Segmento: Pré-vestibular. Coleção: Alfa, Beta e Gama. Disciplina: Matemática. Unidade 1: Série 17. Conjuntos

Tamanho: px
Começar a partir da página:

Download "Segmento: Pré-vestibular. Coleção: Alfa, Beta e Gama. Disciplina: Matemática. Unidade 1: Série 17. Conjuntos"

Transcrição

1 Segmento: Pré-vestibular Coleção: Alfa, Beta e Gama Disciplina: Matemática Volume: 1 Unidade 1: Série 17 Resoluções Conjuntos 1. A = {1, } O Conjunto A possui dois elementos: 1 e. O total de subconjuntos conjunto A é dado por ² = 4. Assim, temos: - Subconjunto de A com 0 elementos: - Subconjuntos de A com 1 elemento: {1} e {} - Subconjunto de A com elementos: {1, } Logo: 1A e A A, 1 A, A e A A. a) A = {1,, 3} O Conjunto A possui três elementos: 1, e 3. O total de subconjuntos conjunto A é dado por ³ = 8. Assim, temos: - Subconjunto de A com 0 elementos: - Subconjuntos de A com 1 elemento: {1}, {} e {3} - Subconjuntos de A com elementos: {1, }, {1, 3} e {, 3} - Subconjunto de A com 3 elementos: {1,, 3} Logo: 1 A, A e 3 A A, 1 A, A, 3 A, 1, A, 1,3 A,,3 A e A A 1

2 b) A = {1,, {3}} O Conjunto A possui três elementos: 1, e {3}. O total de subconjuntos conjunto A é dado por ³ = 8. Assim, temos: - Subconjunto de A com 0 elementos: - Subconjuntos de A com 1 elemento: {1}, {} e {{3}} - Subconjuntos de A com elementos: {1, }, {1, {3}} e {, {3}} - Subconjunto de A com 3 elementos: {1,, {3}} Logo: 1 A, A e 3 A A, 1 A, A, 3 A, 1, A, 1, 3 A,, 3 A e A A c) A = {1, {, 3}} O Conjunto A possui dois elementos: 1 e {, 3}. O total de subconjuntos conjunto A é dado por ² = 4. Assim, temos: - Subconjunto de A com 0 elementos: - Subconjuntos de A com 1 elemento: {1} e {{,3}} - Subconjuntos de A com elementos: {1, {3}} - Subconjunto de A com 3 elementos: {1,, {3}} Logo: 1A e,3 A A, 1 A,,3 A e A A 3. D Se A B e A, temos duas possibilidades: Assim, se xb, então x A. 4. Sabemos que A = {1, } e que B = {1,, 3, 4}. Como A X B, então todo elemento de A é um elemento de X e todo elemento de X é elemento de B. Assim, temos as seguintes possibilidades: - X = {1, } - X = {1,, 3} - X = {1,, 4} - X = {1,, 3, 4}

3 5. E A notação A 1,,3,4 significa que A é um subconjunto do conjunto {1,, 4 3, 4} e, portanto, há 16 subconjuntos possíveis. 6. A 3,4,5,6 B 5,6,7 A B 5,6 A B 3,4 B A 7 A B 3,4,5,6,7 7. A tabela fica da seguinte maneira: A B A C B B A {0, 1, } {0, 1, } {0, 1, } {0} {0, 1, } {1, } {1, } {0, 1} {0, 1, } {} {} {0, 1, } {0, 1, } {0, 1,, 3} {0, 1, } 8. A A (B C) x x A e x (B C) Assim, podemos representar A (B C) do seguinte modo: A B C A (B C). E P a, b, a, b, a P, b P e a, b P. Como Observe que a b a, b, logo a b P. 3

4 10. A = {, 3, 5, 6, 7, 8}, B = {1,, 3, 4}, C = {1, 4, 6, 8} A B 1,, 3, 4, 5, 6, 7, 8 (A B) C, 3, 5, B Temos que: n(a B) n(a) n(b) n(a B) 30 0 n(b) 1 n(b) n(b) 1. a) Como B possui menos elementos que A, para que x seja máximo, basta que B A, ou seja, x máximo = 1. Para que x seja mínimo, basta que A e B sejam disjuntos, ou seja, A B. Assim, x mínimo = 0. b) Para que y seja máximo, basta que A e B sejam disjuntos, ou seja, A B. Assim, x máximo = = 3. Como B possui menos elementos que A, para que y seja mínimo, basta que B A, ou seja, y mínimo = 0 elementos. 13. B Sabemos que n(a B) n(a) n(b A). Assim: 1 8 n(b A) n(b A) 4 4 n(p(b A) P( )) n(p(b A)) 16 Observação: P(X) é o conjunto de todos os subconjuntos de X, logo, n(p(x)) = k, onde k é o número de elementos de P(X). 14. D Lembre que: (I): n(a B C) n(a) n(b) n(c) n(a B) n(a C) n(b C) n(a B C) Do enunciado, sabemos que: n(a B) 8 n(a B) n(a) n(b) n(a B) Assim, temos: (II): 8 n(a) n(b) n(a B) Analogamente: (III) : n(a) n(c) n(a C) (IV) : 10 n(b) n(c) n(b C) 4

5 Somando as equações (II), (III) e (IV), concluímos que: 7 n(a) n(b) n(c) n(a B) n(a C) n(b C) (V) : n(a B) n(a C) n(b C) 7 n(a) n(b) n(c) Das equações (I) e (VI) e do enunciado, segue que: 11 n(a) n(b) n(c) 7 n(a) n(b) n(c) n(a) n(b) n(c) C Vamos definir os seguintes conjuntos: - A: conjuntos das mulheres que acreditam que os homens odeiam ir ao shopping. - B: conjunto das mulheres que acreditam que os homens preferem mulheres que façam todas as tarefas de casa. Assim, segue que: - A B: todas as mulheres pesquisadas. - A B: mulheres que acreditam que os homens odeiam ir ao shopping e acreditam que os homens preferem mulheres que façam todas as tarefas de casa. Portanto, n(a B) n(a B) C Com as informações do enunciado temos o seguinte diagrama: x = 800 x = 430 5

6 17. C Vamos analisar um a um os intervalos em que o escritor pode ter nascido. I. Antes de 1800: A única alternativa que considera esse período é a C. II. Entre 1801 e 100: As alternativas que englobam este período são: A, C e D. III. Entre 101 e 000: As alternativas que englobam este período são: B e D. Além disso, devemos desconsiderar a alternativa E, pois caso ela fosse verdadeira o inventor nem teria nascido (obrigatoriamente ele nasceu antes de 1860 ou depois de 1830). Deste modo, temos que alternativa C é a correta. Observação: é possível pensarmos no intervalo que vai além do ano 000. Neste caso, teríamos a alternativa D como correta. Entretanto, é de se pensar que ainda não temos nenhum escritor famoso que nasceu depois desta data. 18. D Do enunciado, temos o diagrama abaixo: 40 x + x + 36 x = x = 67 x = cm Podemos afirmar que cm de B está em A e, como B mede 36 cm, a parcela de B que está em A, em porcentagem, é dada por: 100% 5% 36 6

7 1. Do enunciado, temos o diagrama abaixo: x pessoas têm sangue tipo O x = 50 x = Do enunciado, Meninos Meninos Meninas Meninas ruivos não ruivos ruivas não ruivas 10 x 1 x = números de meninas ruivas x + 1 = 8 x = 4 Da tabela, o total de crianças ruivas era + 4 = Com as informações do enunciado, podemos considerar o seguinte diagrama: Temos que: x x y 10 y 50 Assim, x y = = 450 7

8 . Do enunciado, temos: Meninos loiros Meninos não loiros Meninas loiras Meninas não loiras x 16 x 8 x 1 x + 16 x + 8 x + 1 = x = 33 x = 3 Assim, o total de meninas é dado por: 8 x + 1 = = D Do enunciado, temos o seguinte diagrama: 16 x + x + 0 x + y = x + y = 30 y = x 6 Como y 0, podemos afirmar que x 6 0 e que, portanto, x 6. Isso significa que o número de alunos que gostam de matemática e história é, no mínimo, Do enunciado, temos o diagrama abaixo: y x 130 x 5 Assim, cinco alunos não gostam de nenhum desses esportes. 8

9 5. D Com as informações do enunciado é possível construir o seguinte diagrama: x 300 x a) 111 0, b) 1 0, c) 1 0, a) 888 0, b) 0, x (I) 8, x (II) Subtraindo a equação (I) da (II), temos: x 8 8 x Assim, 8 0,888...

10 c) 8, x (I) 88, x (II) Subtraindo a equação (I) da (II), temos: x x Assim, 80 8, d), x (I) 34, x (II) Subtraindo a equação (I) da (II), nessa ordem, temos: x 3, 0x 3 3 x 0 8. A 7x = , em que x é o valor que cada um dos amigos recebeu. Assim, temos: x E Vamos verificar a validade das alternativas, utilizando contraexemplos. - Alternativa a: Tomemos x = 0 e y xy 0 0, ou seja, racional (falso). - Alternativa b: Tomemos x = 1 e y xy 1, ou seja, irracional (falso). - Alternativa c: Tomemos y y, ou seja, racional (falsa). - Alternativa d: Tomemos x = 0 e y x y 0, ou seja, irracional (falsa). 10

11 30. a) a b (irracional). b) b c (racional). c) ab 3 ( 3) 3 3 (irracional). d) e) b c ( 3) ( 3) (racional). a 3 3 (racional). f) b ( 3) (irracional) 31. E Vamos analisar uma a uma, as alternativas. - Alternativa a: x 0,... 4 x Como 0,444..., a afirmativa é falsa Alternativa b: x 0,... 1 Como 1 < 1 é falso, a afirmativa é falsa. - Alternativa c x y 0 x 0 e y 0 ou x 0 e y 0, portanto a afirmativa é falsa. - Alternativa d: Se x 0, x x x 0 x 0 Logo, não podemos dizer que x² > x, o que invalida a afirmativa. Observação: é possível mostrar que a desigualdade x² > x é equivalente a x < 0 ou x > 1. - Alternativa e: Um número par é da forma n, com n pertencente ao conjunto dos números inteiros. Assim, um número ímpar pode ser escrito como n + 1 ou n 1. Portanto, a soma de dois números ímpares pode ser escrita da seguinte maneira: (n 1) (n 1) 4n (par) (n 1) (n 1) 4n (n 1) (par) (n 1) (n 1) 4n (n 1) (par) Isso torna a afirmativa verdadeira. 11

12 3. a) Os números inteiros que pertencem ao intervalo [1, 18] são: 1,, 3, 4,..., 18, ou seja, = 18 números. Observe que os números 1 e 18 fazem parte do intervalo. b) Os números inteiros que pertencem ao intervalo ]1, 18[ são:, 3, 4,..., 17, ou seja, = 16 números. Observe que os números 1 e 18 não fazem parte do intervalo. c) Os números inteiros que pertencem ao intervalo [1, 18[ são: 1,, 3,..., 17, ou seja, = 17 números. Observe que o número 1 faz parte do intervalo, mas o número 18 não. d) Os números inteiros que pertencem ao intervalo [, ] são:, 8, 7,..., 7, 8,, ou seja, ( ) + 1 = 1 números. Observe que os números e fazem parte do intervalo. e) Repare que 10 14,14 e que ,3. Assim, podemos considerar o seguinte intervalo [10,14, 17,3]. Os números inteiros que pertencem a este intervalo são: 15, 16 e 17, ou seja, = 3 números. 33. a) [3, [ b) ]4, 7] c) [3, 4] d) ]7, [ 1

13 e) [3, 4] ]7, [ 34. a) Existem infinitos racionais entre r e s. b) Existem infinitos irracionais entre r e s. c) Tome, sem perda de generalidade, r e s ambos positivos. Com efeito, podemos representa-los na reta real abaixo: (I): p r = a (II): s p = a Das equações (I) e (II), temos que: p r = s p p = r + s r s p p = r + s Como r e s são racionais, p é racional. Assim, o racional r s está entre os racionais r e s. d) Analogamente ao item e, podemos fazer a seguinte construção: r (s r) q Como (s r) está entre r e s. é irracional e r é racional, r (s r) 13 é irracional e

14 35. O número 3,145 é racional e 3,14 < 3,145 < 3,15. Logo, o número 3,145 é um exemplo de número racional, compreendido entre 3,14 e 3, A Podemos fazer as seguintes transformações para comparar os valores apresentados: a,01,01 4,0401 b 4, c 5, Como 4,0401 < 4, < 5,44..., temos que 4,0401 4, 5,44..., ou ainda, a < b < c. 37. A De 0 < x < y < 1, temos: x 0 x x x y x 1 0 x xy x Ou,ainda : x xy x 38. C Repare que a pode ser escrito da seguinte maneira: a (3 ) Analogamente b, pode ser escrito da seguinte maneira: b 11 6 (3 ) 3 Ou seja, a = b. 3. É possível mostrar a veracidade das proposições a, e e g. A proposição b é falsa e, para mostrar isso, basta encontrar para cada uma das afirmativas um contraexemplo, como mostrado abaixo: ( ) 0, que é racional., que também é racional. A proposição c é verdadeira. Exemplos: ( ) ( ) 4 A proposição d é verdadeira. Exemplos:, que é irracional. 3 6, que também é irracional. 14

15 40. A proposição f é falsa e, para mostrar isso, basta encontrar um contraexemplo: a) 0 0, que é racional. b) Do item a, (I) Se (racional). Daí, temos: for irracional, então, podemos ter nos leva a, ou seja, um número racional. (II) Se e, o que for irracional, então, podemos ter e, o que nos leva a representando um número racional. De (I) e (II), é um número racional. (c. q. d.) 15

Matemática A Extensivo V. 2

Matemática A Extensivo V. 2 GRITO Matemática Extensivo V. Exercícios 0) a) Verdadeira. e são elementos de. b) Verdadeira. Pois {} é elemento de. c) Verdadeira. Pois não é elemento de. d) Verdadeira. Pois {} é um subconjunto de. e)

Leia mais

A = B, isto é, todo elemento de A é também um elemento de B e todo elemento de B é também um elemento de A, ou usando o item anterior, A B e B A.

A = B, isto é, todo elemento de A é também um elemento de B e todo elemento de B é também um elemento de A, ou usando o item anterior, A B e B A. Capítulo 1 Números Reais 1.1 Conjuntos Numéricos Um conjunto é uma coleção de elementos. A relação básica entre um objeto e o conjunto é a relação de pertinência: quando um objeto x é um dos elementos

Leia mais

Sumário. 1 CAPÍTULO 1 Revisão de álgebra

Sumário. 1 CAPÍTULO 1 Revisão de álgebra Sumário 1 CAPÍTULO 1 Revisão de álgebra 2 Conjuntos numéricos 2 Conjuntos 3 Igualdade de conjuntos 4 Subconjunto de um conjunto 4 Complemento de um conjunto 4 Conjunto vazio 4 Conjunto universo 5 Interseção

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web 1. (Ita 2017) Sejam A {1, 2, 3, 4, 5} e B { 1, 2, 3, 4, 5}. Se C {xy : x A e y B}, então o número de elementos de C é a) 10. b) 11. c) 12. d) 13. e) 14. 2. (Ita 2017) Sejam X e Y dois conjuntos finitos

Leia mais

MATEMÁTICA - 3o ciclo Intervalos de números Reais (9 o ano) Propostas de resolução

MATEMÁTICA - 3o ciclo Intervalos de números Reais (9 o ano) Propostas de resolução MATEMÁTICA - 3o ciclo Intervalos de números Reais (9 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Como 2 1, 1414 e 3 1, 7321, representando na reta real o intervalo

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web 1. (Ita 2017) Sejam A e B dois conjuntos com 3 e 5 elementos, respectivamente. Quantas funções sobrejetivas f : B A existem? 2. (Ita 2017) Sejam A {1, 2, 3, 4, 5} e B { 1, 2, 3, 4, 5}. Se C {xy : x A e

Leia mais

Matemática. Resolução das atividades complementares. M3 Conjuntos

Matemática. Resolução das atividades complementares. M3 Conjuntos Resolução das atividades complementares 1 Matemática M3 Conjuntos p. 52 1 Considere os conjuntos A 5 {x M* x é par e x. 6}, 5 {x M* x é ímpar e x, 21} e C 5 {x M* x é par}. Então: a) A tem 2 elementos

Leia mais

Análise I Solução da 1ª Lista de Exercícios

Análise I Solução da 1ª Lista de Exercícios FUNDAÇÃO EDUCACIONAL SERRA DOS ÓRGÃOS CENTRO UNIVERSITÁRIO SERRA DOS ÓRGÃOS Centro de Ciências e Tecnologia Curso de Graduação em Matemática Análise I 0- Solução da ª Lista de Eercícios. ATENÇÃO: O enunciado

Leia mais

Humberto José Bortolossi [01] (a) (1.0) Escreva infinitos números racionais que pertençam ao intervalo

Humberto José Bortolossi   [01] (a) (1.0) Escreva infinitos números racionais que pertençam ao intervalo PRIMEIRA VERIFICAÇÃO DE APRENDIZAGEM Pré-Cálculo Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ Nome legível: Assinatura: [0] (a) (.0) Escreva infinitos números racionais que pertençam

Leia mais

Capítulo 1 Números Reais

Capítulo 1 Números Reais Departamento de Matemática Disciplina MAT154 - Cálculo 1 Capítulo 1 Números Reais Conjuntos Numéricos Conjunto dos naturais: N = {1,, 3, 4,... } Conjunto dos inteiros: Z = {..., 3,, 1, 0, 1,, 3,... } {

Leia mais

a) Falsa. Por exemplo, para n = 2, temos 3n = 3 2 = 6, ou seja, um número par.

a) Falsa. Por exemplo, para n = 2, temos 3n = 3 2 = 6, ou seja, um número par. Matemática Unidade I Álgebra Série - Teoria dos números 01 a) Falsa. Por exemplo, para n =, temos 3n = 3 = 6, ou seja, um número par. b) Verdadeira. Por exemplo, para n = 1, temos n = 1 =, ou seja, um

Leia mais

FICHA DE TRABALHO N.º 2 MATEMÁTICA A - 10.º ANO CONJUNTOS E CONDIÇÕES

FICHA DE TRABALHO N.º 2 MATEMÁTICA A - 10.º ANO CONJUNTOS E CONDIÇÕES FICHA DE TRABALHO N.º MATEMÁTICA A - 10.º ANO CONJUNTOS E CONDIÇÕES Conhece a Matemática e dominarás o Mundo. Galileu Galilei GRUPO I ITENS DE ESCOLHA MÚLTIPLA 1. Considere a condição px : x é um número

Leia mais

INTRODUÇÃO À TEORIA DOS CONJUNTOS

INTRODUÇÃO À TEORIA DOS CONJUNTOS 1 INTRODUÇÃO À TEORIA DOS CONJUNTOS Gil da Costa Marques 1.1 Introdução 1.2 Conceitos básicos 1.3 Subconjuntos e intervalos 1.4 O conjunto dos números reais 1.4.1 A relação de ordem em 1.5 Intervalos 1.5.1

Leia mais

Definição: Todo objeto parte de um conjunto é denominado elemento.

Definição: Todo objeto parte de um conjunto é denominado elemento. 1. CONJUNTOS 1.1. TEORIA DE CONJUNTOS 1.1.1. DEFINIÇÃO DE CONJUNTO Definição: Conjunto é toda coleção de objetos. Uma coleção de números é um conjunto. Uma coleção de letras é um conjunto. Uma coleção

Leia mais

MATEMÁTICA - 3o ciclo Intervalos de números Reais (9 o ano) Propostas de resolução

MATEMÁTICA - 3o ciclo Intervalos de números Reais (9 o ano) Propostas de resolução MATEMÁTICA - 3o ciclo Intervalos de números Reais (9 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Como o conjunto A Z tem sete elementos, os sete elemento são três

Leia mais

Conjuntos. Ou ainda por diagrama (diagrama de Venn-Euler):

Conjuntos. Ou ainda por diagrama (diagrama de Venn-Euler): Capítulo 1 Conjuntos Conjunto é uma coleção de objetos, não importando a ordem ou quantas vezes algum objeto apareça, exemplos: Conjunto dos meses do ano; Conjunto das letras do nosso alfabeto; Conjunto

Leia mais

Fundamentos de Matemática

Fundamentos de Matemática Fundamentos de Matemática Aula 1 Antonio Nascimento Plano de Ensino Conteúdos Teoria dos Conjuntos; Noções de Potenciação, Radiciação; Intervalos Numéricos; Fatoração, Equações e Inequações; Razão, Proporção,

Leia mais

Tema I Introdução à lógica bivalente e à teoria de conjuntos

Tema I Introdução à lógica bivalente e à teoria de conjuntos Tema I Introdução à lógica bivalente e à teoria de conjuntos Unidade 1 Proposições Páginas 13 a 9 1. a) 3 é uma designação. b) 3 = 6 é uma proposição. c) é o único número primo par é uma proposição. d)

Leia mais

Funções potência da forma f (x) =x n, com n N

Funções potência da forma f (x) =x n, com n N Folha 1 Matemática Básica Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Funções potência da forma f (x) =x n, com n N Parte 08 Parte 8 Matemática Básica 1

Leia mais

Matemática A Intensivo V. 1

Matemática A Intensivo V. 1 Matemática A Intensivo V Eercícios ) V F F F F V V V ) D a) Verdadeiro Zero é elemento do conjunto {,,, 3, } b) Falso Nesse caso temos {a} como subconjunto de {a, b}, logo a relação correta seria a} {a,

Leia mais

Aula 1 Conjuntos Numéricos

Aula 1 Conjuntos Numéricos 1 FUNDAMENTOS DA MATEMÁTICA Aula 1 Conjuntos Numéricos Professor Luciano Nóbrega UNIDADE 1 2 EMENTA Basicamente, veremos: U1 Conjuntos Numéricos. Regra de três (simples e compostas). Funções de 1º e 2º

Leia mais

CURSO PRF 2017 MATEMÁTICA

CURSO PRF 2017 MATEMÁTICA AULA 001 1 MATEMÁTICA PROFESSOR AULA 001 MATEMÁTICA DAVIDSON VICTOR 2 AULA 01 - CONJUNTOS NUMÉRICOS CONJUNTO DOS NÚMEROS NATURAIS É o primeiro e o mais básico de todos os conjuntos numéricos. Pertencem

Leia mais

Matemática A Semiextensivo V. 1

Matemática A Semiextensivo V. 1 Semiextensivo V. 1 Exercícios 01) a) ( 6) 6 b) ( 6) 6 c) 5 5 d) 7 1 7 1 49 e) 4 4 64 7 f) 0 4 1 Lembre-se de que todo número elevado a zero é igual a 5 um! 0) B 0) E 04) E 1 g) 5 5 5. Lembre-se de que:

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Conjuntos. Isabelle Araujo 5º período de Engenharia de Produção

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Conjuntos. Isabelle Araujo 5º período de Engenharia de Produção CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.1 Conjuntos Isabelle Araujo 5º período de Engenharia de Produção Definição Noção intuitiva: São coleções de elementos da mesma espécie. - O conjunto

Leia mais

Existem conjuntos em todas as coisas e todas as coisas são conjuntos de outras coisas.

Existem conjuntos em todas as coisas e todas as coisas são conjuntos de outras coisas. MÓDULO 3 CONJUNTOS Saber identificar os conjuntos numéricos em diferentes situações é uma habilidade essencial na vida de qualquer pessoa, seja ela um matemático ou não! Podemos dizer que qualquer coisa

Leia mais

Curso: Ciência da Computação Disciplina: Matemática Discreta 3. CONJUNTOS. Prof.: Marcelo Maraschin de Souza

Curso: Ciência da Computação Disciplina: Matemática Discreta 3. CONJUNTOS. Prof.: Marcelo Maraschin de Souza Curso: Ciência da Computação Disciplina: Matemática Discreta 3. CONJUNTOS Prof.: Marcelo Maraschin de Souza 3. Conjuntos Definição: Um conjunto é uma coleção desordenada de zero ou mais objetos, denominados

Leia mais

Para provar uma implicação se p, então q, é suficiente fazer o seguinte:

Para provar uma implicação se p, então q, é suficiente fazer o seguinte: Prova de Implicações Uma implicação é verdadeira quando a verdade do seu antecedente acarreta a verdade do seu consequente. Ex.: Considere a implicação: Se chove, então a rua está molhada. Observe que

Leia mais

2º trimestre Lista de exercícios Ensino Médio 2º ano classe: Prof. Maurício Nome: nº

2º trimestre Lista de exercícios Ensino Médio 2º ano classe: Prof. Maurício Nome: nº º trimestre Lista de exercícios Ensino Médio º ano classe: Prof. Maurício Nome: nº --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Leia mais

CONJUNTOS-REVISÃO UNIDADE SEMESTRE BLOCO TURMA

CONJUNTOS-REVISÃO UNIDADE SEMESTRE BLOCO TURMA CURSO CONJUNTOS-REVISÃO UNIDDE SEMESTRE BLOCO TURM DISCIPLIN ESTUDNTE PROFESSOR () GÊNESIS SORES RÚJO DT Responda com responsabilidade os questionários da avaliação institucional! LEMBRE-SE: avaliar com

Leia mais

PC Polícia Civil do Estado de São Paulo PAPILOSCOPISTA

PC Polícia Civil do Estado de São Paulo PAPILOSCOPISTA PC Polícia Civil do Estado de São Paulo PAPILOSCOPISTA Concurso Público 2016 Conteúdo Teoria dos conjuntos. Razão e proporção. Grandezas proporcionais. Porcentagem. Regras de três simples. Conjuntos numéricos

Leia mais

= = 20 4 (3 + 4) 2 = = 56

= = 20 4 (3 + 4) 2 = = 56 Capítulo 0 Pré-requisitos O objetivo desse capítulo é apresentar uma coleção de propriedades e resultados sobre números reais e outros temas que serão utilizados ao longo do curso e devem ser relembrados

Leia mais

ÁLGEBRA. AULA 1 _ Conjuntos Professor Luciano Nóbrega. Maria Auxiliadora

ÁLGEBRA. AULA 1 _ Conjuntos Professor Luciano Nóbrega. Maria Auxiliadora 1 ÁLGEBRA AULA 1 _ Conjuntos Professor Luciano Nóbrega Maria Auxiliadora 2 Pode-se dizer que a é, em grande parte, trabalho de um único matemático: Georg Cantor (1845-1918). A noção de conjunto não é suscetível

Leia mais

Matemática Básica Noções Básicas de Operações com Conjuntos / Conjuntos Numéricos

Matemática Básica Noções Básicas de Operações com Conjuntos / Conjuntos Numéricos Matemática Básica Noções Básicas de Operações com Conjuntos / Conjuntos Numéricos 02 1. Noção intuitiva de conjunto Intuitivamente, entendemos como um conjunto: toda coleção bem definida de objetos (chamados

Leia mais

Diagrama de Venn O diagrama de Venn representa conjunto da seguinte maneira:

Diagrama de Venn O diagrama de Venn representa conjunto da seguinte maneira: Conjuntos Introdução Lembramos que conjunto, elemento e relação de pertinência são considerados conceitos primitivos, isto é, não aceitam definição. Intuitivamente, sabemos que conjunto é uma lista, coleção

Leia mais

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos Unidade I MATEMÁTICA Prof. Celso Ribeiro Campos Números reais Três noções básicas são consideradas primitivas, isto é, são aceitas sem a necessidade de definição. São elas: a) Conjunto. b) Elemento. c)

Leia mais

Lista 1 - Bases Matemáticas

Lista 1 - Bases Matemáticas Lista 1 - Bases Matemáticas Elementos de Lógica e Linguagem Matemática Parte I 1 Atribua valores verdades as seguintes proposições: a) 5 é primo e 4 é ímpar. b) 5 é primo ou 4 é ímpar. c) (Não é verdade

Leia mais

CONJUNTOS RELAÇÕES DE PERTINÊNCIA, INCLUSÃO E IGUALDADE; OPERAÇÕES ENTRE CONJUNTOS, UNIÃO, INTER- SEÇÃO E DIFERENÇA

CONJUNTOS RELAÇÕES DE PERTINÊNCIA, INCLUSÃO E IGUALDADE; OPERAÇÕES ENTRE CONJUNTOS, UNIÃO, INTER- SEÇÃO E DIFERENÇA CONJUNTOS RELAÇÕES DE PERTINÊNCIA, INCLUSÃO E IGUALDADE; OPERAÇÕES ENTRE CONJUNTOS, UNIÃO, INTER- SEÇÃO E DIFERENÇA CONJUNTO: É um conceito primitivo associado à idéia de coleção.. - INDICAÇÃO: Os conjuntos

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Conjuntos. Rafael Carvalho 7º Período Engenharia Civil

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Conjuntos. Rafael Carvalho 7º Período Engenharia Civil CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2016.2 Conjuntos Rafael Carvalho 7º Período Engenharia Civil Definição Noção intuitiva: São coleções de elementos da mesma espécie. - O conjunto de todos

Leia mais

Conjuntos. Notações e Símbolos

Conjuntos. Notações e Símbolos Conjuntos A linguagem de conjuntos é interessante para designar uma coleção de objetos. Quando os estatísticos selecionam indivíduos de uma população eles usam a palavra amostra, frequentemente. Todas

Leia mais

2 a Lista de Exercícios 2001/I

2 a Lista de Exercícios 2001/I 1 Universidade Federal de Viçosa Departamento de Matemática MAT 131 Introdução à Álgebra a Lista de xercícios 001/I Tópico: onjuntos e elementos 1) Definir, pela enumeração dos seus elementos, cada um

Leia mais

SIMULADO 3 INSTITUTO TECNOLÓGICO DE AERONÁUTICA VESTIBULAR 2018 GABARITO

SIMULADO 3 INSTITUTO TECNOLÓGICO DE AERONÁUTICA VESTIBULAR 2018 GABARITO SIMULADO 3 INSTITUTO TECNOLÓGICO DE AERONÁUTICA VESTIBULAR 018 GABARITO Física Inglês Português Matemática 1 C 1 * 1 D 1 B B B E C 3 B 3 B 3 D 3 D 4 E 4 C 4 A 4 E 5 A 5 B 5 C 5 C 6 C 6 E 6 E 6 A 7 E 7

Leia mais

Errata da lista 1: Na página 4 (respostas), a resposta da letra e da questão 13 é {2, 3, 5, 7, 11, 13, 17} (faltou o número 17)

Errata da lista 1: Na página 4 (respostas), a resposta da letra e da questão 13 é {2, 3, 5, 7, 11, 13, 17} (faltou o número 17) Errata da lista 1: Na página 4 (respostas), a resposta da letra e da questão 13 é {2, 3, 5, 7, 11, 13, 17} (faltou o número 17) Lista 1 - Bases Matemáticas Elementos de Lógica e Linguagem Matemática 1

Leia mais

MATEMÁTICA Conjuntos. Professor Marcelo Gonzalez Badin

MATEMÁTICA Conjuntos. Professor Marcelo Gonzalez Badin MATEMÁTICA Conjuntos Professor Marcelo Gonzalez Badin Alguns símbolos importantes Œ Pertence / Tal que œ Não Pertence : Tal que $ " fi Existe Não existe Qualquer (para todo) Portanto Se, e somente se,...(equivalência)

Leia mais

Soluções dos Exercícios do Capítulo 2

Soluções dos Exercícios do Capítulo 2 A MATEMÁTICA DO ENSINO MÉDIO Volume 1 Soluções dos Exercícios do Capítulo 2 2.1. Seja X = {n N; a + n Y }. Como a Y, segue-se que a + 1 Y, portanto 1 X. Além disso n X a + n Y (a + n) + 1 Y n + 1 X. Logo

Leia mais

Lista 2 - Bases Matemáticas

Lista 2 - Bases Matemáticas Lista 2 - Bases Matemáticas (Última versão: 14/6/2017-21:00) Elementos de Lógica e Linguagem Matemática Parte I 1 Atribua valores verdades as seguintes proposições: a) 5 é primo e 4 é ímpar. b) 5 é primo

Leia mais

Prof. a : Patrícia Caldana

Prof. a : Patrícia Caldana CONJUNTOS ESPECIAIS Conjunto Vazio O Conjunto vazio é o conjunto que não possui elementos. Para representarmos o conjunto vazio usaremos os símbolos: { } ou. Atenção: Quando os símbolos { } ou, aparecerem

Leia mais

A seguir, estão três afirmativas sobre números reais:

A seguir, estão três afirmativas sobre números reais: Questão 01) O conjunto X = {4m + 5n;m,n Z + } contém todos os números inteiros positivos a) pares, a partir de 4. b) ímpares, a partir de 5. c) a partir de 9, inclusive. d) a partir de 12, inclusive. e)

Leia mais

Análise de Algoritmos

Análise de Algoritmos Análise de Algoritmos Técnicas de Prova Profa. Sheila Morais de Almeida DAINF-UTFPR-PG julho - 2015 Técnicas de Prova Definição Uma prova é um argumento válido que mostra a veracidade de um enunciado matemático.

Leia mais

Seno e Cosseno de arco trigonométrico

Seno e Cosseno de arco trigonométrico Caderno Unidade II Série Segmento: Pré-vestibular Resoluções Coleção: Alfa, Beta e Gama Disciplina: Matemática Volume: Unidade II: Série Seno e Cosseno de arco trigonométrico. sen90 cos80 sen70 ( ) ( )

Leia mais

Teoria dos Conjuntos. Prof. Jorge

Teoria dos Conjuntos. Prof. Jorge Teoria dos Conjuntos Conjuntos Conceitos iniciais Na teoria dos conjuntos, consideramos como primitivos os conceitos de elemento, pertinência e conjunto. Exemplos - Conjunto I. O conjunto dos alunos do

Leia mais

Matemática E Intensivo V. 1

Matemática E Intensivo V. 1 GABARITO Matemática E Intensivo V. Exercícios 0) 5 0) 5 Seja o termo geral = 3n, então: Par =, temos: a = 3. = 3 = Par =, temos: a = 3. = 6 = 5 Par = 3, temos: a 3 = 3. 3 = 9 = 8 Então a + a + a 3 = +

Leia mais

Matemática I. 1 Propriedades dos números reais

Matemática I. 1 Propriedades dos números reais Matemática I 1 Propriedades dos números reais O conjunto R dos números reais satisfaz algumas propriedades fundamentais: dados quaisquer x, y R, estão definidos a soma x + y e produto xy e tem-se 1 x +

Leia mais

Pré-Cálculo. Humberto José Bortolossi. Aula 5 27 de agosto de Departamento de Matemática Aplicada Universidade Federal Fluminense

Pré-Cálculo. Humberto José Bortolossi. Aula 5 27 de agosto de Departamento de Matemática Aplicada Universidade Federal Fluminense Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 5 27 de agosto de 200 Aula 5 Pré-Cálculo Expansões decimais: exemplo Números reais numericamente

Leia mais

RESPOSTAS DA LISTA 5 (alguns estão com a resolução ou o resumo da resolução):

RESPOSTAS DA LISTA 5 (alguns estão com a resolução ou o resumo da resolução): Lista de Matemática Básica I - RESPOSTAS) RESPOSTAS DA LISTA alguns estão com a resolução ou o resumo da resolução): Resposta: < < < < < 8 Justificativa: observe que Também observe que: e são simétricos;

Leia mais

Hewlett-Packard CONJUNTOS NUMÉRICOS. Aulas 01 a 08. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos

Hewlett-Packard CONJUNTOS NUMÉRICOS. Aulas 01 a 08. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Hewlett-Packard CONJUNTOS NUMÉRICOS Aulas 01 a 08 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Ano: 2019 Sumário CONJUNTOS NUMÉRICOS... 2 Conjunto dos números Naturais... 2 Conjunto dos números

Leia mais

Pré-Cálculo. Humberto José Bortolossi. Aula de junho de Departamento de Matemática Aplicada Universidade Federal Fluminense

Pré-Cálculo. Humberto José Bortolossi. Aula de junho de Departamento de Matemática Aplicada Universidade Federal Fluminense Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 12 06 de junho de 2011 Aula 12 Pré-Cálculo 1 A função afim A função afim Uma função f : R R

Leia mais

EMENTA Lógica; Conjuntos Numéricos; Relações e Funções. OBJETIVOS. Geral

EMENTA Lógica; Conjuntos Numéricos; Relações e Funções. OBJETIVOS. Geral DADOS DO COMPONENTE CURRICULAR Disciplina: Matemática Curso: Técnico Integrado em Eletromecânica Série: 1ª Carga Horária: 100 h.r Docente Responsável: EMENTA Lógica; Conjuntos Numéricos; Relações e Funções.

Leia mais

NÚCLEO EDUCAFRO KALUNGA DISCIPLINA DE MATEMÁTICA PROFESSOR DEREK PAIVA

NÚCLEO EDUCAFRO KALUNGA DISCIPLINA DE MATEMÁTICA PROFESSOR DEREK PAIVA NÚCLEO EDUCAFRO KALUNGA DISCIPLINA DE MATEMÁTICA PROFESSOR DEREK PAIVA NOTAS DE AULA: REPRESENTAÇÕES DECIMAIS A representação decimal é a forma como escrevemos um número em uma única base, e como essa

Leia mais

Soluções de Questões de Matemática do Colégio Militar do Rio de Janeiro CMRJ

Soluções de Questões de Matemática do Colégio Militar do Rio de Janeiro CMRJ Soluções de Questões de Matemática do Colégio Militar do Rio de Janeiro CMRJ. Questão Funções Sendo D e D, respectivamente, domínios das funções reais f e g, definidas por f ( x) = x e g ( x) de x no intervalo:,

Leia mais

Pré-Cálculo. Humberto José Bortolossi. Aula de maio de Departamento de Matemática Aplicada Universidade Federal Fluminense

Pré-Cálculo. Humberto José Bortolossi. Aula de maio de Departamento de Matemática Aplicada Universidade Federal Fluminense Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 12 11 de maio de 2010 Aula 12 Pré-Cálculo 1 A função afim A função afim Uma função f : R R

Leia mais

Universidade Federal de Goiás Campus Catalão Departamento de Matemática Disciplina: Fundamentos de Análise

Universidade Federal de Goiás Campus Catalão Departamento de Matemática Disciplina: Fundamentos de Análise Universidade Federal de Goiás Campus Catalão Departamento de Matemática Disciplina: Fundamentos de Análise Professor: André Luiz Galdino Gabarito da 1 a Lista de Exercícios 1. Prove que para todo x 0 IR

Leia mais

Matemática A Intensivo V. 1

Matemática A Intensivo V. 1 Intensivo V Eercícios ) V F F F F V V V ) D a) Verdadeiro Zero é elemento do conjunto {,,, 3, } b) Falso Neste caso temos {a} como subconjunto de {a, b} logo a relação correta seria a} {a, b} c) Falso

Leia mais

Lista de Exercícios de Matemática Conjuntos parte I Profº. Márcio Prieto

Lista de Exercícios de Matemática Conjuntos parte I Profº. Márcio Prieto 1. Sendo (x+2, 2y-4) = (8x, 3y-10), determine o valor de x e de y. 2. Represente em linguagem simbólica os seguintes subconjuntos de IR. 3. Sendo A = {5, 7, 9}, B = {0, 9, 10, 90}, C = {7, 8, 9, 10}, D

Leia mais

MANT _ EJA I. Aula 01. 1º Bimestre. Teoria dos Conjuntos Professor Luciano Nóbrega. DEUS criou os números naturais. O resto é obra dos homens.

MANT _ EJA I. Aula 01. 1º Bimestre. Teoria dos Conjuntos Professor Luciano Nóbrega. DEUS criou os números naturais. O resto é obra dos homens. MANT _ EJA I DEUS criou os números naturais. O resto é obra dos homens. Aula 01 Teoria dos Conjuntos Professor Luciano Nóbrega Leopold Kronecker (Matemático Alemão) 1 1º Bimestre 2 Observe a foto de um

Leia mais

a k. x a k. : conjunto dos números complexos i: unidade imaginária; i 2 = 1 z : módulo do número z z: conjugado do número z M m n

a k. x a k. : conjunto dos números complexos i: unidade imaginária; i 2 = 1 z : módulo do número z z: conjugado do número z M m n ITA MATEMÁTICA NOTAÇÕES = {,,,...} : conjunto dos números reais [a, b] = {x ; a x b} [a, b[ = {x ; a x < b} ]a, b[ = {x ; a < x < b} A\B = {x; x A e x B} k a n = a + a +... + a k, k n = k a n x n = a 0

Leia mais

Lista Função - Ita Carlos Peixoto

Lista Função - Ita Carlos Peixoto Lista Função - Ita Carlos Peixoto. (Ita 07) Sejam X e Y dois conjuntos finitos com X Y e X Y. Considere as seguintes afirmações: I. Existe uma bijeção f : X Y. II. Existe uma função injetora g: Y X. III.

Leia mais

DISCIPLINA: MATEMÁTICA BÁSICA PROF. ELIONARDO ROCHELLY TEC. ALIMENTOS TEC. SISTEMAS INTERNET MATUTINO/VESPERTINO

DISCIPLINA: MATEMÁTICA BÁSICA PROF. ELIONARDO ROCHELLY TEC. ALIMENTOS TEC. SISTEMAS INTERNET MATUTINO/VESPERTINO DISCIPLINA: MATEMÁTICA BÁSICA PROF. ELIONARDO ROCHELLY TEC. ALIMENTOS TEC. SISTEMAS INTERNET MATUTINO/VESPERTINO Conjuntos A noção de conjunto em Matemática é praticamente a mesma utilizada na linguagem

Leia mais

Lista Conjuntos Paulo Vinícius Exercícios resolvidos

Lista Conjuntos Paulo Vinícius Exercícios resolvidos Lista Conjuntos Paulo Vinícius Exercícios resolvidos Questão 01. (Fuvest 2018) Dentre os candidatos que fizeram provas de matemática, português e inglês num concurso, 20 obtiveram nota mínima para aprovação

Leia mais

III) se deste número n subtrairmos o número 3816, obteremos um número formado pelos mesmos algarismos do número n, mas na ordem contrária.

III) se deste número n subtrairmos o número 3816, obteremos um número formado pelos mesmos algarismos do número n, mas na ordem contrária. 1 Projeto Jovem Nota 10 1. (Fuvest 2000) Um número inteiro positivo n de 4 algarismos decimais satisfaz às seguintes condições: I) a soma dos quadrados dos 1 e 4 algarismos é 58; II) a soma dos quadrados

Leia mais

Aulas 10 e 11 / 18 e 20 de abril

Aulas 10 e 11 / 18 e 20 de abril 1 Conjuntos Aulas 10 e 11 / 18 e 20 de abril Um conjunto é uma coleção de objetos. Estes objetos são chamados de elementos do conjunto. A única restrição é que em geral um mesmo elemento não pode contar

Leia mais

Derivadas Parciais Capítulo 14

Derivadas Parciais Capítulo 14 Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS 14.2 Limites e Continuidade Nesta seção, aprenderemos sobre: Limites e continuidade de vários tipos de funções. LIMITES E CONTINUIDADE Vamos comparar o

Leia mais

Matemática Conjuntos - Teoria

Matemática Conjuntos - Teoria Matemática Conjuntos - Teoria 1 - Conjunto: Conceito primitivo; não necessita, portanto, de definição. Exemplo: conjunto dos números pares positivos: P = {2,4,6,8,10,12,... }. Esta forma de representar

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 2

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 2 FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão Nome: N.º Turma: Apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando,

Leia mais

Revisão de conceitos Matemáticos. Matemática e Fundamentos de Informática

Revisão de conceitos Matemáticos. Matemática e Fundamentos de Informática Revisão de conceitos Matemáticos Matemática e Fundamentos de Informática 1 1 Conjuntos Teoria dos conjuntos Em Matemática, conjunto é uma coleção de objetos (chamados elementos). Os elementos podem representar

Leia mais

Raciocínio Lógico I. Solução. Primeiramente vamos listar todos os números de dois algarismos que são múltiplos de 7 ou 13.

Raciocínio Lógico I. Solução. Primeiramente vamos listar todos os números de dois algarismos que são múltiplos de 7 ou 13. Polos Olímpicos de Treinamento Curso de Combinatória - Nível 1 Prof. Bruno Holanda Aula 3 Raciocínio Lógico I O estudo da Lógica é essencial para os alunos que desejam participar de olimpíadas de matemática.

Leia mais

1) Seja o conjunto A = (0;1). Quantas relações binárias distintas podem ser definidas sobre o conjunto A?

1) Seja o conjunto A = (0;1). Quantas relações binárias distintas podem ser definidas sobre o conjunto A? RESUMO A relação binária é uma relação entre dois elementos, sendo um conjunto de pares ordenados. As relações binárias são comuns em muitas áreas da matemática. Um par ordenado consiste de dois termos,

Leia mais

Centro Educacional Evangélico - Trabalho 2º Bimestre

Centro Educacional Evangélico - Trabalho 2º Bimestre Centro Educacional Evangélico - Trabalho º Bimestre Disciplina: Matemática Data de Entrega:06/06/018 Nota: 10 Para cada questão que não conter a resposta completa (por escrito) será anulada 0,1 pontos;

Leia mais

Polos Olímpicos de Treinamento. Aula 14. Curso de Álgebra - Nível 2 Prof. Marcelo Mendes. Revisão - Parte II

Polos Olímpicos de Treinamento. Aula 14. Curso de Álgebra - Nível 2 Prof. Marcelo Mendes. Revisão - Parte II Polos Olímpicos de Treinamento Curso de Álgebra - Nível Prof. Marcelo Mendes Aula 4 Revisão - Parte II Continuando nossa breve revisão de temas já abordados, propomos mais problemas de equações e sistemas

Leia mais

Extensivo Matemática A VOL 2

Extensivo Matemática A VOL 2 Extensivo Matemática VOL 2 01) N = {0, 1, 2, 3, 4,...} Conjunto dos números naturais B = {x N/ 2 x 7} a) V: 7 B = {2, 3, 4, 5, 6, 7} b) F: 5 é um elemento de B c) F: x, com x N, tal que 2 x 7. d) F: os

Leia mais

Expoente 10 Dossiê do Professor 2

Expoente 10 Dossiê do Professor 2 Expoente 0 Dossiê do Professor Tema I Introdução à lógica bivalente e à teoria de conjuntos Unidade Proposições Páginas a 9. a) é uma designação. b) = 6 é uma proposição. c) é o único número primo par

Leia mais

Generalidades sobre conjuntos

Generalidades sobre conjuntos Generalidades sobre conjuntos E-mail: ana.boero@ufabc.edu.br Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Conjuntos e a noção de pertinência Na teoria dos

Leia mais

Apresentação do curso

Apresentação do curso Folha 1 Matemática Básica Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Apresentação do curso Parte 1 Parte 1 Matemática Básica 1 Parte 1 Matemática Básica

Leia mais

Generalidades sobre conjuntos

Generalidades sobre conjuntos Generalidades sobre conjuntos E-mail: ana.boero@ufabc.edu.br Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Conjuntos e a noção de pertinência Na teoria dos

Leia mais

Raciocínio Lógico. Object 1

Raciocínio Lógico. Object 1 Object 1 Raciocínio Lógico 01- Numa fábrica de brinquedos, 90 funcionários trabalham no setor de carros, 120 trabalham no setor de bonecas, 70 trabalham no setor de jogos; 40 trabalham tanto no setor de

Leia mais

MAT 0143 : Cálculo para Ciências Biológicas

MAT 0143 : Cálculo para Ciências Biológicas MAT 0143 : Cálculo para Ciências Biológicas Aula 3/ Segunda 10/03/2014 Sylvain Bonnot (IME-USP) 2014 1 Resumo Aula 2 1 Informações gerais: Email: sylvain@ime.usp.br Site: o link do MAT 0143 na pagina seguinte

Leia mais

Curso de Administração Centro de Ciências Sociais Aplicadas Universidade Católica de Petrópolis. Matemática 1. Revisão - Conjuntos e Relações v. 0.

Curso de Administração Centro de Ciências Sociais Aplicadas Universidade Católica de Petrópolis. Matemática 1. Revisão - Conjuntos e Relações v. 0. Curso de Administração Centro de Ciências Sociais Aplicadas Universidade Católica de Petrópolis Matemática 1 Revisão - Conjuntos e Relações v. 0.1 Baseado nas notas de aula de Matemática I da prof. Eliane

Leia mais

UFPR - Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Matemática CM122 - Fundamentos de Análise Prof. Zeca Eidam.

UFPR - Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Matemática CM122 - Fundamentos de Análise Prof. Zeca Eidam. UFPR - Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Matemática CM1 - Fundamentos de Análise Prof Zeca Eidam Lista 4 Supremo e ínfimo 1 Seja X R não-vazio 1 Mostre que, caso existam,

Leia mais

p a p. mdc(j,k): máximo divisor comum dos números inteiros j e k. n(x) : número de elementos de um conjunto finito X. (a,b) = {x : a < x < b}.

p a p. mdc(j,k): máximo divisor comum dos números inteiros j e k. n(x) : número de elementos de um conjunto finito X. (a,b) = {x : a < x < b}. MATEMÁTICA NOTAÇÕES = {0,,,,...} : conjunto dos números inteiros : conjunto dos números racionais : conjunto dos números reais : conjunto dos números complexos i: unidade imaginária; i = Izl: módulo do

Leia mais

Unidade 1 - Elementos de Lógica e Linguagem Matemáticas. Exemplo. O significado das palavras. Matemática Básica linguagem do cotidiano

Unidade 1 - Elementos de Lógica e Linguagem Matemáticas. Exemplo. O significado das palavras. Matemática Básica linguagem do cotidiano A Pirâmide de aprendizagem de William Glasser Unidade 1 - Elementos de Lógica e Linguagem Matemáticas Matemática Básica Departamento de Matemática Aplicada Universidade Federal Fluminense 2018.1 Segundo

Leia mais

Matemática A Semi-Extensivo V. 3

Matemática A Semi-Extensivo V. 3 Matemática A Semi-Etensivo V. Eercícios 0) 0 f: R R f() = c) f: R R f() = 0. Falsa alsa. CD = R, mas Im(f) = [, ). 0. Falsa alsa. Im(f) = [, ). 0. Falsa alsa. Já não é sobrejetora. 08. Verdadeira f( 5

Leia mais

NOÇÕES. 04- (F. Santo André-SP) Seja A um conjunto com 7 elementos. O número total de subconjuntos de A é: a) 16 b) 128 c) 56 d) 100 e) 256

NOÇÕES. 04- (F. Santo André-SP) Seja A um conjunto com 7 elementos. O número total de subconjuntos de A é: a) 16 b) 128 c) 56 d) 100 e) 256 MATQUEST CONJUNTOS PROF.: JOSÉ LUÍS NOÇÕES 01- (CATANDUVA-SP) Dado o conjunto A = {, {a}, b} com {a} b a 0, pode-se afirmar que: a) {, {b}} A b) {, {a}} A c) {, a} A d) {a, b} A e) A 02- (CEFET) Considerando

Leia mais

EXERCÍCIOS DO CAPÍTULO 1

EXERCÍCIOS DO CAPÍTULO 1 EXERCÍCIOS DO CPÍTULO 1 1) Escreva em notação simbólica: a) a é elemento de b) é subconjunto de c) contém d) não está contido em e) não contém f) a não é elemento de ) Enumere os elementos de cada um dos

Leia mais

Números Reais. Jairo Menezes e Souza 19/09/2013 UFG/CAC

Números Reais. Jairo Menezes e Souza 19/09/2013 UFG/CAC UFG/CAC 19/09/2013 Iniciamos com o conjunto dos números naturais N = {0, 1, 2, 3, 4, 5,...} Iniciamos com o conjunto dos números naturais N = {0, 1, 2, 3, 4, 5,...} Chamamos de Z o conjunto dos números

Leia mais

CONJUNTOS CONJUNTOS NUMÉRICOS

CONJUNTOS CONJUNTOS NUMÉRICOS ENCONTRO 01 E 02 CONJUNTOS Intuitivamente, conjunto é uma lista, coleção ou classe de objetos, números, pessoas etc. Indicamos os conjuntos por letras maiúsculas do nosso alfabeto e seus elementos por

Leia mais

ITA º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

ITA º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR ITA - 2006 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Seja E um ponto externo a uma circunferência. Os segmentos e interceptam essa circunferência nos pontos B e A, e, C

Leia mais

Números Irracionais e Reais. Oitavo Ano

Números Irracionais e Reais. Oitavo Ano Módulo de Potenciação e Dízimas Periódicas Números Irracionais e Reais Oitavo Ano Números Irracionais e Reais 1 Exercícios Introdutórios Exercício 1. No quadro abaixo, determine quais números são irracionais.

Leia mais

Material Teórico - Módulo: Vetores em R 2 e R 3. Módulo e Produto Escalar - Parte 1. Terceiro Ano - Médio

Material Teórico - Módulo: Vetores em R 2 e R 3. Módulo e Produto Escalar - Parte 1. Terceiro Ano - Médio Material Teórico - Módulo: Vetores em R 2 e R 3 Módulo e Produto Escalar - Parte 1 Terceiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto 1 Módulo de um vetor O módulo

Leia mais

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 016. Gabarito Questão 01 [ 1,00 ] A secretaria de educação de um município recebeu uma certa quantidade de livros para distribuir entre as escolas

Leia mais