. Curvas, Funções e Superfícies de Nível. EXERCÍCIOS 1. Desenhe as imagens das seguintes curvas, indicando o sentido de percurso:

1.2. Curvas, Funções e Superfícies de Nível. EXERCÍCIOS 1. Desenhe as imagens das seguintes curvas, indicando o sentido de percurso: . MAT - 047 CÁLCULO DIFERENCIAL E INTEGRAL II PARA ECÔNOMIA a LISTA DE EXERCÍCIOS - 07.. Retas e Planos. Faça alguns exercícios das seções.3 e.5 do livro Cáculo (vol.) de James Stewart... Curvas, Funções

Leia mais

FICHA DE TRABALHO 2 - RESOLUÇÃO

FICHA DE TRABALHO 2 - RESOLUÇÃO Secção de Álgebra e Análise, Departamento de Matemática, Instituto Superior Técnico Análise Matemática III A - 1 o semestre de 2003/04 FICHA DE TRABALHO 2 - RESOLUÇÃO 1) Seja U R n um aberto e f : U R

Leia mais

Exercícios Resolvidos Integral de Linha de um Campo Escalar

Exercícios Resolvidos Integral de Linha de um Campo Escalar Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Eercícios Resolvidos Integral de Linha de um ampo Escalar Eercício onsidere o caminho g : [, ] R definido por g(t) = (e

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia II 2 a Lista de Exercícios

MAT Cálculo Diferencial e Integral para Engenharia II 2 a Lista de Exercícios MAT454 - Cálculo Diferencial e Integral para Engenharia II a Lista de Eercícios - 014 1. Seja f (, y) = + y + 4 e seja γ(t) = (t cos t, t sen t, t + 4), t 0. (a) Mostre que a imagem de γ está contida no

Leia mais

O Triedro de Frenet. MAT Cálculo Diferencial e Integral II Daniel Victor Tausk

O Triedro de Frenet. MAT Cálculo Diferencial e Integral II Daniel Victor Tausk O Triedro de Frenet MAT 2454 - Cálculo Diferencial e Integral II Daniel Victor Tausk Seja γ : I IR 3 uma curva de classe C 3 definida num intervalo I IR. Assuma que γ é regular, ou seja, γ (t) 0 para todo

Leia mais

Pequena Introdução à Trigonometria Hiperbólica

Pequena Introdução à Trigonometria Hiperbólica Pequena Introdução à Trigonometria Hiperbólica (Filipe Oliveira, 9) 1 Motivação Consideremos o plano euclidiano munido de um referencial ortonormado (, e 1, e ). Quando θ percorre o intervalo [; π[, o

Leia mais

CURVAS PLANAS. A orientação de uma curva parametrizada é a direção definida pelos valores crescentes de t.

CURVAS PLANAS. A orientação de uma curva parametrizada é a direção definida pelos valores crescentes de t. MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPARTAMENTO DE EXPRESSÃO GRÁFICA DISCIPLINA: TÓPICOS EM MATEMÁTICA APLICADOS À EXPRESSÃO GRÁFICA II PROFESSORA: BÁRBARA DE

Leia mais

Um Estudo Sobre Curvas, Superfícies e Suas Parametrizações

Um Estudo Sobre Curvas, Superfícies e Suas Parametrizações DM Um Estudo Sobre Curvas, Superfícies e Suas Parametrizações DISSERTAÇÃO DE MESTRADO Esmeralda Pereira de Faria MESTRADO EM MATEMÁTICA janeiro 017 Um Estudo Sobre Curvas, Superfícies e Suas Parametrizações

Leia mais

Geometria Analítica II - Aula 5 108

Geometria Analítica II - Aula 5 108 Geometria Analítica II - Aula 5 108 IM-UFF Aula 6 Superfícies Cilíndricas Sejam γ uma curva contida num plano π do espaço e v 0 um vetor não-paralelo ao plano π. A superfície cilíndrica S de diretriz γ

Leia mais

Cálculo III-A Lista 6

Cálculo III-A Lista 6 Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada álculo III-A Lista 6 Eercício : Apresente uma parametrização diferenciável para as seguintes curvas

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia II 2 a Lista de Exercícios

MAT Cálculo Diferencial e Integral para Engenharia II 2 a Lista de Exercícios MAT2454 - Cálculo Diferencial e Integral para Engenharia II 2 a Lista de Exercícios - 2012 1. Ache as derivadas parciais de primeira ordem das funções: ( y (a) f(x, y) = arctg (b) f(x, y) = ln(1+cos x)

Leia mais

Lista 5: Superfícies. (e) x = 4 tan(t) (f) x = (g) x = 1 4 csc(t) y = cosh(2t)

Lista 5: Superfícies. (e) x = 4 tan(t) (f) x = (g) x = 1 4 csc(t) y = cosh(2t) 1. Parametrize as seguintes curvas. + = 16 + 5 = 15 = 4 = 16 + 5 + 8 7 = 0 (f) + 4 + 1 + 6 = 0. Lista 5: Superfícies (g) = + (h) + = (i) + = 4 (j) + = 1 (k) 6 + 18 = 0 (l) r = sin(θ). Determine a equação

Leia mais

Aula 6. Doravante iremos dizer que r(t) é uma parametrização da curva, e t é o parâmetro usado para descrever a curva.

Aula 6. Doravante iremos dizer que r(t) é uma parametrização da curva, e t é o parâmetro usado para descrever a curva. Curvas ou Funções Vetoriais: Aula 6 Exemplo 1. Círculo como coleção de vetores. Vetor posição de curva: r(t) = (cos t, sen t), t 2π r(t) pode ser vista como uma função vetorial: r : [, 2π] R R 2 Doravante

Leia mais

GEOMETRIA Exercícios

GEOMETRIA Exercícios GEOMETRIA Exercícios Mestrado em Educação - DMFCUL 00/003 1. Determine a equação da circunferência com centro (, 1 e raio 3.. Determine os pontos de intersecção da recta y = com a circunferência do exercício

Leia mais

Nome:... Q N Assinatura:... 1 RG:... 2 N o USP:... 3 Turma: Teórica... 4 Professor: Edson Vargas... Total

Nome:... Q N Assinatura:... 1 RG:... 2 N o USP:... 3 Turma: Teórica... 4 Professor: Edson Vargas... Total 1 a Prova de MAT036 - Geometria Diferencial I IME - 9/09/016 Nome:................................................... Q N Assinatura:............................................... 1 RG:......................................................

Leia mais

Processamento de Malhas Poligonais

Processamento de Malhas Poligonais Processamento de Malhas Poligonais Tópicos Avançados em Computação Visual e Interfaces I Prof.: Marcos Lage www.ic.uff.br/~mlage mlage@ic.uff.br Conteúdo: Notas de Aula Curvas 06/09/2015 Processamento

Leia mais

GEOMETRIA II EXERCÍCIOS RESOLVIDOS - ABRIL, 2018

GEOMETRIA II EXERCÍCIOS RESOLVIDOS - ABRIL, 2018 GEOMETRIA II EXERCÍCIOS RESOLVIDOS - ABRIL, 08 ( Seja a R e f(x, y ax + ( ay. Designe por C a a cónica dada por f(x, y 0. (a Mostre que os quatro pontos (±, ± R pertencem a todas as cónicas C a (independentemente

Leia mais

Linhas. Integrais de Linha

Linhas. Integrais de Linha Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Prof. Gabriel Pires Linhas. Integrais de Linha Linhas e Caminhos. Um segmento de recta 3 Consideremos o segmento de recta

Leia mais

Gabarito da Primeira Prova MAT Tipo A

Gabarito da Primeira Prova MAT Tipo A Gabarito da Primeira Prova MAT-2454 - Tipo A 10 de Outubro de 2011 -A- Questão 1. Apenas uma das funções f ou g abaixo admite plano tangente a seu gráfico no ponto P = 0,0,0): x 2 y fx,y) = x 2 +y2, se

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia II 2 a lista de exercícios

MAT Cálculo Diferencial e Integral para Engenharia II 2 a lista de exercícios MAT2454 - Cálculo Diferencial e Integral para Engenharia II 2 a lista de exercícios - 2011 1. Ache as derivadas parciais de primeira ordem das funções: ( y (a) f(x, y) =arctg (b) f(x, y) = ln(1 + cos x)

Leia mais

1.3 Comprimento de arco

1.3 Comprimento de arco 0 CAPÍTULO. CURVAS NO E ENOE 3.3 Comprimento de arco Seja γ :[a, b] V uma curva não necessariamente regular. Consideremos P ([a, b]) o conjunto de todas as partições de [a, b]. Uma partição P = a = t 0

Leia mais

UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA Sexta Lista de Exercícios de Cálculo Diferencial e Integral III - MTM124 Prof. Júlio César do Espírito

Leia mais

Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente.

Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente. Aula 15 Derivadas Direcionais e Vetor Gradiente Seja f(x, y) uma função de variáveis. Iremos usar a notação D u f(x 0, y 0 ) para: Derivada direcional de f no ponto (x 0, y 0 ), na direção do vetor unitário

Leia mais

UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA LICENCIATURA EM ENGENHARIA CIVIL/TOPOGRÁFICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA LICENCIATURA EM ENGENHARIA CIVIL/TOPOGRÁFICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA LICENCIATURA EM ENGENHARIA CIVIL/TOPOGRÁFICA REGIMES DIURNO/NOCTURNO - º SEMESTRE - º ANO - 7 / 8 ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA EXAME DE ÉPOCA

Leia mais

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema I Geometria no Plano e no Espaço II. TPC nº 5 (entregar no dia 6 ou )

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema I Geometria no Plano e no Espaço II. TPC nº 5 (entregar no dia 6 ou ) Escola Secundária com º ciclo D. Dinis 11º Ano de Matemática A Tema I Geometria no Plano e no Espaço II TPC nº (entregar no dia 6 ou 7 1 010) 1. Considere, num cubo de 8 cm de aresta, a secção que resulta

Leia mais

Evolutas e Involutas: Planas e Espaciais

Evolutas e Involutas: Planas e Espaciais Evolutas e Involutas: Planas e Espaciais Aluno: Igor Albuquerque Araujo Orientador: Marcos Craizer Introdução Foi feito um estudo de conjuntos focais de superfícies. Foram utilizados os softwares Maple

Leia mais

Universidade de Trás-os-Montes e Alto Douro. Biomatemática/ Matemática I FOLHAS PRÁTICAS

Universidade de Trás-os-Montes e Alto Douro. Biomatemática/ Matemática I FOLHAS PRÁTICAS Universidade de Trás-os-Montes e Alto Douro Biomatemática/ Matemática I FOLHAS PRÁTICAS Licenciaturas em Arquitectura Paisagista, Biologia e Geologia (ensino) e Biologia (cientíco) Ano lectivo 004/005

Leia mais

Cálculo Diferencial e Integral II Resolução do Exame/Teste de Recuperação 02 de Julho de 2018, 15:00h - versão 2 Duração: Exame (3h), Teste (1h30)

Cálculo Diferencial e Integral II Resolução do Exame/Teste de Recuperação 02 de Julho de 2018, 15:00h - versão 2 Duração: Exame (3h), Teste (1h30) Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral II do Exame/Teste de Recuperação 2 de Julho de 218, 15:h - versão 2 Duração: Exame (3h),

Leia mais

O quadro abaixo destina-se à correcção da prova. Por favor não escreva nada.

O quadro abaixo destina-se à correcção da prova. Por favor não escreva nada. Instituto Superior Técnico Departamento de Matemática 2 o semestre 08/09 Nome: Número: Curso: Sala: 1 o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL-II LEIC-Taguspark, LERC, LEGI, LEE 4 de Abril de 2009 (11:00)

Leia mais

ELEMENTOS DE GEOMETRIA Exercícios

ELEMENTOS DE GEOMETRIA Exercícios ELEMENTOS DE GEOMETRIA Exercícios Mestrado em Matemtica para o Ensino - DMFCUL 004/00. Determine a equação da circunferência com centro (, e raio 3.. Determine os pontos de intersecção da recta y = com

Leia mais

2. O que é uma superfície?

2. O que é uma superfície? 60 2. O que é uma superfície? Nesta secção, formalizamos a noção de superfície em R 3. Discutimos em seguida alguns exemplos. Constataremos uma diferença óbvia entre a teoria das curvas e a teoria das

Leia mais

Universidade Federal da Bahia

Universidade Federal da Bahia Universidade Federal da Bahia Instituto de Matemática DISCIPLINA: MATA0 - CÁLCULO B UNIDADE I - LISTA DE EXERCÍCIOS Atualizada 0. Áreas de figuras planas em coordenadas cartesianas [] Determine a área

Leia mais

2 Propriedades geométricas de curvas parametrizadas no R 4

2 Propriedades geométricas de curvas parametrizadas no R 4 2 Propriedades geométricas de curvas parametrizadas no R 4 Nesse capítulo trataremos dos conceitos básicos de geometria diferencial referentes à curvas parametrizadas no R 4. 2.1 Curvas Parametrizadas

Leia mais

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais Taxa de Variação e Derivada Tarefa n.º 9 1. Considere as funções

Leia mais

Integrais Sobre Caminhos e Superfícies. Teoremas de Integração do Cálculo Vectorial.

Integrais Sobre Caminhos e Superfícies. Teoremas de Integração do Cálculo Vectorial. Capítulo 5 Integrais Sobre Caminhos e Superfícies. Teoremas de Integração do Cálculo Vectorial. 5.1 Integral de Um Caminho. Integral de Linha. Exercício 5.1.1 Seja f(x, y, z) = y e c(t) = t k, 0 t 1. Mostre

Leia mais

CAPíTULO 5. Superfícies em 3

CAPíTULO 5. Superfícies em 3 CAPíTULO 5 Superfícies em 3 Vamos agora estudar propriedades geométricas das superfícies em 3. Alguns dos conceitos desenvolvidos para curvas têm análogos neste contexto, tendo em conta a passagem da dimensão

Leia mais

Grupo I. e ( 10,α ) sejam as coordenadas, num referencial o.n. (C) 6 (D) 8

Grupo I. e ( 10,α ) sejam as coordenadas, num referencial o.n. (C) 6 (D) 8 Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais Taxa de Variação e Derivada 4º Teste de avaliação Grupo I As

Leia mais

Universidade Federal da Bahia

Universidade Federal da Bahia Universidade Federal da Bahia Instituto de Matemática DISCIPLINA: MATA0 - CÁLCULO B UNIDADE I - LISTA DE EXERCÍCIOS Atualizada 00. Áreas de figuras planas em coordenadas cartesianas [] Determine a área

Leia mais

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais Taxa de Variação e Derivada TPC nº 9 (entregar em 11-03-011)

Leia mais

Resolução do 1 o Teste - A (6 de Novembro de 2004)

Resolução do 1 o Teste - A (6 de Novembro de 2004) ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA Ano Lectivo de 2004/2005 Resolução do 1 o Teste - A (6 de Novembro de 2004) 1 Considere o subconjunto

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia II 2 a lista de exercícios

MAT Cálculo Diferencial e Integral para Engenharia II 2 a lista de exercícios MAT454 - Cálculo Diferencial e Integral para Engenharia II a lista de exercícios - 009 1. Ache as derivadas parciais de primeira ordem das funções: ( y (a) f(x, y) = arctg (b) f(x, y) = ln(1 + cos x) (xy

Leia mais

Geometria Diferencial

Geometria Diferencial Geometria Diferencial Curvas no plano e no espaço - Segundo semestre de 2007 Versão 14 compilada com o pdflatex no dia 2 de Agosto de 2007. Departamento de Matemática - UEL Prof. Ulysses Sodré: ulysses(a)uel(pt)br

Leia mais

INSTITUTO DE MATEMÁTICA - UFBA DEPARTAMENTO DE MATEMÁTICA 2 a LISTA DE EXERCÍCIOS DE MAT CÁLCULO II-A. Última atualização:

INSTITUTO DE MATEMÁTICA - UFBA DEPARTAMENTO DE MATEMÁTICA 2 a LISTA DE EXERCÍCIOS DE MAT CÁLCULO II-A. Última atualização: INSTITUTO DE MATEMÁTICA - UFBA DEPARTAMENTO DE MATEMÁTICA a LISTA DE EXERCÍCIOS DE MAT 4 - CÁLCULO II-A Última atualização: --4 ) Nos problemas a seguir encontre a área das regiões indicadas: A) Interior

Leia mais

8.1 Áreas Planas. 8.2 Comprimento de Curvas

8.1 Áreas Planas. 8.2 Comprimento de Curvas 8.1 Áreas Planas Suponha que uma certa região D do plano xy seja delimitada pelo eixo x, pelas retas x = a e x = b e pelo grá co de uma função contínua e não negativa y = f (x) ; a x b, como mostra a gura

Leia mais

MAT0326 Geometria Diferencial I

MAT0326 Geometria Diferencial I MAT6 Geometria Diferencial I Primeira Prova /9/ Soluções Questão Valor:. =.5 +.5 pontos). a. Mostre que cos arctanx) ) =. + x b. Determine uma curva plana α : R R, parametrizada por comprimento de arco,

Leia mais

MAT Cálculo II - POLI

MAT Cálculo II - POLI MAT25 - Cálculo II - POLI Primeira Lista de Exercícios - 2006 TAYLOR 1. Utilizando o polinômio de Taylor de ordem 2, calcule um valor aproximado e avalie o erro: (a) 3 8, 2 (b) ln(1, 3) (c) sen (0, 1)

Leia mais

MAT CÁLCULO 2 PARA ECONOMIA. Geometria Analítica

MAT CÁLCULO 2 PARA ECONOMIA. Geometria Analítica MT0146 - CÁLCULO PR ECONOMI SEMESTRE DE 016 LIST DE PROBLEMS Geometria nalítica 1) Sejam π 1 e π os planos de equações, respectivamente, x + y + z = e x y + z = 1. Seja r a reta formada pela interseção

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia II 2 a lista de exercícios

MAT Cálculo Diferencial e Integral para Engenharia II 2 a lista de exercícios MAT454 - Cálculo Diferencial e Integral para Engenharia II a lista de eercícios - 011 1. Ache as derivadas parciais de primeira ordem das funções: ( y (a) f(,y) = arctg (b) f(,y) = ln(1+cos ) (y 3 )).

Leia mais

Mini Curso. Teoria Local das Curvas Planas

Mini Curso. Teoria Local das Curvas Planas Goiânia, 07 a 10 de outubro Mini Curso Teoria Local das Curvas Planas Profa. Dra. Luciana Maria Dias de Ávila Rodrigues - UnB . Estas notas são dedicadas a todos aqueles (alunos, docentes, técnicos...)

Leia mais

Teoria Local das Curvas

Teoria Local das Curvas Teoria Local das Curvas Márcio Nascimento da Silva Departamento de Matemática Universidade Estadual Vale do Acaraú de setembro de 007 mharcius@gmail.com pré-prints do Curso de Matemática de Sobral no.

Leia mais

II Bienal da Sociedade Brasileira de Matemática UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA

II Bienal da Sociedade Brasileira de Matemática UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA Elinalva Vergasta de Vasconcelos Graça Luzia Dominguez Santos Verlane Andrade Cabral II Bienal da Sociedade Brasileira de Matemática UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA INDICE Introdução...

Leia mais

I. Derivadas Parciais, Diferenciabilidade e Plano Tangente

I. Derivadas Parciais, Diferenciabilidade e Plano Tangente 1. MAT - 0147 CÁLCULO DIFERENCIAL E INTEGRAL II PARA ECONOMIA a LISTA DE EXERCÍCIOS - 017 I. Derivadas Parciais, Diferenciabilidade e Plano Tangente 1) Calcule as derivadas parciais de primeira ordem das

Leia mais

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-454 Cálculo Diferencial e Integral II Escola Politécnica) Segunda Lista de Eercícios - Professor: Equipe de Professores BONS ESTUDOS!

Leia mais

ANÁLISE MATEMÁTICA IV LEEC SÉRIES, SINGULARIDADES, RESÍDUOS E PRIMEIRAS EDO S. disponível em

ANÁLISE MATEMÁTICA IV LEEC SÉRIES, SINGULARIDADES, RESÍDUOS E PRIMEIRAS EDO S. disponível em Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualiação: //003 ANÁLISE MATEMÁTICA IV LEEC RESOLUÇÃO DA FICHA 3 SÉRIES, SINGULARIDADES, RESÍDUOS E PRIMEIRAS

Leia mais

Universidade Federal da Bahia

Universidade Federal da Bahia Universidade Federal da Bahia Instituto de Matemática DISCIPLINA: MATA3 - CÁLCULO B UNIDADE II - LISTA DE EXERCÍCIOS Atualiada 13.1 Coordenadas Polares [1] Dados os pontos P 1 (3, 5π 3 ), P ( 3, 33 ),

Leia mais

Derivadas direcionais Definição (Derivadas segundo um vector): f : Dom(f) R n R e P 0 int(dom(f)) então

Derivadas direcionais Definição (Derivadas segundo um vector): f : Dom(f) R n R e P 0 int(dom(f)) então Derivadas direcionais Definição (Derivadas segundo um vector): f : Dom(f) R n R e P 0 int(dom(f)) então Seja D v f(p 0 ) = lim λ 0 f(p 0 + λ v) f(p 0 ) λ v representa a derivada direcional de f segundo

Leia mais

Escoamento potencial

Escoamento potencial Escoamento potencial J. L. Baliño Escola Politécnica - Universidade de São Paulo Apostila de aula 2017, v.1 Escoamento potencial 1 / 26 Sumário 1 Propriedades matemáticas 2 Escoamento potencial bidimensional

Leia mais

Universidade de Trás-os-Montes e Alto Douro. Mestrado...

Universidade de Trás-os-Montes e Alto Douro. Mestrado... Universidade de Trás-os-Montes e Alto Douro Mestrado... Complementos de Matemática - I Guião de Estudo 2012 2013 Primeiro semestre Américo Bento Outono, 2012 1 Conteúdo I 6 1 Cónicas 6 1.1 Caracterização

Leia mais

Tarefa nº_ 2.2. (A) Um ponto (B) Uma reta (C) Um plano (D) Nenhuma das anteriores

Tarefa nº_ 2.2. (A) Um ponto (B) Uma reta (C) Um plano (D) Nenhuma das anteriores Tarefa nº_. MATEMÁTICA Geometria Nome: 11º Ano Data / / 1. Num referencial o.n. Oxyz, qual das seguintes condições define uma recta paralela ao eixo Oz? (A) x = y = 1 (C) z = 1 (B) (x, y, z) = (1,,0) +

Leia mais

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A Funções e Gráficos Generalidades. Funções polinomiais. Função módulo.

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A Funções e Gráficos Generalidades. Funções polinomiais. Função módulo. Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A Funções e Gráficos Generalidades. Funções polinomiais. Função módulo. Trabalho de casa nº 11 1. Considere as funções f e g, representadas

Leia mais

Vetor Tangente, Normal e Binormal. T(t) = r (t)

Vetor Tangente, Normal e Binormal. T(t) = r (t) CVE 0003 - - CÁLCULO VETORIAL - - 2011/2 Vetor Tangente, Normal e Binormal Lembre-se que se C é uma curva suave dada pela função vetorial r(t), então r (t) é contínua e r (t) 0. Além disso, o vetor r (t)

Leia mais

Curvas e superfícies

Curvas e superfícies Análise Matemática III Curvas e superfícies Manuel Guerra Conteúdo 1 Curvas 2 2 Curvas definidas implicitamente 11 3 Superfícies 17 4 Superfícies definidas implicitamente 20 5 Anexo: A curva de Peano 21

Leia mais

Curvas Diferenciáveis

Curvas Diferenciáveis Curvas Diferenciáveis Márcio Nascimento da Silva Departamento de Matemática Universidade Estadual Vale do Acaraú 26 de setembro de 2007 mharcius@gmail.com pré-prints do Curso de Matemática de Sobral no.

Leia mais

1. Superfícies Quádricas

1. Superfícies Quádricas . Superfícies Quádricas álculo Integral 44. Identifique e esboce as seguintes superfícies quádricas: (a) x + y + z = (b) x + z = 9 x + y + z = z (d) x + y = 4 z (e) (z 4) = x + y (f) y = x z = + y (g)

Leia mais