NÚMEROS DE FIBONACCI E A MODELAGEM DE GENERALIZAÇÕES DA SEÇÃO ÁUREA

Tamanho: px
Começar a partir da página:

Download "NÚMEROS DE FIBONACCI E A MODELAGEM DE GENERALIZAÇÕES DA SEÇÃO ÁUREA"

Transcrição

1 385 NÚMEROS DE FIBONCI E A MODELAGEM DE GENERALIZAÇÕES DA SEÇÃO ÁUREA Larissa Prado de Figueiredo (Uni-FEF) Antônio Carlos da Siva Filho (Uni-FEF) INTRODUÇÃO Fibonacci nasceu na Itália, mas foi educado no Norte da África, onde seu pai tinha um posto diplomático. Ele terminou sua formação e suas viagens ao redor de 1200 e, então, retornou a Pisa. Restaram cópias dos seguintes livros escritos por ele: Liber abaci (publicado em 1202), Practica geometriae (publicado em 1220), Flos (publicado 1225), and Liber quadratorum. Liber abaci, publicado em 1202, após o retorno de Fibonacci à Itália, foi baseado na aritmética e na álgebra que Fibonacci acumulou durante suas viagens. Este livro, que foi largamente copiado e imitado, introduziu o sistema posicional decimal e o uso de numerais arábicos na Europa. Um problema na terceira secção do Liber abaci levou à introdução dos Números de Fibonacci e da seqüência de Fibonacci, pelos quais Fibonacci é mais lembrado hoje em dia: Quantos pares de coelhos podem se formar em um ano, partindo de somente um par?. A resposta, para uma dada condição inicial, levou à seqüência de números: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233. Fibonacci provavelmente incluiu o problema dos coelhos a partir dos seus contatos no exterior e não inventou nem o problema nem a série de números que levam o seu nome. I - Sequência de Fibonacci Começamos com a sequência de Fibonacci propriamente dita. Chamando de f(n) ao termo que ocupa a n-ésima posição na sequência, ela pode ser definida como: f(n) f(n-1) f(n-2) (1)

2 386 com f(1) f(2) 1. Assim, seus primeiros termos são: A partir desta sequência, podemos obter a chamada razão áurea, m, que foi definida em (LÍVIO, 2006) como o limite, quando n tende para infinito, da razão entre dois termos consecutivos desta sequência, ou seja, como o limite de: m f ( n 1) f ( n ) Chamamos, aqui, a razão áurea de o numero Fibonacci e o denotamos por α 2, onde o índice 2 representa a quantidade de termos que são somados, apenas para que possamos generalizar, também, a nomenclatura. O número Fibonacci também pode ser obtido geometricamente. Consideramos um segmento de reta AB e o dividimos por um ponto C, localizado entre A e B, formamos dois segmentos: e CB. Seja o ponto C tal que seja satisfeita a seguinte proporção: α 2 AB CB CB onde α 2 > 1, já que AB > CB. Então, de: AB CB podemos, após dividir os dois membros por, obter:

3 387 AB CB AB CB CB CB α 2 2 α 2 1 ou seja, α 2 é raiz da equação: 2 x x 1 (2) Assim, com dez casas decimais, α 2 1, Propriedades 1.1. Calculamos a soma dos número de Fibonacci. Vamos mostrar que: u 1 u 2... u n u n2 1. Temos: u 1 u 3 u 2, u 2 u 4 u 3, u 3 u 5 u 4,... u n-1 u n1 u n, u n u n2 u n1. Somando essas equações termo a termo, obtemos: u 1 u 2... u n u n2 u 2.

4 u 1 u 3 u 5... u 2n-1 u 2n u 2 u 4... u 2n u 2n u n u n1 u n-1 u n u n-1 u m u n u m u n u n2 (-1) n u 1 u 2 u 2 u 3 u 3 u 4... u 2n-1 u 2n, u 1 u 2 u 2 u 3 u 3 u 4... u 2n u 2n1 1, nu 1 (n-1)u 2 (n-2)u u n-1 u n u n4 (n3).

5 Existe uma ligação entre os números de Fibonacci e outro conjunto de números, os coeficientes binomiais. Vamos estabelecer os coeficientes binomiais no triângulo seguinte, chamado triângulo de Pascal.... Somando as diagonais, obtemos: Fração contínua

6 390 Como computar o valor dessa fração contínua? Poderíamos começar denotando o valor por x. Assim, Note que o denominador do segundo termo do lado direito da equação é idêntico ao próprio x. Portanto, temos a equação Multiplicando os dois lados por x temos x 2 x1, que é a equação que define a Razão Áurea, assim essa fração contínua é igual a Φ. II Generalizações da sequência de Fibonacci Uma das generalizações da sequência de Fibonacci é a seguinte: uma nova sequência, que chamamos de sequência Tribonacci e representamos por t(n), onde cada termo da sequência é encontrado, a partir de três termos dados, pela seguinte relação de recorrência (BEZUSKA, 1997): t(n) t(n-1) t(n-2) t(n-3) (1) com, por exemplo, t(1) t(2) 1 e t(3) 2. Assim, seus primeiros termos, no exemplo acima, são: A partir desta sequência, podemos obter o chamado número Tribonacci, que, por analogia ao número Fibonacci, denotamos por α 3 (onde o índice 3

7 391 refere-se, como para α 2, à quantidade de termos que são somados) e definimos como o limite, quando n tende para infinito, da razão a entre dois termos consecutivos desta sequência, ou seja, como o limite de: a t( n 1) t( n) onde, como se pode ver, a razão é entre um termo e seu antecessor, como também foi definido o número Fibonacci. O número Tribonacci, assim como o número Fibonacci, também pode ser obtido geometricamente. Consideramos um segmento de reta AB e o dividimos por dois pontos C e D, localizados entre A e B, formamos três segmentos:, CD e DB. Sejam os pontos C e D tais que seja satisfeita a seguinte proporção: α 3 AB DB DB CD CD onde α 3 > 1, já que AB > DB. Então, de: AB CD DB podemos, após dividir os dois membros por, obter: AB CD DB AB DB DB CD CD CD DB CD CD α α 3 α 3 1

8 392 ou seja, α 3 é raiz da equação: 3 2 x x x 1 (2) Assim, com dez casas decimais, α 3 1, Podemos, por analogia, definir sequências e números Tetranacci, Pentanacci, etc (WADDILL, 1992). De uma maneira geral, definimos uma sequência K-bonacci como sendo a sequência formada da seguinte maneira: cada termo é obtido a partir da soma dos k termos imediatamente anteriores, ou seja: F(n) F(n-1) F(n-2)... F(n-k) (3) Assim como nas sequências Fibonacci, Tribonacci, etc., podemos formar a razão entre dois termos consecutivos desta sequência generalizada. Esta razão converge para um número que chamamos número K-bonacci (e representamos por α k ), o qual pode ser encontrado como uma das raízes da seguinte equação polinomial (obtida por uma generalização do processo que levou às equações (2) e (4)): x k x k 1 x k 2... x 1 (4) O objetivo deste trabalho é modelar a sequência de números k-bonacci de modo a encontrar uma expressão que forneça, diretamente, o número k-bonacci com o menor erro possível, sem precisar construir a sequência correspondente ou resolver a equação polinomial correspondente. Assim, dado simplesmente o valor de k, encontra-se o valor do número k-bonacci. RESULTADOS E ANÁLISE

9 393 Seguem alguns resultados. Foram tentados dois modelos para a modelagem: (a) o modelo exponencial e (b) o modelo sigmoidal. As equações para os mesmos estão logo a seguir: (a) Ajuste Exponencial: y ( x) y 0 x A1 exp( t 1 ) (b) Ajuste Sigmoidal y ( x) A 2 A1 A2 x x 1 exp dx 0 Como uma medida da precisão do ajuste escolheu-se o MAPE, calculado seguindo o algoritmo a seguir: 1. Calculamos o módulo do desvio, que é o módulo da diferença entre os valores reais e os previstos; 2. Com o resultado do item 1 em mãos, encontramos o desvio absoluto em porcentagem, dividindo o resultado do item 1 pelo valor real correspondente e multiplicamos por 100 (cem). 3. Ao final do processo, fizemos uma média para o cálculo do desvio absoluto percentual médio, conhecido como MAPE. A interpretação do MAPE é que ele é o erro percentual médio da previsão, ou seja, uma medida da precisão (ou da incerteza) do método. Quanto menor o valor do MAPE, melhor será a nossa previsão. O resultado para o ajuste exponencial pode ser visto na figura (1) e para o ajuste sigmoidal na figura (2).

10 394 2,05 Modelagem das constantes n-bonacci Ajuste Exponencial 2,00 1,95 1,90 n-bonacci 1,85 1,80 1,75 Chi^ E-6 y ± x0 0 ±0 A ± t ± ,70 1,65 1, n Fig. 1. Modelagem das constantes n-bonacci por um ajuste exponencial 2,05 n-bonacci Ajuste Sigmoidal 2,00 1,95 n-bonacci 1,90 1,85 1,80 1,75 Chi^2/DoF E-7 R^ A ± A ± x ± dx ± ,70 1,65 1, n Fig. 2. Modelagem das constantes n-bonacci por um ajuste sigmoidal A figura (3) a seguir exibe os desvios percentuais absolutos para os dois ajustes

11 Desvios Absolutos Percentuais dos Modelos em Relação aos Números n-bonacci Linha Azul: Modelo Exponencial Linha Vermelha: Modelo Sigmoidal 0.2 Desvio Absoluto Percentual n Fig. 3. Desvios absolutos percentuais dos modelos em relação aos números n-bonacci. (a) linha azul: modelo exponencial; (b) linha vermelha: modelo sigmoidal. Os MAPE s para ambos os modelos podem ser visualizados na figura (4): 2 Desvio Percentual Médio Absoluto de 1 até n dos Modelos em Relação aos Números n-bonacci Linha Azul: Modelo Exponencial Linha Vermelha: Modelo Sigmoidal Mape n Fig 4. Desvio percentual absoluto (MAPE) de 1 até n dos modelos em relação aos números n- Bonacci. (a) linha azul: modelo exponencial; (b) linha vermelha: modelo sigmoidal.

12 396 A figura (5) exibe o desvio percentual absoluto para um dado n, bem como o MAPE até este mesmo n, até n 40, para o modelo exponencial: 0.25 Desvio Percentual Absoluto e Mape para os Números n-bonacci com o Modelo Exponencial Linha azul: Desvio Percentual Absoluto Linha Vermelha: MAPE 0.2 Desvio Percentual Absoluto e Mape n Fig 5. Desvio percentual absoluto e MAPE para os números n-bonacci com o Modelo Exponencial. (a) linha azul: desvio percentual absoluto; (b) linha vermelha: MAPE. A figura (6) exibe o desvio percentual absoluto para um dado n, bem como o MAPE até este mesmo n, até n 40, para o modelo sigmoidal: 10 Desvio Percentual Absoluto e Mape para os Números n-bonacci com o Modelo Sigmoidal Linha azul: Desvio Percentual Absoluto Linha Vermelha: MAPE 9 8 Desvio Percentual Absoluto e Mape n Fig. 6. Desvio percentual absoluto e MAPE para os números n-bonacci com o Modelo Sigmoidal. (a) linha azul: desvio percentual absoluto; (b) linha vermelha: MAPE.

13 397 Modelamos, a seguir, a razão entre números n-bonacci consecutivos. O ajuste escolhido foi o exponencial e o resultado está na figura (7) a seguir. Os erros cometidos ao se fazer este ajuste podem ser visualizados na figura (8). 1,16 [n-bonacci] / [(n-1)-bonacci] Modelagem Exponencial 1,14 razão entre n-bonacci 1,12 1,10 1,08 1,06 1,04 1,02 Chi^2/DoF E-7 R^ y ± A ± t ± ,00 0, n Fig. 7. Modelagem da razão entre os números n-bonacci consecutivos por um ajuste exponencial.

14 Ajuste Exponencial para a Razão entre os Números n-bonacci Desvio Percentual Absoluto e Desvio Percentual Absoluto Médio de 1 até n Linha Azul: Desvio Percentual Absoluto Linha Vermelha: MAPE 0.2 Desvio Percentual Absoluto e MAPE n Fig. 8. Desvio percentual absoluto e MAPE para a razão entre dois números n-bonacci consecutivos com o Modelo Exponencial. (a) linha azul: desvio percentual absoluto; (b) linha vermelha: MAPE. Os valores obtidos e que produziram os gráficos anteriores podem ser conferidos nas tabelas 1 e 2 a seguir. N Tabela 1. Valores dos números n-bonacci e os desvios para os ajustes exponencial (1) e sigmoidal (2). n-bonacci Desvio1 (%) Desvio2 (%) MAPE1 (%) MAPE2 (%) 2 1, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

15 , , , , , , , , , , , , , , , , , , , , , ,006 0, , ,025 0,006 0, , Tabela 2. Valores da razão entre dois números n-bonacci consecutivos e o desvio percentual absoluto e o MAPE para o ajuste exponencial. [n-bonacci] / [(n-1)- N Bonacci] Desvio (%) Mape (%) 3 1, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,006 0, ,006 0, ,006 0, Vê-se, assim, que se pode admitir que a sequência de números n-bonacci tem um comportamento exponencial ou sigmoidal, pois ambos os ajustes são razoáveis. O desvio percentual absoluto para o ajuste exponencial tende a 0,025 (com um quiquadrado de 1,9222x10-6 ), enquanto que para o ajuste sigmoidal tende a 0,006 (com um R 2 de 0,99965), já em porcentagem. O ajuste para a razão entre números n-

16 400 Bonacci consecutivos também é bastante satisfatório. Com os parâmetros encontrados, as equações dos ajustes ficam como a seguir: (a) Ajuste Exponencial para os números n-bonacci: y ( x) x 1,9995 0,88135exp( ) 1,18996 (b) Ajuste Sigmoidal para os números n-bonacci: y ( x) 1, ,11502 x 2,79113 exp 1,16928 (c) Ajuste Exponencial para a razão entre os números n-bonacci: y ( x) x 1, ,36918exp( ) 1,00255 CONCLUSÃO O significado mais profundo deste ajuste ainda está por ser encontrado, pois o que temos é uma sequência de equações produzindo uma segunda sequência de soluções dominantes, sendo que esta segunda sequência obedece a uma determinada regra. Um possível encaminhamento destes resultados pode, eventualmente, levar a novos métodos de solução para o problema de se encontrar raízes de polinômios, ou, talvez, de alguns polinômios.

17 401 BIBLIOGRAFIA BEZUSZKA, S.; D ANGELO, L. An Application of Tribonacci Numbers. The Fibonacci Quarterly,. 15.2, 1977, p BIRKHOFF, Garret; MLANE, Saunders. Álgebra Moderna Básica. 4. ed. Rio de Janeiro: Editora Guanabara Dois S. A., p. ELIA, M. Derived Sequences, The Tribonacci Recurrence and Cubic Forms. The Fibonacci Quarterly, v. 39.2, p , FEINBERG, M. Fibonacci-Tribonacci. The Fibonacci Quarterly. v. 1, p , 1963.

SEQÜÊNCIAS E EQUAÇÕES DE DIFERENÇAS BASEADAS NA SEQÜÊNCIA DE FIBONACCI

SEQÜÊNCIAS E EQUAÇÕES DE DIFERENÇAS BASEADAS NA SEQÜÊNCIA DE FIBONACCI SEQÜÊNCIAS E EQUAÇÕES E IFERENÇAS BASEAAS NA SEQÜÊNCIA E FIBONACCI Bruo Wesley Barbosa ((Ui-FACEF) Atoio Carlos da Silva Filho (Ui-FACEF) INTROUÇÃO Leoardo Pisao é mais cohecido pelo seu apelido: Fiboacci.

Leia mais

Equações Diofantinas Exponenciais Envolvendo Sequências Recorrentes

Equações Diofantinas Exponenciais Envolvendo Sequências Recorrentes Equações Diofantinas Exponenciais Envolvendo Sequências Recorrentes Profa. Ana Paula Chaves Instituto de Matemática e Estatística Universidade Federal de Goiás VII Workshop de Verão em Matemática - UnB

Leia mais

OS NÚMEROS DE FIBONACCI

OS NÚMEROS DE FIBONACCI UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE MATEMÁTICA, ESTATÍSTICA E COMPUTAÇÃO CIENTÍFICA OS NÚMEROS DE FIBONACCI Disciplina: MA148 Fundamentos da Matemática Professor responsável: Fernando Eduardo

Leia mais

GENERALIZAÇÃO DAS SEQÜÊNCIAS DE FIBONACCI E FLUXOS DE CAIXA EM MATEMÁTICA FINANCEIRA

GENERALIZAÇÃO DAS SEQÜÊNCIAS DE FIBONACCI E FLUXOS DE CAIXA EM MATEMÁTICA FINANCEIRA GENERALIZAÇÃO DAS SEQÜÊNCIAS DE FIBONACCI E FLUXOS DE CAIXA EM MATEMÁTICA FINANCEIRA Letícia Faleiros Chaves - Uni-FACEF Antonio Carlos da Silva Filho - Uni-FACEF INTRODUÇÃO Leonardo Pisano é mais conhecido

Leia mais

Números de Fibonacci. f n = f n 1 + f n 2. A condição inicial é de que há um par no primeiro mês e dois pares no segundo mês: f 1 = 1, f 2 = 2

Números de Fibonacci. f n = f n 1 + f n 2. A condição inicial é de que há um par no primeiro mês e dois pares no segundo mês: f 1 = 1, f 2 = 2 Números de Fibonacci Leonardo Pisano Fibonacci nasceu por volta de 1170 e morreu por volta de 1250 em Pisa, atualmente pertencente à Itália. Durante sua vida ele viajou pela Europa e pelo Norte da África,

Leia mais

A reta numérica. Praciano-Pereira, T

A reta numérica. Praciano-Pereira, T A reta numérica Praciano-Pereira, T Sobral Matemática 3 de fevereiro de 205 Textos da Sobral Matemática Editor Tarcisio Praciano-Pereira, tarcisio@member.ams.org - reta numérica Se diz duma reta na qual

Leia mais

Recorrências Lineares de Primeira Ordem

Recorrências Lineares de Primeira Ordem 7 Recorrências Lineares de Primeira Ordem Sumário 7.1 Introdução....................... 2 7.2 Sequências Denidas Recursivamente........ 3 7.3 Exercícios Recomendados............... 4 7.4 Exercícios Suplementares...............

Leia mais

Conjuntos. Notações e Símbolos

Conjuntos. Notações e Símbolos Conjuntos A linguagem de conjuntos é interessante para designar uma coleção de objetos. Quando os estatísticos selecionam indivíduos de uma população eles usam a palavra amostra, frequentemente. Todas

Leia mais

x exp( t 2 )dt f(x) =

x exp( t 2 )dt f(x) = INTERPOLAÇÃO POLINOMIAL 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia Aproximação

Leia mais

Marcelo Keese Albertini Faculdade de Computação Universidade Federal de Uberlândia. 23 de Março de 2018

Marcelo Keese Albertini Faculdade de Computação Universidade Federal de Uberlândia. 23 de Março de 2018 Relações de Recorrência Marcelo Keese Albertini Faculdade de Computação Universidade Federal de Uberlândia 23 de Março de 2018 Aula de hoje Nesta aula veremos Conceitos de Relações de Recorrência Resolução

Leia mais

Meu nome: Minha Instituição:

Meu nome: Minha Instituição: Meu nome: Minha Instituição: 1. André, Samuel e Renan desenvolveram três desafios matemáticos relacionados à geometria para uma competição entre eles. Desse modo, cada um teria que resolver os dois desafios

Leia mais

NÚCLEO EDUCAFRO KALUNGA DISCIPLINA DE MATEMÁTICA PROFESSOR DEREK PAIVA

NÚCLEO EDUCAFRO KALUNGA DISCIPLINA DE MATEMÁTICA PROFESSOR DEREK PAIVA NÚCLEO EDUCAFRO KALUNGA DISCIPLINA DE MATEMÁTICA PROFESSOR DEREK PAIVA NOTAS DE AULA: REPRESENTAÇÕES DECIMAIS A representação decimal é a forma como escrevemos um número em uma única base, e como essa

Leia mais

Interpolação polinomial: Diferenças divididas de Newton

Interpolação polinomial: Diferenças divididas de Newton Interpolação polinomial: Diferenças divididas de Newton Marina Andretta ICMC-USP 16 de maio de 2012 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina Andretta (ICMC-USP) sme0500

Leia mais

Universidade Estadual de Campinas

Universidade Estadual de Campinas Universidade Estadual de Campinas Nathalia Cristina Ribeiro Ra: 105480 Universidade Estadual de Campinas Fernando Torres 2 Sumário. Introdução 4 Biografia de Leonardo Fibonacci 5 O que é uma seqüência?

Leia mais

Interpolação polinomial: Polinômio de Lagrange

Interpolação polinomial: Polinômio de Lagrange Interpolação polinomial: Polinômio de Lagrange Marina Andretta ICMC-USP 09 de maio de 2012 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina Andretta (ICMC-USP) sme0500 - cálculo

Leia mais

Fórmula de recorrência para a soma de séries infinitas

Fórmula de recorrência para a soma de séries infinitas This is a reprint of Lecturas Matemáticas Volumen 25 (2004), páginas 5 24 Fórmula de recorrência para a soma de séries infinitas João Luiz Martins & Adilson J.V. Brandão UUniversidade Federal de Ouro Preto,

Leia mais

Quadro de conteúdos MATEMÁTICA

Quadro de conteúdos MATEMÁTICA Quadro de conteúdos MATEMÁTICA 1 Apresentamos a seguir um resumo dos conteúdos trabalhados ao longo dos quatro volumes do Ensino Fundamental II, ou seja, um panorama dos temas abordados na disciplina de

Leia mais

= 2 sen(x) (cos(x) (b) (7 pontos) Pelo item anterior, temos as k desigualdades. sen 2 (2x) sen(4x) ( 3/2) 3

= 2 sen(x) (cos(x) (b) (7 pontos) Pelo item anterior, temos as k desigualdades. sen 2 (2x) sen(4x) ( 3/2) 3 Problema (a) (3 pontos) Sendo f(x) = sen 2 (x) sen(2x), uma função π-periódica, temos que f (x) = 2 sen(x) cos(x) sen(2x) + sen 2 (x) 2 cos(2x) = 2 sen(x) (cos(x) sen(2x) + sen(x) cos(2x) ) = 2 sen(x)

Leia mais

MATEMÁTICA - 7.º Ano. Ana Soares ) Catarina Coimbra ) NÚMEROS RACIONAIS

MATEMÁTICA - 7.º Ano. Ana Soares ) Catarina Coimbra ) NÚMEROS RACIONAIS Salesianos de Mogofores - 2016/2017 MATEMÁTICA - 7.º Ano Ana Soares (ana.soares@mogofores.salesianos.pt ) Catarina Coimbra (catarina.coimbra@mogofores.salesianos.pt ) Rota de aprendizage m por Projetos

Leia mais

e sua relação como número áureo é bem estreito. Temos a aparição desses números em espirais, sejam elas a concha de um molusco, em ondas, em uma

e sua relação como número áureo é bem estreito. Temos a aparição desses números em espirais, sejam elas a concha de um molusco, em ondas, em uma A RAZÃO ÁUREA E A SEQÜÊNCIA DE FIBONACCI Thiago Yukio Tanaka Universidade Federal de Pernambuco t.y.tanaka@hotmail.com.br Lucimarcos José da Silva Universidade Federal de Pernambuco lucimarcos.silva@ufpe.com.br

Leia mais

IGUALDADES EM IR IDENTIDADES NOTÁVEIS

IGUALDADES EM IR IDENTIDADES NOTÁVEIS IGUALDADES EM IR Uma relação muito importante definida em IR (conjunto dos números reais) é a relação de igualdade. Na igualdade A = B, A é o primeiro membro e B é o segundo membro. As igualdades entre

Leia mais

GABARITO DO CADERNO DE QUESTÕES

GABARITO DO CADERNO DE QUESTÕES OLÍMPIADAS DE MATEMÁTICA DO OESTE CATARINENSE GABARITO DO CADERNO DE QUESTÕES NÍVEL 3 Ensino Médio Universidade Federal da Fronteira Sul Campus Chapecó 017 OLIMPÍADA REGIONAL DE MATEMÁTICA GABARITO: 1.

Leia mais

Matriz de Referência da área de Matemática Ensino Fundamental

Matriz de Referência da área de Matemática Ensino Fundamental Matemática EF Matriz de Referência da área de Matemática Ensino Fundamental C1 Utilizar o conhecimento numérico para operar e construir argumentos ao interpretar situações que envolvam informações quantitativas.

Leia mais

Lista de Exercícios de Métodos Numéricos

Lista de Exercícios de Métodos Numéricos Lista de Exercícios de Métodos Numéricos 1 de outubro de 010 Para todos os algoritmos abaixo assumir n = 0, 1,, 3... Bisseção: Algoritmo:x n = a+b Se f(a) f(x n ) < 0 então b = x n senão a = x n Parada:

Leia mais

Luciana Santos da Silva Martino

Luciana Santos da Silva Martino Sumário APLICAÇÕES DA INDUÇÃO Luciana Santos da Silva Martino lulismartino.wordpress.com lulismartino@gmail.com PROFMAT - Colégio Pedro II 11 de agosto de 2017 Sumário 1 Definição por Recorrência 2 Binômio

Leia mais

REVISÃO DE ÁLGEBRA. Apareceu historicamente em processos de contagem. Obs.: dependendo da conveniência, o zero pode pertencer aos naturais.

REVISÃO DE ÁLGEBRA. Apareceu historicamente em processos de contagem. Obs.: dependendo da conveniência, o zero pode pertencer aos naturais. REVISÃO DE ÁLGEBRA 1ª. AULA CONJUNTOS BÁSICOS: Conjuntos dos números naturais: * + Apareceu historicamente em processos de contagem. Obs.: dependendo da conveniência, o zero pode pertencer aos naturais.

Leia mais

Método Simplex dual. Marina Andretta ICMC-USP. 24 de outubro de 2016

Método Simplex dual. Marina Andretta ICMC-USP. 24 de outubro de 2016 Método Simplex dual Marina Andretta ICMC-USP 24 de outubro de 2016 Baseado no livro Introduction to Linear Optimization, de D. Bertsimas e J. N. Tsitsiklis. Marina Andretta (ICMC-USP) sme0211 - Otimização

Leia mais

,12 2, = , ,12 = = (2012) 2.

,12 2, = , ,12 = = (2012) 2. 1 QUESTÃO 1 Usando a comutatividade da multiplicação, podemos escrever 1000 0,1,01 100 = 1000,01 00 0,1 = 01 01 = (01). QUESTÃO Observe que para obter o primeiro retângulo foi necessário escrever quatro

Leia mais

Origem do Universo {1, 2, 2, 4, 8, 32...} + Quando elevamos 2 a sequência de {0, 1, 1, 2, 3, 5...} +

Origem do Universo {1, 2, 2, 4, 8, 32...} + Quando elevamos 2 a sequência de {0, 1, 1, 2, 3, 5...} + Origem do Universo A multiplicação dos dois termos anteriores gera a seguinte sequência que chamamos de sequência do tempo, e que produz um conjunto de números que chamamos de números vazios. {1, 2, 2,

Leia mais

Polinômios (B) 4 (C) 2 (D) 1 3 (E). 2

Polinômios (B) 4 (C) 2 (D) 1 3 (E). 2 Polinômios. (ITA 2005) No desenvolvimento de (ax 2 2bx + c + ) 5 obtém-se um polinômio p(x) cujos coeficientes somam 32. Se 0 e são raízes de p(x), então a soma a + b + c é igual a (A) 2 (B) 4 (C) 2 (D)

Leia mais

4.1 O exercício de Fibonacci

4.1 O exercício de Fibonacci Capítulo 4 Números de Fibonacci 4.1 O exercício de Fibonacci No século XIII, o matemático italiano Leonardo Fibonacci estudou a seguinte questão (não tão realística): Leonardo Fibonacci Um fazendeiro cria

Leia mais

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 2018.1 Gabarito Questão 01 [ 1,25 ::: (a)=0,50; (b)=0,75 ] Isótopos radioativos de um elemento químico estão sujeitos a um processo de decaimento

Leia mais

Lista de exercícios: Polinômios e Equações Algébricas Problemas Gerais Prof ºFernandinho. Questões:

Lista de exercícios: Polinômios e Equações Algébricas Problemas Gerais Prof ºFernandinho. Questões: Lista de eercícios: Polinômios e Equações Algébricas Problemas Gerais Prof ºFernandinho Questões: 0.(GV) Num polinômio P() do terceiro grau, o coeficiente de P() = 0, calcule o valor de P( ). é. Sabendo-se

Leia mais

XIX Semana Olímpica de Matemática. Nível 3. Funções Geratrizes. José Armando Barbosa

XIX Semana Olímpica de Matemática. Nível 3. Funções Geratrizes. José Armando Barbosa XIX Semana Olímpica de Matemática Nível 3 Funções Geratrizes José Armando Barbosa O projeto da XIX Semana Olímpica de Matemática foi patrocinado por: Funções Geratrizes Semana Olímpica/206 Prof. Armando

Leia mais

Polos Olímpicos de Treinamento. Aula 3. Curso de Álgebra - Nível 2 Prof. Marcelo Mendes. 1 Sequências simples

Polos Olímpicos de Treinamento. Aula 3. Curso de Álgebra - Nível 2 Prof. Marcelo Mendes. 1 Sequências simples Polos Olímpicos de Treinamento Curso de Álgebra - Nível 2 Prof. Marcelo Mendes Aula 3 Sequências Uma sequência nada mais é do que um conjunto de números ordenados. Assim, podemos estabelecer um primeiro

Leia mais

Séries Numéricas 2,10,12,16,17,18,19,? 2,4,6,8,10,? 2,4,8,16,32,?

Séries Numéricas 2,10,12,16,17,18,19,? 2,4,6,8,10,? 2,4,8,16,32,? SÉRIES NUMÉRICAS Séries Numéricas Uma série numérica é uma sequencia de números que respeita uma regra, uma lei de formação. Sendo assim todos foram produzidos à partir de uma mesma ideia. Exemplos: 2,10,12,16,17,18,19,?

Leia mais

Polinômios de Legendre

Polinômios de Legendre Seção 5: continuação do método de resolução por séries de potências Na Seção foi exposto informalmente, através de exemplos, o método de resolução de equações diferenciais ordinárias por séries de potências.

Leia mais

1 Breve introdução, fi e bonacci. 2 Construindo as ferramentas. Thiago Yukio Tanaka

1 Breve introdução, fi e bonacci. 2 Construindo as ferramentas. Thiago Yukio Tanaka V Bienal da SBM Sociedade Brasileira de Matemática UFPB - Universidade Federal da Paraíba 18 a de outubro de 010 a razão áurea e a seqüência de fibonacci Thiago Yukio Tanaka 1 Breve introdução, fi e bonacci

Leia mais

Funções ortogonais e problemas de Sturm-Liouville. Prof. Rodrigo M. S. de Oliveira UFPA / PPGEE

Funções ortogonais e problemas de Sturm-Liouville. Prof. Rodrigo M. S. de Oliveira UFPA / PPGEE Funções ortogonais e problemas de Sturm-Liouville Prof. Rodrigo M. S. de Oliveira UFPA / PPGEE Série de Fourier Soma de funções ortogonais entre si Perguntas: -existem outras bases ortogonais que podem

Leia mais

A = B, isto é, todo elemento de A é também um elemento de B e todo elemento de B é também um elemento de A, ou usando o item anterior, A B e B A.

A = B, isto é, todo elemento de A é também um elemento de B e todo elemento de B é também um elemento de A, ou usando o item anterior, A B e B A. Capítulo 1 Números Reais 1.1 Conjuntos Numéricos Um conjunto é uma coleção de elementos. A relação básica entre um objeto e o conjunto é a relação de pertinência: quando um objeto x é um dos elementos

Leia mais

Problema: Números Racionais

Problema: Números Racionais Problemas (7 o Ano) 1 Problema: Números Racionais 1. Os números de Fibonacci podem ser definidos por recorrência em que cada termo, com exceção dos dois primeiros termos, é a soma dos dois termos que o

Leia mais

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito. a(x x 0) = b(y 0 y).

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito. a(x x 0) = b(y 0 y). MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 016.1 Gabarito Questão 01 [ 1,00 ::: (a)=0,50; (b)=0,50 ] (a) Seja x 0, y 0 uma solução da equação diofantina ax + by = c, onde a, b são inteiros

Leia mais

Retângulo áureo e divisão áurea

Retângulo áureo e divisão áurea Retângulo áureo e divisão áurea Geraldo Ávila 1. O retângulo áureo Chama-se retângulo áureo qualquer retângulo ABCD (Figura 1) com a seguinte propriedade: se dele suprimirmos um quadrado, como ABFE, o

Leia mais

A = Utilizando ponto flutuante com 2 algarismos significativos, 2 = 0, x (0)

A = Utilizando ponto flutuante com 2 algarismos significativos, 2 = 0, x (0) MAP 22 - CÁLCULO NUMÉRICO (POLI) Lista de Exercícios sobre Sistemas Lineares : Utilizando o método de eliminação de Gauss, calcule o determinante e a seguir a inversa da matriz abaixo. Efetue todos os

Leia mais

Resolvendo equações. 2 = 26-3 α φ-1

Resolvendo equações. 2 = 26-3 α φ-1 A UA UL LA Resolvendo equações Introdução À medida que os problemas se tornam mais complicados, o método algébrico vai se impondo naturalmente ao método aritmético. Resolver equações fará parte das nossas

Leia mais

Os números reais. Capítulo O conjunto I

Os números reais. Capítulo O conjunto I Capítulo 4 Os números reais De todos os conjuntos numéricos que estudamos agora, a transição de um para outro sempre era construída de forma elementar A passagem do conjunto dos números racionais aos reais

Leia mais

Cap. 8 - Intervalos Estatísticos para uma Única Amostra

Cap. 8 - Intervalos Estatísticos para uma Única Amostra Intervalos Estatísticos para ESQUEMA DO CAPÍTULO 8.1 INTRODUÇÃO 8.2 INTERVALO DE CONFIANÇA PARA A MÉDIA DE UMA DISTRIBUIÇÃO NORMAL, VARIÂNCIA CONHECIDA 8.3 INTERVALO DE CONFIANÇA PARA A MÉDIA DE UMA DISTRIBUIÇÃO

Leia mais

VII Concurso Universitário de Matemática Galois-Noether 2017 Primeira Etapa

VII Concurso Universitário de Matemática Galois-Noether 2017 Primeira Etapa VII Concurso Universitário de Matemática Galois-Noether 207 Primeira Etapa Sábado, de abril de 207 Bem-vindo à Primeira Etapa do VII Concurso Universitário de Matemática Galois-Noether Resolva a prova

Leia mais

II Bienal da Sociedade Brasileira de Matemática. Frações Contínuas: algumas propriedades e aplicações

II Bienal da Sociedade Brasileira de Matemática. Frações Contínuas: algumas propriedades e aplicações II Bienal da Sociedade Brasileira de Matemática Universidade Federal da Bahia, Salvador - BA 25 a 29 de outubro de 2004 Frações Contínuas: algumas propriedades e aplicações Eliana Xavier Linhares de Andrade

Leia mais

30 a OLIMPÍADA DE MATEMÁTICA DO RIO GRANDE DO NORTE PRIMEIRA FASE. NÍVEL UNIVERSITÁRIO. 35! =

30 a OLIMPÍADA DE MATEMÁTICA DO RIO GRANDE DO NORTE PRIMEIRA FASE. NÍVEL UNIVERSITÁRIO. 35! = 0 a OLIMPÍADA DE MATEMÁTICA DO RIO GRANDE DO NORTE 09- PRIMEIRA FASE. NÍVEL UNIVERSITÁRIO. Para cada questão, assinale uma alternativa como a resposta correta. NOME DO(A) ESTUDANTE: UNIVERSIDADE:. O fatorial

Leia mais

Lista 1- Cálculo I Lic. - Resolução

Lista 1- Cálculo I Lic. - Resolução Lista 1- Cálculo I Lic. - Resolução Exercício 6: Uma molécula de açúcar comum (sacarose) pesa 5,7 10 - g e uma de água, 3 10-3 g. Qual das duas é mais pesada? Quantas vezes uma é mais pesada que a outra?

Leia mais

No circuito abaixo determinar as correntes nos ramos e seus verdadeiros sentidos.

No circuito abaixo determinar as correntes nos ramos e seus verdadeiros sentidos. No circuito abaixo determinar as correntes nos ramos e seus verdadeiros sentidos. Dados do problema Resistores R 1 = Ω; R = Ω R = Ω; R 4 = Ω R = Ω; R 6 = Ω; R 7 = Ω; R 8 = Ω. f.e.m. das pilhas E 1 = V;

Leia mais

Chama-se conjunto dos números naturais símbolo N o conjunto formado pelos números. OBS: De um modo geral, se A é um conjunto numérico qualquer, tem-se

Chama-se conjunto dos números naturais símbolo N o conjunto formado pelos números. OBS: De um modo geral, se A é um conjunto numérico qualquer, tem-se UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Conjuntos Numéricos Prof.:

Leia mais

Matemática E Extensivo V. 6

Matemática E Extensivo V. 6 Etensivo V. 6 Eercícios ) a) P() é sempre igual à soma dos coeficientes de P(). b) P() é sempre igual ao termo independente de P(). c) P() é a raiz de P(), pois P() =. a) P() = ³ + 7. ² 7. P() = + 7 7

Leia mais

PROGRESSÃO GEOMÉTRICA

PROGRESSÃO GEOMÉTRICA Hewlett-Packard PROGRESSÃO GEOMÉTRICA Aulas 01 a 05 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Ano: 2018 Sumário PROGRESSÃO GEOMÉTRICA (P.G.)... 1 PRELIMINAR 1... 1 DEFINIÇÃO... 1 A RAZÃO DE

Leia mais

Chamaremos AC de vetor soma (um Vetor resultante) dos vetores AB e BC. Essa soma não é uma soma algébrica comum.

Chamaremos AC de vetor soma (um Vetor resultante) dos vetores AB e BC. Essa soma não é uma soma algébrica comum. Vetores Uma partícula que se move em linha reta pode se deslocar em apenas uma direção, sendo o deslocamento positivo em uma e negativo na outra direção. Quando uma partícula se move em três dimensões,

Leia mais

Métodos Numéricos - Notas de Aula

Métodos Numéricos - Notas de Aula Métodos Numéricos - Notas de Aula Prof a Olga Regina Bellon Junho 2007 Zeros de equações transcendentes e Tipos de Métodos polinomiais São dois os tipos de métodos para se achar a(s) raízes de uma equação:

Leia mais

Notas de Aula de Cálculo Numérico

Notas de Aula de Cálculo Numérico IM-Universidade Federal do Rio de Janeiro Departamento de Ciência da Computação Notas de Aula de Cálculo Numérico Lista de Exercícios Prof. a Angela Gonçalves 3 1. Erros 1) Converta os seguintes números

Leia mais

Funções Geratrizes. Rafael Kazuhiro Miyazaki - 21 de Janeiro de 2019

Funções Geratrizes. Rafael Kazuhiro Miyazaki - 21 de Janeiro de 2019 Funções Geratrizes Rafael Kazuhiro Miyazaki - rafaelkmiyazaki@gmail.com 21 de Janeiro de 2019 1 Introdução Uma função geratriz (ou geradora) é uma função que carrega uma certa informação em sua série de

Leia mais

Funções - Primeira Lista de Exercícios

Funções - Primeira Lista de Exercícios Funções - Primeira Lista de Exercícios Vers~ao de 0/03/00 Recomendações Não é necessário o uso de teoremas ou resultados complicados nas resoluções. Basta que você tente desenvolver suas idéias. Faltando

Leia mais

PROGRESSÕES ARITMÉTICAS DE ORDEM SUPERIOR

PROGRESSÕES ARITMÉTICAS DE ORDEM SUPERIOR 7-8, NÚMERO VOLUME 5 ISSN 39-3X PROGRESSÕES ARITMÉTICAS DE ORDEM SUPERIOR José Filho Ferreira Nobre Diretoria Regional de Ensino - Araguatins - TO Rogério Azevedo Rocha Universidade

Leia mais

PROVAS Ciência da Computação. 2 a Prova: 13/02/2014 (Quinta) Reavaliação: 20/02/2014 (Quinta)

PROVAS Ciência da Computação. 2 a Prova: 13/02/2014 (Quinta) Reavaliação: 20/02/2014 (Quinta) PROVAS Ciência da Computação 2 a Prova: 13/02/2014 (Quinta) Reavaliação: 20/02/2014 (Quinta) Ajuste de Curvas Objetivo Ajustar curvas pelo método dos mínimos quadrados 1 - INTRODUÇÃO Em geral, experimentos

Leia mais

Polinômios. Acadêmica: Vanessa da Silva Pires

Polinômios. Acadêmica: Vanessa da Silva Pires Polinômios Acadêmica: Vanessa da Silva Pires Situação 01: Se você somar 1 ao produto de quatro inteiros consecutivos, o resultado sempre será um quadrado perfeito. Situação 02: Na resolução de problemas,

Leia mais

GABARITO - ANO 2018 OBSERVAÇÃO:

GABARITO - ANO 2018 OBSERVAÇÃO: GABARITO - ANO 018 OBSERVAÇÃO: Embora as soluções neste gabarito se apresentem sob a forma de um texto explicativo, gostaríamos de salientar que para efeito de contagem dos pontos adquiridos, na avaliação

Leia mais

Cálculo Numérico BCC760 Raízes de equações algébricas e transcendentes

Cálculo Numérico BCC760 Raízes de equações algébricas e transcendentes Cálculo Numérico BCC760 Raízes de equações algébricas e transcendentes Departamento de Computação Página da disciplina http://www.decom.ufop.br/bcc760/ Introdução Dada uma função y = f(x), o objetivo deste

Leia mais

Técnicas de. Integração

Técnicas de. Integração Técnicas de Capítulo 7 Integração TÉCNICAS DE INTEGRAÇÃO 7.4 Integração de Funções Racionais por Frações Parciais Nessa seção, vamos aprender como integrar funções racionais reduzindo-as a uma soma de

Leia mais

Espaços Euclidianos. Espaços R n. O conjunto R n é definido como o conjunto de todas as n-uplas ordenadas de números reais:

Espaços Euclidianos. Espaços R n. O conjunto R n é definido como o conjunto de todas as n-uplas ordenadas de números reais: Espaços Euclidianos Espaços R n O conjunto R n é definido como o conjunto de todas as n-uplas ordenadas de números reais: R n = {(x 1,..., x n ) : x 1,..., x n R}. R 1 é simplesmente o conjunto R dos números

Leia mais

Desenho e Projeto de Tubulação Industrial Nível II

Desenho e Projeto de Tubulação Industrial Nível II Desenho e Projeto de Tubulação Industrial Nível II Módulo I Aula 02 EQUAÇÕES Pense no seguinte problema: Uma mulher de 25 anos é casada com um homem 5 anos mais velho que ela. Qual é a soma das idades

Leia mais

Números Naturais. MA12 - Unidade 1. Os Axiomas de Peano. O Axioma da Indução. Exemplo: uma demonstração por indução

Números Naturais. MA12 - Unidade 1. Os Axiomas de Peano. O Axioma da Indução. Exemplo: uma demonstração por indução Os Números Naturais MA1 - Unidade 1 Números Naturais Paulo Cezar Pinto Carvalho PROFMAT - SBM January 7, 014 Números Naturais: modelo abstrato para contagem. N = {1,,3,...} Uma descrição precisa e concisa

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 ESTUDO DA CIRCUNFERÊNCIA

Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 ESTUDO DA CIRCUNFERÊNCIA DEFINIÇÃO... EQUAÇÃO REDUZIDA... EQUAÇÃO GERAL DA CIRCUNFERÊNCIA... 3 RECONHECIMENTO... 3 POSIÇÃO RELATIVA ENTRE PONTO E CIRCUNFERÊNCIA... 1 POSIÇÃO RELATIVA ENTRE RETA E CIRCUNFERÊNCIA... 17 PROBLEMAS

Leia mais

SISTEMA DECIMAL. No sistema decimal o símbolo 0 (zero) posicionado à direita implica em multiplicar a grandeza pela base, ou seja, por 10 (dez).

SISTEMA DECIMAL. No sistema decimal o símbolo 0 (zero) posicionado à direita implica em multiplicar a grandeza pela base, ou seja, por 10 (dez). SISTEMA DECIMAL 1. Classificação dos números decimais O sistema decimal é um sistema de numeração de posição que utiliza a base dez. Os dez algarismos indo-arábicos - 0 1 2 3 4 5 6 7 8 9 - servem para

Leia mais

Prova: Usando as definições e propriedades de números reais, temos λz = λx + iλy e

Prova: Usando as definições e propriedades de números reais, temos λz = λx + iλy e Lista Especial de Exercícios de Física Matemática I Soluções (Número complexo, sequência de Cauchy, função exponencial e movimento hamônico simples) IFUSP - 8 de Agosto de 08 Exercício Se z x + iy, x,

Leia mais

1.1. Numéricos. Conjuntos MATEMÁTICA. Conjunto dos Números Naturais (N) Conjunto dos Números Inteiros (Z)

1.1. Numéricos. Conjuntos MATEMÁTICA. Conjunto dos Números Naturais (N) Conjunto dos Números Inteiros (Z) CAPÍTULO 1 Capítulo 1 1.1 Conjuntos Numéricos Conjunto dos Números Naturais (N) Os números naturais são em geral associados à ideia de contagem, e o conjunto que os representa é indicado por N. N = {0,

Leia mais

Para entender um segmento de reta, vou mostrar a RETA, SEMI-RETA e SEGMENTO.

Para entender um segmento de reta, vou mostrar a RETA, SEMI-RETA e SEGMENTO. SEGMENTOS PROPORCINAIS SEGMENTOS PROPORCINAIS Para entender um segmento de reta, vou mostrar a RETA, SEMI-RETA e SEGMENTO. A B Esta é a representação de uma reta, em uma reta temos infinitos pontos é como

Leia mais

REVISÃO DOS CONTEÚDOS

REVISÃO DOS CONTEÚDOS REVISÃO DOS CONTEÚDOS As quatro operações fundamentais As operações fundamentais da matemática são quatro: Adição (+), Subtração (-), Multiplicação (* ou x ou.) e Divisão (: ou / ou ). Em linguagem comum,

Leia mais

Capítulo 2. Conjuntos Infinitos

Capítulo 2. Conjuntos Infinitos Capítulo 2 Conjuntos Infinitos Não é raro encontrarmos exemplos equivocados de conjuntos infinitos, como a quantidade de grãos de areia na praia ou a quantidade de estrelas no céu. Acontece que essas quantidades,

Leia mais

Capítulo 3 Equações Diferenciais. O Wronskiano (de Josef Hoëné-Wronski, polonês, )

Capítulo 3 Equações Diferenciais. O Wronskiano (de Josef Hoëné-Wronski, polonês, ) Capítulo 3 Equações Diferenciais O Wronskiano (de Josef Hoëné-Wronski, polonês, 1776 1853) Seja a equação diferencial, ordinária, linear e de 2ª. ordem Podemos dividir por os 2 membros e escrever a equação

Leia mais

Análise de Problemas Recursivos. Algoritmos e Estruturas de Dados Flavio Figueiredo (

Análise de Problemas Recursivos. Algoritmos e Estruturas de Dados Flavio Figueiredo ( Análise de Problemas Recursivos Algoritmos e Estruturas de Dados 2 2017-1 Flavio Figueiredo (http://flaviovdf.github.io) 1 Lembrando de Recursividade Procedimento que chama a si mesmo Recursividade permite

Leia mais

LTDA APES PROF. RANILDO LOPES SITE:

LTDA APES PROF. RANILDO LOPES SITE: Matemática Aplicada - https://ranildolopes.wordpress.com/ - Prof. Ranildo Lopes - FACET 1 Faculdade de Ciências e Tecnologia de Teresina Associação Piauiense de Ensino Superior LTDA APES PROF. RANILDO

Leia mais

Denominamos equação polinomial ou equação algébrica de grau n a toda equação da forma:

Denominamos equação polinomial ou equação algébrica de grau n a toda equação da forma: EQUAÇÕES POLINOMIAIS. EQUAÇÃO POLINOMIAL OU ALGÉBRICA Denominamos equação polinomial ou equação algébrica de grau n a toda equação da forma: p(x) = a n x n + a n x n +a n x n +... + a x + a 0 = 0 onde

Leia mais

Para simplificar a notação, também usamos denotar uma sequência usando apenas a imagem de :

Para simplificar a notação, também usamos denotar uma sequência usando apenas a imagem de : Sequências Uma sequência é uma função f de em, ou seja. Para todo número natural i associamos um número real por meio de uma determinada regra de formação. A sequencia pode ser denotada por: Ou, por meio

Leia mais

SUMÁRIO FUNÇÕES POLINOMIAIS

SUMÁRIO FUNÇÕES POLINOMIAIS Curso de Pré Cálculo Dif. Int. I Aula 05 Ministrante Profª. Drª. Luciana Schreiner de Oliveira Material elaborado pelo Programa de Pré-Cálculo da Unicamp http://www.ime.unicamp.br/~chico/ma091/page14.html

Leia mais

Biomatemática - Prof. Marcos Vinícius Carneiro Vital (ICBS UFAL) - Material disponível no endereço

Biomatemática - Prof. Marcos Vinícius Carneiro Vital (ICBS UFAL) - Material disponível no endereço Universidade Federal de Alagoas Instituto de Ciências e Biológicas e da Saúde BIOB-003 Biomatemática Prof. Marcos Vinícius Carneiro Vital - Por si só, boa parte do conteúdo desta aula pode parecer mais

Leia mais

Seqüências Numéricas

Seqüências Numéricas Seqüências Numéricas É uma seqüência composta por números que estão dispostos em uma determinada ordem pré-estabelecida. Alguns exemplos de seqüências numéricas: (,, 6, 8, 0,,... ) (0,,, 3,, 5,...) (,,

Leia mais

Interpolaça o Polinomial

Interpolaça o Polinomial Interpolaça o Polinomial Objetivo A interpolação polinomial tem por objetivo aproximar funções (tabeladas ou dadas por equações) por polinômios de grau até n. Isso tem como intuito facilitar o cálculo

Leia mais

Aula 27 - Álgebra II. x (m(x)), x 2 + x + (m(x)), x 2 + x (m(x)) operações deste corpo são as seguintes:

Aula 27 - Álgebra II. x (m(x)), x 2 + x + (m(x)), x 2 + x (m(x)) operações deste corpo são as seguintes: Já vimos maneiras de codificar mensagens de modo a que, no caso de ocorrerem alguns erros na sua transmissão, o receptor possa ser capaz de corrigir esses erros. Esses códigos, chamados códigos lineares

Leia mais

Aula Inaugural Curso Alcance 2017

Aula Inaugural Curso Alcance 2017 Aula Inaugural Curso Alcance 2017 Revisão de Matemática Básica Professores: Me Carlos Eurico Galvão Rosa e Me. Márcia Mikuska Universidade Federal do Paraná Campus Jandaia do Sul cegalvao@ufpr.br 06 de

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/30 3 - INDUÇÃO E RECURSÃO 3.1) Indução Matemática 3.2)

Leia mais

A medida da Arte José Manuel dos Santos Dos Santos

A medida da Arte José Manuel dos Santos Dos Santos A medida da Arte José Manuel dos Santos Dos Santos Pretende-se com este texto contribuir para a divulgação das proporções associadas a algumas obras e trabalhos desenvolvidos no campo artístico. A proporção

Leia mais

chamamos de binomial de classe k, do número n, o número acima, que também é denotado por e chamado combinações de n elementos tomados k a k.

chamamos de binomial de classe k, do número n, o número acima, que também é denotado por e chamado combinações de n elementos tomados k a k. 44 UM TRIÂNGULO ARITMÉTICO Vanessa de Freitas Travello 1, Natalia Caroline Lopes da Silva, Juliano Ferreira Lima, Antonio Carlos Tamarozzi Universidade Federal de Mato Grosso do Sul Campus de Três Lagoas.

Leia mais

Tópicos de Matemática Elementar

Tópicos de Matemática Elementar Tópicos de Matemática Elementar 2 a série de exercícios 2004/05. A seguinte prova por indução parece correcta, mas para n = 6 o lado esquerdo é igual a 2 + 6 + 2 + 20 + 30 = 5 6, enquanto o direito é igual

Leia mais

Título do Livro. Capítulo 5

Título do Livro. Capítulo 5 Capítulo 5 5. Geometria Analítica A Geometria Analítica tornou possível o estudo da Geometria através da Álgebra. Além de proporcionar a interpretação geométrica de diversas equações algébricas. 5.1. Sistema

Leia mais

UNIVERSIDADE FEDERAL DO ABC. 1 Existência e unicidade de zeros; Métodos da bissecção e falsa posição

UNIVERSIDADE FEDERAL DO ABC. 1 Existência e unicidade de zeros; Métodos da bissecção e falsa posição UNIVERSIDADE FEDERAL DO ABC BC1419 Cálculo Numérico - LISTA 1 - Zeros de Funções (Profs. André Camargo, Feodor Pisnitchenko, Marijana Brtka, Rodrigo Fresneda) 1 Existência e unicidade de zeros; Métodos

Leia mais

Equações não lineares

Equações não lineares Capítulo 2 Equações não lineares Vamos estudar métodos numéricos para resolver o seguinte problema. Dada uma função f contínua, real e de uma variável, queremos encontrar uma solução x que satisfaça a

Leia mais

P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o

P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o 206-207 DISCIPLINA / ANO: Matemática A - ºano MANUAL ADOTADO: NOVO ESPAÇO - Matemática A º ano GESTÃO DO TEMPO Nº de Nº de Nº de tempos tempos tempos

Leia mais

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO DEPARTAMENTO DE CIÊNCIAS DA COMPUTAÇÃO. 4 a Lista de Exercícios Gabarito de algumas questões.

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO DEPARTAMENTO DE CIÊNCIAS DA COMPUTAÇÃO. 4 a Lista de Exercícios Gabarito de algumas questões. UNIVERSIDADE FEDERAL DO RIO DE JANEIRO DEPARTAMENTO DE CIÊNCIAS DA COMPUTAÇÃO MATEMÁTICA COMBINATÓRIA 4 a Lista de Exercícios Gabarito de algumas questões. Este gabarito foi feito direto no computador

Leia mais

6 MÉTODO DE ELEMENTOS FINITOS - MEF

6 MÉTODO DE ELEMENTOS FINITOS - MEF 6 MÉTODO DE ELEMENTOS FINITOS - MEF O Método de Elementos Finitos é uma técnica de discretização de um problema descrito na Formulação Fraca, na qual o domínio é aproximado por um conjunto de subdomínios

Leia mais

Relações de recorrência

Relações de recorrência Relações de recorrência Sequências. Relações de recorrência. Equação caraterística. Relações de recorrência de 2ª ordem não homogéneas. Referência: Capítulo: 4 Discrete Mathematics with Graph Theory Edgar

Leia mais