PROF. DANILO MATERIAL COMPLEMENTAR TURMA ENG/TOP 11/03/2016 FOLHA 04 Após esta aula, a lista "Equações Horárias"pode ser feita por completo.

Tamanho: px
Começar a partir da página:

Download "PROF. DANILO MATERIAL COMPLEMENTAR TURMA ENG/TOP 11/03/2016 FOLHA 04 Após esta aula, a lista "Equações Horárias"pode ser feita por completo."

Transcrição

1 PROF. DANILO MATERIAL COMPLEMENTAR TURMA ENG/TOP 11/03/016 FOLHA 04 Após esta aula, a lista "Equações Horárias"pode ser feita por completo. Um corpo move ao longo de uma reta obedecendo a função horária s(t a seguir: s(t = 3 + t + t (S.I. Represente nos eixos coordenados abaixo o gráco da posição do corpo em função do tempo. Represente a posição do corpo quando t = 0 e os instantes em que ele passa pela origem das posições, isto é, os instantes em que s = 0. Note que teremos tempos negativos, mas você deve se lembrar o que signica tempo negativo... Lembre-se de que tudo o que é delta ( na física é nal menos inicial, ou seja, e s = s final s inicial = t final t inicial Vamos usar o exercício inicial desta aula para calcularmos a velocidade média do móvel que obedece a equação dada s(t = 3 + t + t. Para facilitar cálculos futuros, vamos completar a tabela abaixo com a posição do móvel para cada instante (tabela 1. Como primeiro exercício, vamos calcular a velocidade média Tabela 1: POSIÇÃO DO MÓVEL Instante t = Posição s(t= 0,0 1,0 s = s(t,0,5 3,0 (0, 0 t do corpo entre os instantes t = 0 e t = 3: Q. 01 VELOCIDADE MÉDIA ENTRE t = 0 s E t = 3 s Agora que você têm o gráco, estime a velocidade do corpo no instante t = 0 e quando o corpo passa pela posição s = 0. Agora calcule a velocidade média entre os instantes t = 1 e t = 3: Q. 0 VELOCIDADE MÉDIA ENTRE t = 1 s E t = 3 s CÁLCULO DA VELOCIDADE INSTANTÂNEA: MÉTODO ANALÍTICO Vamos agora ver um método analítico e mais exato que o método gráco apresentado na aula anterior. Esta aula talvez seja um pouco mais pedante, mas será produtiva... Primeiro temos que denir o que e velocidade. Você deve se lembrar o que é velocidade média: v media = s Continuando o raciocínio: 1

2 PROF. DANILO MATERIAL COMPLEMENTAR TURMA ENG/TOP 11/03/016 Q. 03 VELOCIDADE MÉDIA ENTRE t = s E t = 3 s Usando a equação horária da posição (s(t = 3 + t + t podemos escrever que a velocidade média nesse intervalo será: Q. 05 VELOCIDADE MÉDIA ENTRE t E t + PARA s(t Se continuarmos com este raciocínio aproximando cada vez mais cada instantes, podemos obter a tabela. Observe que quando t 0 se aproxima de t = 3 s o valor obtido Tabela : VELOCIDADE MÉDIA ENTRE t 0 E t = 3 t 0 = Velocidade Média,5 7,5,6 7,6,7 7,7,8 7,8,9 7,9,99 7,99,999 7,999,9999 7,9999, ,99999, ,999999, , , , na tabela para a velocidade se aproxima de 8 m/s. Em linguagem mais precisa, podemos dizer que quando = t t 0 tende a zero (ou 0 a velocidade tende a 8 m/s. Como estamos escolhendo um intervalo de tempo muito pequeno, podemos considerá-lo praticamente nulo, e portanto podemos dizer que a velocidade NO INSTANTE t = 3 s é 8 m/s, isto é, não estamos mais falando de velocidade média, mas sim de velocidade instantânea. Não podemos ter certeza de que o valor da velocidade instantânea no instante t = 3 é exatamente 8 m/s (poderia ser por exemplo exatamente 8, m/s, então seria possível encontrar esta velocidade usando algum método analítico? A resposta é sim e veremos agora como proceder. Calcule a velocidade instantânea para o corpo que obedece a equação s(t = 3 + t + t para o instante t = 3 s. Primeiro vamos denir um intervalo de tempo genérico e calculemos a velocidade média entre os instantes t e t + Agora faremos 0: Q. 06 VELOCIDADE MÉDIA PARA 0 Esta é na verdade a velocidade instantânea para um instante t qualquer! Q. 07 VELOCIDADE INSTANTÂNEA EM FUNÇÃO DE t Q. 04 VELOCIDADE MÉDIA ENTRE t E t + Escolhendo t = 3 s como exemplo: Q. 08 VELOCIDADE INSTANTÂNEA PARA t = 3 s Esta é a velocidade exata do corpo cuja equação da posição foi

3 3 PROF. DANILO MATERIAL COMPLEMENTAR TURMA ENG/TOP 11/03/016 dada. Agora podemos ver uma regra mais geral para isso: a chamada regra do tombo. Seja dada a equação horária da posição de um móvel qualquer: s(t = c n t n isto é, um polinômio, a equação da velocidade será: Q. 09 REGRA DO TOMBO 8. s(t = 7 t 3 9. s(t = 1 5 t DEMONSTRAÇÃO DA REGRA DO TOMBO - EXERCÍCIO Como exercício, demonstre a regra do tombo para os seguintes casos: 1. s(t = t Isto é, o expoente cai e multiplicando o coeciente c n e subtrai-se 1 do expoente. Veja um exemplo: É dada a equação: s(t = 3 + t + t. Determine a equação horária da velocidade desse corpo. Q. 10 VELOCIDADE INSTANTÂNEA DA FUNÇÃO s(t = 3 + t + t Abaixo segue alguns exercícios para você treinar. Determine para cada caso a equação da velocidade sabendo a equação da posição. 1. s(t = 5 t + 4t. s(t = 5t 3. s(t = 5t /3 3. s(t = t 4. s(t = 5t /3 5. s(t = 1 t 6. s(t = 1 t 0,5 7. s(t = 3 5t

4 4 PROF. DANILO MATERIAL COMPLEMENTAR TURMA ENG/TOP 11/03/ s(t = t 1 5. s(t = 5t 4 6. s(t = t 4. s(t = t Já pensou em fazer uma demonstração mais geral? Antes de virar a página, pense nisso... Na página seguinte temos uma demonstração geral para t n com n Z, mas esta regra é geral, isto é, a regra do tombo vale para n R.

5 5 PROF. DANILO MATERIAL COMPLEMENTAR TURMA ENG/TOP 11/03/016 DEMONSTRAÇÃO DA REGRA DO TOMBO - CASO GERAL Veja a seguir a demonstração pra a regra do tombo para um termo de um polinômio qualquer: Assim: s(t = c t n v(t = s s(t + s(t = v(t = c (t + n c t n Lembremos do Binômio de Newton: n ( n (x + y n = x n k y k k Com isso: (t + n = k=0 n k=0 ( n t n k k k Continuando o cálculo da velocidade: v(t = c ( n ( n k=0 k t n k k c t n = = c ( n ( n k=0 k t n k k t n Vamos expandir este binômio, lembrando que ( n n! = k k!(n k! Ou seja: (t + n = n! 0!(n 0! tn n! 1!(n 1! tn 1 1 n! +!(n! tn (t + n = t n + nt n 1 + n! n!(n n! tn n n Voltando na equação da velocidade: n(n 1 t n n v(t = c (tn + nt n 1 + n(n 1 t n n t n v(t = c ntn 1 + n(n 1 t n n v(t = c ( nt n 1 + n(n 1 t n n 1 Observe que não é zero, embora seja muito pequeno, então podemos simplicar a fração: v(t = c ( nt n 1 + n(n 1 t n n 1 Agora temos o pulo do gato: não é zero, mas é muito pequeno de tal forma que ele tende a zero, então podemos escolhe-lo tão pequeno tal que ele seja desprezível sempre independente da escala que estamos trabalhando. Ou seja, na equação anterior podemos substituir = 0 sem nenhum prejuízo: ( v(t = c nt n 1 n(n 1 + t n n 1 = cnt n 1 GENERALIZAÇÃO DA REGRA DO TOMBO Muitos já sabem que a regra do tombo é, na verdade, um caso particular de algo mais geral chamada de Derivada. A derivação de uma função é uma operação que se faz em uma função. Sempre quando derivamos uma função, esta operação é em relação à uma variável. Por exemplo, a velocidade é sempre uma derivada da posição em relação ao tempo. A tabela a seguir (tabela 3 mostra uma função na coluna da esquerda (que chamamos de primitiva e a sua derivada na coluna da direita. Não demonstraremos nenhuma delas, mas as derivadas trigonométricas serão úteis quando estudar o movimento harmônico simples. A derivada em relação à x, mas poderia ser em relação à qualquer outra variável. Tabela 3: TABELA DE DERIVADAS Primitiva Derivada x n nx n 1 sen(x cos(x cos(x sen(x ln(x = log e (x 1/x ACELERAÇÃO Você viu que velocidade média é denida como: v media = s assim a velocidade instantânea possui uma denição imediata, que é a derivada da posição em função do tempo e que pode ser simbolizada das seguintes formas: s v inst = lim 0 = d dt s(t Dizemos delta s por delta t no limite em que delta t tendendo a zero ou derivada de s de t em relação à t. Agora vamos falar de aceleração assunto este a ser abordado com mais detalhes futuramente. Primeiro vamos à denição de aceleração média: a media = v Com isso, a denição de aceleração instantânea é imediata: v a inst = lim 0 = d dt v(t Começaremos a próxima aula com exemplos desse assunto. Para treinar: dadas as equações a seguir, que determinam a velocidade de um corpo em função da posição. Calcule, para cada caso, a velocidade do corpo (se necessário, use a tabela 3:

6 6 PROF. DANILO MATERIAL COMPLEMENTAR TURMA ENG/TOP 11/03/ v(t = 9. (* v(t = sen( t. v(t = 5t 10. (* v(t = cos( 3 t 4 3. v(t = 3t (* v(t = A sen(ω t 4. v(t = ln t 1. (* v(t = A sen(ω t + φ 0 5. v(t = 5 sen t 6. v(t = 7 cos t As últimas 4 equações aparecem no movimento harmônico simples (MHS. 7. v(t = log t 8. v(t = 3 sen t + cos t log t

CÁLCULO I. 1 Primitivas. Objetivos da Aula. Aula n o 18: Primitivas. Denir primitiva de uma função; Calcular as primitivas elementares.

CÁLCULO I. 1 Primitivas. Objetivos da Aula. Aula n o 18: Primitivas. Denir primitiva de uma função; Calcular as primitivas elementares. CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 8: Primitivas. Objetivos da Aula Denir primitiva de uma função; Calcular as primitivas elementares. Primitivas Em alguns problemas, é necessário

Leia mais

Derivadas. Slides de apoio sobre Derivadas. Prof. Ronaldo Carlotto Batista. 21 de outubro de 2013

Derivadas. Slides de apoio sobre Derivadas. Prof. Ronaldo Carlotto Batista. 21 de outubro de 2013 Cálculo 1 ECT1113 Slides de apoio sobre Derivadas Prof. Ronaldo Carlotto Batista 21 de outubro de 2013 AVISO IMPORTANTE Estes slides foram criados como material de apoio às aulas e não devem ser utilizados

Leia mais

Nome: Gabarito Data: 28/10/2015. Questão 01. Calcule a derivada da função f(x) = sen x pela definição e confirme o resultado

Nome: Gabarito Data: 28/10/2015. Questão 01. Calcule a derivada da função f(x) = sen x pela definição e confirme o resultado Fundação Universidade Federal de Pelotas Departamento de Matemática e Estatística Curso de Licenciatura em Matemática - Diurno Segunda Prova de Cálculo I Prof. Dr. Maurício Zan Nome: Gabarito Data: 8/0/05.

Leia mais

CÁLCULO I. Conhecer a interpretação geométrica da derivada em um ponto. y = f(x 2 ) f(x 1 ). y x = f(x 2) f(x 1 )

CÁLCULO I. Conhecer a interpretação geométrica da derivada em um ponto. y = f(x 2 ) f(x 1 ). y x = f(x 2) f(x 1 ) CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 0: Taxa de Variação. Derivadas. Reta Tangente. Objetivos da Aula Denir taxa de variação média e a derivada como a taxa

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 12º ANO DE ESCOLARIDADE MATEMÁTICA A. Aula nº 1 do plano nº 12

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 12º ANO DE ESCOLARIDADE MATEMÁTICA A. Aula nº 1 do plano nº 12 ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA º ANO DE ESCOLARIDADE MATEMÁTICA A Aula nº do plano nº Resolver os eercícios 35, 355, 358, 360, 36, 364 das páginas 67 a 7 Conceito de derivada de uma função

Leia mais

da dx = 2 x cm2 /cm A = (5 t + 2) 2 = 25 t t + 4

da dx = 2 x cm2 /cm A = (5 t + 2) 2 = 25 t t + 4 Capítulo 13 Regra da Cadeia 13.1 Motivação A área A de um quadrado cujo lado mede x cm de comprimento é dada por A = x 2. Podemos encontrar a taxa de variação da área em relação à variação do lado: = 2

Leia mais

Derivadas 1

Derivadas 1 www.matematicaemexercicios.com Derivadas 1 Índice AULA 1 Introdução 3 AULA 2 Derivadas fundamentais 5 AULA 3 Derivada do produto e do quociente de funções 7 AULA 4 Regra da cadeia 9 www.matematicaemexercicios.com

Leia mais

MOVIMENTO EM UMA LINHA RETA

MOVIMENTO EM UMA LINHA RETA MOVIMENTO EM UMA LINHA RETA MOVIMENTO EM UMA LINHA RETA Objetivos de aprendizagem: Descrever o movimento em uma linha reta em termos de velocidade média, velocidade instantânea, aceleração média e aceleração

Leia mais

Pré-Cálculo ECT2101 Slides de apoio Funções II

Pré-Cálculo ECT2101 Slides de apoio Funções II Pré-Cálculo ECT2101 Slides de apoio Funções II Prof. Ronaldo Carlotto Batista 8 de abril de 2017 Funções Trigonométricas As funções trigonométricas são denidas no círculo unitário: sen (θ) = y r, cos (θ)

Leia mais

Para ilustrar o conceito de limite, vamos supor que estejamos interessados em saber o que acontece à

Para ilustrar o conceito de limite, vamos supor que estejamos interessados em saber o que acontece à Limite I) Noção intuitiva de Limite Os limites aparecem em um grande número de situações da vida real: - O zero absoluto, por eemplo, a temperatura T C na qual toda a agitação molecular cessa, é a temperatura

Leia mais

13. Taxa de variação Muitos conceitos e fenômenos físicos, econômicos, biológicos, etc. estão relacionados com taxa de variação.

13. Taxa de variação Muitos conceitos e fenômenos físicos, econômicos, biológicos, etc. estão relacionados com taxa de variação. 3. Taxa de variação Muitos conceitos e fenômenos físicos, econômicos, biológicos, etc. estão relacionados com taxa de variação. Definição : Taxa de variação média. Considere x variável independente e y

Leia mais

MAT 141 (Turma 1) Cálculo Diferencial e Integral I 2017/II 1 a Lista de Integrais (07/11/2017)

MAT 141 (Turma 1) Cálculo Diferencial e Integral I 2017/II 1 a Lista de Integrais (07/11/2017) Universidade Federal de Viçosa Departamento de Matemática MAT 4 (Turma Cálculo Diferencial e Integral I 07/II a Lista de Integrais (07//07 Faça a antidiferenciação. Verifique o resultado, calculando a

Leia mais

CÁLCULO I Aula 05: Limites Laterais. Teorema do Valor Intermediário. Teorema do Confronto. Limite Fundamental Trigonométrico.

CÁLCULO I Aula 05: Limites Laterais. Teorema do Valor Intermediário. Teorema do Confronto. Limite Fundamental Trigonométrico. s Laterais CÁLCULO I Aula 05: s Laterais.... Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará s Laterais 1 s Laterais 2 3 4 s Laterais Considere a função de Heaviside, denida

Leia mais

Derivada de algumas funções elementares

Derivada de algumas funções elementares Universidade de Brasília Departamento de Matemática Cálculo 1 Derivada de algumas funções elementares Vamos lembrar que a função f é derivável no ponto x = a se existe o limite f f(x) f(a) f(a+) f(a) (a).

Leia mais

A velocidade instantânea (Texto para acompanhamento da vídeo-aula)

A velocidade instantânea (Texto para acompanhamento da vídeo-aula) A velocidade instantânea (Texto para acompanamento da vídeo-aula) Prof. Méricles Tadeu Moretti Dpto. de Matemática - UFSC O procedimento que será utilizado neste vídeo remete a um tempo em que pesquisadores

Leia mais

CÁLCULO I. Calcular o limite de uma função composta;

CÁLCULO I. Calcular o limite de uma função composta; CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 06: Limites Laterais. Limite da Função Composta. Objetivos da Aula Denir ites laterais de uma função em um ponto de seu

Leia mais

A Derivada. Derivadas Aula 16. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

A Derivada. Derivadas Aula 16. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil Derivadas Aula 16 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 04 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014104 - Engenharia Mecânica A Derivada Seja x = f(t)

Leia mais

x 2 + (x 2 5) 2, x 0, (1) 5 + y + y 2, y 5. (2) e é positiva em ( 2 3 , + ), logo x = 3

x 2 + (x 2 5) 2, x 0, (1) 5 + y + y 2, y 5. (2) e é positiva em ( 2 3 , + ), logo x = 3 Página 1 de 4 Instituto de Matemática - IM/UFRJ Cálculo Diferencial e Integral I - MAC 118 Gabarito segunda prova - Escola Politécnica / Escola de Química - 13/06/2017 Questão 1: (2 pontos) Determinar

Leia mais

A derivada de uma função

A derivada de uma função Universidade de Brasília Departamento de Matemática Cálculo 1 A derivada de uma função Supona que a função f está definida em todo um intervalo aberto contendo o ponto a R. Dizemos que f é derivável no

Leia mais

CÁLCULO I. 1 A Função Logarítmica Natural. Objetivos da Aula. Aula n o 22: A Função Logaritmo Natural. Denir a função f(x) = ln x;

CÁLCULO I. 1 A Função Logarítmica Natural. Objetivos da Aula. Aula n o 22: A Função Logaritmo Natural. Denir a função f(x) = ln x; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 22: A Função Logaritmo Natural Objetivos da Aula Denir a função f(x) = ln x; Calcular limites, derivadas e integral envolvendo a função

Leia mais

9 AULA. Curvas Espaciais LIVRO. META Estudar as curvas no espaço (R 3 ). OBJETIVOS Descrever o movimento de objetos no espaço.

9 AULA. Curvas Espaciais LIVRO. META Estudar as curvas no espaço (R 3 ). OBJETIVOS Descrever o movimento de objetos no espaço. 1 LIVRO Curvas Espaciais META Estudar as curvas no espaço (R 3 ). OBJETIVOS Descrever o movimento de objetos no espaço. PRÉ-REQUISITOS Funções vetoriais (Aula 08). Curvas Espaciais.1 Introdução Na aula

Leia mais

velocidade média = distância tempo = s(t 0 + t) s(t 0 )

velocidade média = distância tempo = s(t 0 + t) s(t 0 ) Universidade do Estado do Rio de Janeiro Cálculo I e Cálculo Diferencial I - Professora: Mariana G. Villapouca Aula 3 - Derivada Taxa de variação: Sejam f : I R e x 0 I. f(x) r x0 rx f = f(x) f(x) = =

Leia mais

Aula 25 Técnicas de integração Aula de exercícios

Aula 25 Técnicas de integração Aula de exercícios MÓDULO - AULA 5 Aula 5 Técnicas de integração Aula de exercícios Objetivo Conhecer uma nova série de exemplos nos quais diferentes técnicas de integração são utilizadas. Nesta aula, você verá uma série

Leia mais

CÁLCULO I Aula 11: Limites Innitos e no Innito. Assíntotas. Regra de l'hôspital.

CÁLCULO I Aula 11: Limites Innitos e no Innito. Assíntotas. Regra de l'hôspital. Limites s CÁLCULO I Aula 11: Limites s e no... Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará Limites s 1 Limites no 2 Limites s 3 4 5 Limites s Denição Seja f uma função denida

Leia mais

Exercício 1 Dê o valor, caso exista, que a função deveria assumir no ponto dado para. em p = 9

Exercício 1 Dê o valor, caso exista, que a função deveria assumir no ponto dado para. em p = 9 Exercícios - Limite e Continuidade-1 Exercício 1 Dê o valor, caso exista, que a função deveria assumir no ponto dado para ser contínua: (a) f(x) = x2 16 x 4 (b) f(x) = x3 x x em p = 4 em p = 0 (c) f(x)

Leia mais

Cálculo Numérico A - 2 semestre de 2006 Prof. Leonardo F. Guidi. 2 a Lista de Exercícios - Gabarito. 1) Seja a equação não linear x e x = 0.

Cálculo Numérico A - 2 semestre de 2006 Prof. Leonardo F. Guidi. 2 a Lista de Exercícios - Gabarito. 1) Seja a equação não linear x e x = 0. Cálculo Numérico A - 2 semestre de 2006 Prof. Leonardo F. Guidi 2 a Lista de Exercícios - Gabarito 1) Seja a equação não linear x e x = 0. A solução é dada em termos da função W de Lambert, x = W 1) 0,

Leia mais

MAT146 - Cálculo I - Teorema do Valor Médio

MAT146 - Cálculo I - Teorema do Valor Médio Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira Motivação Suponha que uma função real f, definida em um intervalo I, seja derivável em todo I. Sabemos que se f é uma função constante,

Leia mais

dt dt dt F dp d mv m dv ma

dt dt dt F dp d mv m dv ma Texto complementar n o 5 I. A Segunda Lei de Newton Imagine a seguinte situação: você em um carro que está percorrendo a marginal do rio Pinheiros. Em determinados momentos a velocidade do carro aumenta,

Leia mais

CÁLCULO I. 1 Velocidade Instantânea. Objetivos da Aula. Aula n o 04: Limites e Continuidade. Denir limite de funções; Calcular o limite de uma função;

CÁLCULO I. 1 Velocidade Instantânea. Objetivos da Aula. Aula n o 04: Limites e Continuidade. Denir limite de funções; Calcular o limite de uma função; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 04: Limites e Continuidade Objetivos da Aula Denir ite de funções; Calcular o ite de uma função; Utilizar as propriedades operatórias do

Leia mais

, (1) onde v é o módulo de v e b 1 e b 2 são constantes positivas.

, (1) onde v é o módulo de v e b 1 e b 2 são constantes positivas. Oscilações Amortecidas O modelo do sistema massa-mola visto nas aulas passadas, que resultou nas equações do MHS, é apenas uma idealização das situações mais realistas existentes na prática. Sempre que

Leia mais

Polinômios de Legendre

Polinômios de Legendre Seção 5: continuação do método de resolução por séries de potências Na Seção foi exposto informalmente, através de exemplos, o método de resolução de equações diferenciais ordinárias por séries de potências.

Leia mais

Limites. Slides de apoio sobre Limites. Prof. Ronaldo Carlotto Batista. 7 de outubro de 2013

Limites. Slides de apoio sobre Limites. Prof. Ronaldo Carlotto Batista. 7 de outubro de 2013 Cálculo 1 ECT1113 Slides de apoio sobre Limites Prof. Ronaldo Carlotto Batista 7 de outubro de 2013 AVISO IMPORTANTE Estes slides foram criados como material de apoio às aulas e não devem ser utilizados

Leia mais

= 2 sen(x) (cos(x) (b) (7 pontos) Pelo item anterior, temos as k desigualdades. sen 2 (2x) sen(4x) ( 3/2) 3

= 2 sen(x) (cos(x) (b) (7 pontos) Pelo item anterior, temos as k desigualdades. sen 2 (2x) sen(4x) ( 3/2) 3 Problema (a) (3 pontos) Sendo f(x) = sen 2 (x) sen(2x), uma função π-periódica, temos que f (x) = 2 sen(x) cos(x) sen(2x) + sen 2 (x) 2 cos(2x) = 2 sen(x) (cos(x) sen(2x) + sen(x) cos(2x) ) = 2 sen(x)

Leia mais

Lista 2 - Cálculo. 17 de maio de Se f e g são funções cujos grácos estão representados abaixo, sejam u(x) = f(x)g(x),

Lista 2 - Cálculo. 17 de maio de Se f e g são funções cujos grácos estão representados abaixo, sejam u(x) = f(x)g(x), Lista 2 - Cálculo 17 de maio de 2019 1. Se f e g são funções cujos grácos estão representados abaixo, sejam u(x) = f(x)g(x), h(x) = f(g(x)) e k(x) = g(f(x)). Encontre as seguintes derivadas: (a) u (1)

Leia mais

CÁLCULO I. Lista Semanal 01 - Gabarito

CÁLCULO I. Lista Semanal 01 - Gabarito CÁLCULO I Prof. Márcio Nascimento Prof. Marcos Diniz Questão 1. Nos itens abaixo, diga se o problema pode ser resolvido com seus conhecimentos de ensino médio (vamos chamar de pré-cálculo) ou se são necessários

Leia mais

CÁLCULO I. 1 Taxa de Variação. Objetivos da Aula. Aula n o 15: Taxa de Variação. Taxas Relacionadas. Denir taxa de variação;

CÁLCULO I. 1 Taxa de Variação. Objetivos da Aula. Aula n o 15: Taxa de Variação. Taxas Relacionadas. Denir taxa de variação; CÁLCULO I Prof. Marcos Diniz Prof. Edilson Neri Prof. André Almeida Aula n o 15: Taxa de Variação. Taxas Relacionadas Objetivos da Aula Denir taxa de variação; Usar as regras de derivação no cálculo de

Leia mais

DERIVADAS. Duane Damaceno 1 de julho de Taxa de variação 2

DERIVADAS. Duane Damaceno 1 de julho de Taxa de variação 2 DERIVADAS Duane Damaceno 1 de julho de 2015 Sumário 1 Taxa de variação 2 2 O que são derivadas? 2 2.1 Limite: a definição de derivada..................................... 3 2.2 Exemplos.................................................

Leia mais

A derivada da função inversa, o Teorema do Valor Médio e Máximos e Mínimos - Aula 18

A derivada da função inversa, o Teorema do Valor Médio e Máximos e Mínimos - Aula 18 A derivada da função inversa, o Teorema do Valor Médio e - Aula 18 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 10 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014106

Leia mais

Funções Elementares. Sadao Massago. Maio de Alguns conceitos e notações usados neste texto. Soma das funções pares é uma função par.

Funções Elementares. Sadao Massago. Maio de Alguns conceitos e notações usados neste texto. Soma das funções pares é uma função par. Funções Elementares Sadao Massago Maio de 0. Apresentação Neste teto, trataremos rapidamente sobre funções elementares. O teto não é material completo do assunto, mas é somente uma nota adicional para

Leia mais

QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4)

QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4) [0000]-p1/7 QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4) ando necessário, use π = 3, 14, g=10 m/s. (1) [1,0] Um móvel executa MHS e obedece à função horária x=cos(0,5πt+π), no SI. O tempo necessário para que este

Leia mais

CÁLCULO I. 1 Área entre Curvas. Objetivos da Aula. Aula n o 28: Área entre Curvas, Comprimento de Arco e Trabalho. Calcular área entre curvas;

CÁLCULO I. 1 Área entre Curvas. Objetivos da Aula. Aula n o 28: Área entre Curvas, Comprimento de Arco e Trabalho. Calcular área entre curvas; CÁLCULO I Prof. Marcos Diniz Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 8: Área entre Curvas, Comprimento de Arco e Trabalho Objetivos da Aula Calcular área entre curvas; Calcular o comprimento

Leia mais

UNIVERSIDADE FEDERAL DO ABC

UNIVERSIDADE FEDERAL DO ABC UNIVERSIDADE FEDERAL DO ABC BC49 Cálculo Numérico - LISTA 5 - Integração numérica (Profs. André Camargo, Feodor Pisnitchenko, Marijana Brtka, Rodrigo Fresneda). Calcule as integrais a seguir pela regra

Leia mais

MATERIAL DE APOIO Integrais

MATERIAL DE APOIO Integrais MATERIAL DE APOIO Integrais Éliton Fontana Fábio César Menslin Júnior 1 Definições 1.1 Integral indefinida Uma integral é dita indefinida quando não se conhece os limites de integração, ou seja, o intervalo

Leia mais

Movimento Retilíneo Uniforme

Movimento Retilíneo Uniforme Movimento Retilíneo Uniforme 1 Objetivos Estudar o Movimento Unidimensional realizando experimentos com um carrinho, em Movimento Retilíneo Uniforme, sobre um trilho de ar. Construir e análisar grácos

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A. Tema III Trigonometria e Números Complexos. Tarefa intermédia nº 9

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A. Tema III Trigonometria e Números Complexos. Tarefa intermédia nº 9 ESCOLA SECUNDÁRIA COM º CICLO D. DINIS 1º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema III Trigonometria e Números Complexos Tarefa intermédia nº 9 1. Considere os números complexos z = + i, w = 1 i e t =

Leia mais

y (n) (x) = dn y dx n(x) y (0) (x) = y(x).

y (n) (x) = dn y dx n(x) y (0) (x) = y(x). Capítulo 1 Introdução 1.1 Definições Denotaremos por I R um intervalo aberto ou uma reunião de intervalos abertos e y : I R uma função que possua todas as suas derivadas, a menos que seja indicado o contrário.

Leia mais

MAP CÁLCULO NUMÉRICO (POLI) Lista de Exercícios sobre Interpolação e Integração. φ(x k ) ψ(x k ).

MAP CÁLCULO NUMÉRICO (POLI) Lista de Exercícios sobre Interpolação e Integração. φ(x k ) ψ(x k ). MAP 22 - CÁLCULO NUMÉRICO (POLI) Lista de Exercícios sobre Interpolação e Integração : Sejam x =, x =, x 2 = 2 e x 3 = 3. (a) Determine os polinômios de Lagrange L i (x) correspondentes a estes pontos

Leia mais

Cálculo I (2015/1) IM UFRJ Lista 3: Derivadas Prof. Milton Lopes e Prof. Marco Cabral Versão Exercícios de Derivada

Cálculo I (2015/1) IM UFRJ Lista 3: Derivadas Prof. Milton Lopes e Prof. Marco Cabral Versão Exercícios de Derivada Eercícios de Derivada Eercícios de Fiação Cálculo I (0/) IM UFRJ Lista : Derivadas Prof Milton Lopes e Prof Marco Cabral Versão 7040 Fi : Determine a equação da reta tangente ao gráco de f() no ponto =

Leia mais

PSI-3214 Laboratório de Instrumentação Elétrica. Sinais Periódicos. Vítor H. Nascimento

PSI-3214 Laboratório de Instrumentação Elétrica. Sinais Periódicos. Vítor H. Nascimento PSI-34 Laboratório de Instrumentação Elétrica Introdução à Análise de Fourier Sinais Periódicos Vítor H. Nascimento Introdução Sinais periódicos (ou aproximadamente periódicos) aparecem em diversas situações

Leia mais

Cálculo 1 4ª Lista de Exercícios Derivadas

Cálculo 1 4ª Lista de Exercícios Derivadas www.matematiqes.com.br Cálclo 4ª Lista de Eercícios Derivadas ) Calclar as derivadas das epressões abaio, sando as fórmlas de derivação: a) y 4 4 d 4 b) f f c) y d d) y R : d df e) 6 f R : 6 d f) 5 y 4

Leia mais

1 A Equação Fundamental Áreas Primeiras definições Uma questão importante... 7

1 A Equação Fundamental Áreas Primeiras definições Uma questão importante... 7 Conteúdo 1 4 1.1- Áreas............................. 4 1.2 Primeiras definições...................... 6 1.3 - Uma questão importante.................. 7 1 EDA Aula 1 Objetivos Apresentar as equações diferenciais

Leia mais

BIE Ecologia de Populações

BIE Ecologia de Populações s - Ecologia de Populações Roberto André Kraenkel http://www.ift.unesp.br/users/kraenkel Apontamentos de Diferencial e Integral Parte I Sumário 1 s Sumário 1 2 s Sumário 1 2 3 s Sumário s 1 2 3 4 s Sumário

Leia mais

CÁLCULO I. 1 Funções Crescentes e Decrescentes

CÁLCULO I. 1 Funções Crescentes e Decrescentes CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 17: Crescimento e Decrescimento de funções. Teste da Primeira Derivada. Objetivos da Aula Denir funções crescentes e

Leia mais

CÁLCULO I. 1 Aproximações Lineares. Objetivos da Aula. Aula n o 16: Aproximações Lineares e Diferenciais. Regra de L'Hôspital.

CÁLCULO I. 1 Aproximações Lineares. Objetivos da Aula. Aula n o 16: Aproximações Lineares e Diferenciais. Regra de L'Hôspital. CÁLCULO I Prof Marcos Diniz Prof André Almeida Prof Edilson Neri Júnior Prof Emerson Veiga Prof Tiago Coelho Aula n o 6: Aproimações Lineares e Diferenciais Regra de L'Hôspital Objetivos da Aula Denir

Leia mais

Taxa de variação e reta tangente A reta tangente ao gráfico de y = f (x) em P(x 0, y 0 ) é dada por

Taxa de variação e reta tangente A reta tangente ao gráfico de y = f (x) em P(x 0, y 0 ) é dada por Motivação: Reta Tangente Taxa de variação e reta tangente A reta tangente ao gráfico de y = f (x em P(x 0, y 0 é dada por y f (x 0 = m tan (x x 0, desde que o limite que define o coeficiente angular,m

Leia mais

Objetivos. Exemplo 18.1 Para integrar. u = 1 + x 2 du = 2x dx. Esta substituição nos leva à integral simples. 2x dx fazemos

Objetivos. Exemplo 18.1 Para integrar. u = 1 + x 2 du = 2x dx. Esta substituição nos leva à integral simples. 2x dx fazemos MÓDULO - AULA 8 Aula 8 Técnicas de Integração Substituição Simples - Continuação Objetivos Nesta aula você aprenderá a usar a substituição simples em alguns casos especiais; Aprenderá a fazer mudança de

Leia mais

0.1 Tutorial sobre Polinômio de Taylor

0.1 Tutorial sobre Polinômio de Taylor Métodos numéricos e equações diferenciais ordinárias Solução da lista 02 Tutorial sobre Pol de Taylor tarcisio@member.ams.org T. Praciano-Pereira Dep. de Matemática Univ. Estadual Vale do Acaraú 4 de fevereiro

Leia mais

Cálculo 1 Fuja do Nabo. Resumo e Exercícios P2

Cálculo 1 Fuja do Nabo. Resumo e Exercícios P2 Cálculo 1 Fuja do Nabo Resumo e Exercícios P2 Fórmulas e Resumo Teórico Limites Exponenciais e Logarítmicos lim $ &' 1 + 1 x $ = e ou lim $ 0 1 + h 2 3 = e a $ 1 lim $ 0 x = ln a, a > 0 Derivadas Exponenciais

Leia mais

Introdução à derivada e ao cálculo diferencial.

Introdução à derivada e ao cálculo diferencial. Introdução à derivada e ao cálculo diferencial. Notas: Rodrigo Ramos 1 o. sem. 2015 Versão 1.2. Obs: Esse é um texto de matemática, você deve acompanhá-lo com atenção, com lápis e papel, e ir fazendo as

Leia mais

Cálculo Numérico. Santos Alberto Enriquez-Remigio FAMAT-UFU 2015

Cálculo Numérico. Santos Alberto Enriquez-Remigio FAMAT-UFU 2015 Cálculo Numérico Santos Alberto Enriquez-Remigio FAMAT-UFU 2015 1 Capítulo 1 Solução numérica de equações não-lineares 1.1 Introdução Lembremos que todo problema matemático pode ser expresso na forma de

Leia mais

CÁLCULO I. Apresentar e aplicar a Regra de L'Hospital.

CÁLCULO I. Apresentar e aplicar a Regra de L'Hospital. CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o : Limites Innitos e no Innito. Assíntotas. Regra de L'Hospital Objetivos da Aula Denir ite no innito e ites innitos; Apresentar alguns tipos

Leia mais

Se a função de consumo é dada por y = f(x), onde y é o consumo nacional total e x é a renda nacional total, então a tendência marginal ao consumo é ig

Se a função de consumo é dada por y = f(x), onde y é o consumo nacional total e x é a renda nacional total, então a tendência marginal ao consumo é ig ELEMENTOS DE EQUAÇÕES DIFERENCIAIS AULA 01: INTRODUÇÃO ÀS EQUAÇÕES DIFERENCIAIS TÓPICO 02: REVENDO TÉCNICAS DE INTEGRAÇÃO VERSÃO TEXTUAL Este tópico objetiva reapresentar as principais técnicas de integração.

Leia mais

1ª.$Prova$de$Física$1$ $FCM$05016$Gabarito$ 2013$ $ $ Nota$ Questões$ 1ª.$ a)$1,0$ b)$1,0$ c)$0,5$ 2ª.$ 2,5...3,0$ $ 3ª.$ a)$0,75$ b)$0,75$

1ª.$Prova$de$Física$1$ $FCM$05016$Gabarito$ 2013$ $ $ Nota$ Questões$ 1ª.$ a)$1,0$ b)$1,0$ c)$0,5$ 2ª.$ 2,5...3,0$ $ 3ª.$ a)$0,75$ b)$0,75$ 1ª.ProvadeFísica1 FCM05016Gabarito 013 NomedoAluno NúmeroUSP Valordas Nota Questões 1ª. a)1,0 b)1,0 c)0,5 ª.,5...3,0 3ª. a)0,75 b)0,75 c)1,00 4ª.,5 NotaFinal BoaProva Aprovaésemconsulta. Asrespostasfinaisdevemserescritascomcaneta.

Leia mais

x exp( t 2 )dt f(x) =

x exp( t 2 )dt f(x) = INTERPOLAÇÃO POLINOMIAL 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia Aproximação

Leia mais

CÁLCULO I. 1 Taxa de Variação. Objetivos da Aula. Aula n o 10: Taxa de Variação, Velocidade, Aceleração e Taxas Relacionadas. Denir taxa de variação;

CÁLCULO I. 1 Taxa de Variação. Objetivos da Aula. Aula n o 10: Taxa de Variação, Velocidade, Aceleração e Taxas Relacionadas. Denir taxa de variação; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 10: Taxa de Variação, Velocidade, Aceleração e Taxas Relacionadas Objetivos da Aula Denir taxa de variação; Usar as regras de derivação

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática a Lista MAT 146 - Cálculo I 018/I DERIVADAS Para este tópico considera-se uma função f : D R R, definida num domínio

Leia mais

Cálculo 1 A Turma F1 Prova VS

Cálculo 1 A Turma F1 Prova VS Cálculo 1 A 017. Turma F1 Prova VS Nome (MAIÚSCULO): Matrícula: O IMPORTANTE É O RACIOCÍNIO, PORTANTO DEIXE-O TODO NA PROVA. RESPOSTAS SEM AS DEVIDAS JUSTIFICATIVAS SERÃO DESCONSIDERADAS. (1) Encontre

Leia mais

Capítulo 4 - Derivadas

Capítulo 4 - Derivadas Capítulo 4 - Derivadas 1. Problemas Relacionados com Derivadas Problema I: Coeficiente Angular de Reta tangente. Problema II: Taxas de variação. Problema I) Coeficiente Angular de Reta tangente I.1) Inclinação

Leia mais

MAT Aula 21/ Segunda 26/05/2014. Sylvain Bonnot (IME-USP)

MAT Aula 21/ Segunda 26/05/2014. Sylvain Bonnot (IME-USP) MAT 0143 Aula 21/ Segunda 26/05/2014 Sylvain Bonnot (IME-USP) 2014 1 Teorema fundamental do cálculo Teorema (Teorema fundamental do cálculo, parte 1) Se f for contínua em [a, b] então a função g definida

Leia mais

O Teorema do Valor Médio

O Teorema do Valor Médio Universidade de Brasília Departamento de Matemática Cálculo 1 O Teorema do Valor Médio Começamos este texto enunciando um importante resultado sobre derivadas: Teorema do Valor Médio. Suponha que f é uma

Leia mais

Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Aplicações da Derivada

Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Aplicações da Derivada 1) Velocidade e Aceleração 1.1 Velocidade Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Aplicações da Derivada Suponhamos que um corpo se move em

Leia mais

Física I para Engenharia IFUSP P1-25/04/2014

Física I para Engenharia IFUSP P1-25/04/2014 Física I para Enenharia IFUSP - 43195 P1-5/04/014 A prova tem duração de 10 minutos. Resolva questão na folha correspondente. Use o verso se necessário. Escreva de forma leível, a lápis ou tinta. Seja

Leia mais

Suponhamos que tenha sido realizado um. estudo que avalia dois novos veículos do mercado: o Copa e o Duna. As pesquisas levantaram os seguintes dados:

Suponhamos que tenha sido realizado um. estudo que avalia dois novos veículos do mercado: o Copa e o Duna. As pesquisas levantaram os seguintes dados: A U A UL LA Acelera Brasil! Suponhamos que tenha sido realizado um estudo que avalia dois novos veículos do mercado: o Copa e o Duna. As pesquisas levantaram os seguintes dados: VEÍCULO Velocidade máxima

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL. Prof. Rodrigo Carvalho

CÁLCULO DIFERENCIAL E INTEGRAL. Prof. Rodrigo Carvalho CÁLCULO DIFERENCIAL E INTEGRAL LIMITES Uma noção intuitiva de Limite Considere a unção () = 2 + 3. Quando assume uma ininidade de valores, aproimando cada vez mais de zero, 2 + 3 assume uma ininidade de

Leia mais

CÁLCULO I. 1 Número Reais. Objetivos da Aula

CÁLCULO I. 1 Número Reais. Objetivos da Aula CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida EMENTA: Conceitos introdutórios de limite, limites trigonométricos, funções contínuas, derivada e aplicações. Noções introdutórias sobre a integral

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, apresentaremos a noção de integral indefinidada. Também discutiremos

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, apresentaremos a noção de integral indefinidada. Também discutiremos CÁLCULO L NOTAS DA DÉCIMA OITAVA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, apresentaremos a noção de integral indefinidada. Também discutiremos a primeira técnica de integração: mudança

Leia mais

CÁLCULO I. Iniciaremos com o seguinte exemplo: u 2 du = cos x + u3 3 + C = cos3 x

CÁLCULO I. Iniciaremos com o seguinte exemplo: u 2 du = cos x + u3 3 + C = cos3 x CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aulas n o 9: Técnicas de Integração II - Integrais Trigonométricas e Substituição Trigonométrica Objetivos da Aula Calcular integrais de potências

Leia mais

Resolução da Questão 1 Item I Texto definitivo

Resolução da Questão 1 Item I Texto definitivo Questão As trajetórias dos aviões A e B são representadas em um sistema de coordenadas cartesianas ortogonais xoy. A trajetória do avião A, que voa à velocidade de km/h, está sobre o eixo

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO

UNIVERSIDADE FEDERAL DE PERNAMBUCO CÁLCULO L NOTAS DA NONA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, apresentaremos as funções logaritmo e exponencial e calcularemos as suas derivadas. Também estabeleceremos algumas propriedades

Leia mais

1 Séries de números reais

1 Séries de números reais Universidade do Estado do Rio de Janeiro - PROFMAT MA 22 - Fundamentos de Cálculo - Professora: Mariana Villapouca Resumo Aula 0 - Profmat - MA22 (07/06/9) Séries de números reais Seja (a n ) n uma sequência

Leia mais

MAT146 - Cálculo I - Derivada de funções polinomiais, regras de derivação e derivada de funções trigonométricas

MAT146 - Cálculo I - Derivada de funções polinomiais, regras de derivação e derivada de funções trigonométricas MAT146 - Cálculo I - Derivada de funções polinomiais, regras de derivação e derivada de funções trigonométricas Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira Vimos que uma função

Leia mais

Aula 08 - Introdução às Séries de Potência

Aula 08 - Introdução às Séries de Potência Aula 08 - Introdução às Séries de Potência Éliton Fontana Como visto anteriormente, as EDO's de segunda ordem lineares com coecientes constantes podem ser resolvidas analiticamente e a solução pode ser

Leia mais

Curso: Análise e Desenvolvimento de Sistemas. (Material de Nivelamentos,Conceitos de Limite, Diferencial e Integral)

Curso: Análise e Desenvolvimento de Sistemas. (Material de Nivelamentos,Conceitos de Limite, Diferencial e Integral) Curso: Análise e Desenvolvimento de Sistemas Disciplina Sistemas de Controle e Modelagem (Material de Nivelamentos,Conceitos de Limite, Diferencial e Integral) Prof. Wagner Santos C. de Jesus wsantoscj@gmail.com

Leia mais

O problema da velocidade instantânea

O problema da velocidade instantânea Universidade de Brasília Departamento de Matemática Cálculo O problema da velocidade instantânea Supona que um carro move-se com velocidade constante e igual a 60 km/. Se no instante t = 0 ele estava no

Leia mais

Universidade Federal de Pelotas. Instituto de Física e Matemática Pró-reitoria de Ensino. Módulo de Limites. Aula 01. Projeto GAMA

Universidade Federal de Pelotas. Instituto de Física e Matemática Pró-reitoria de Ensino. Módulo de Limites. Aula 01. Projeto GAMA Universidade Federal de Pelotas Instituto de Física e Matemática Pró-reitoria de Ensino Atividades de Reforço em Cálculo Módulo de Limites Aula 0 208/ Projeto GAMA Grupo de Apoio em Matemática Ideia Intuitiva

Leia mais

FFCLRP-USP LIMITES FUNDAMENTAIS - CÁL. DIF. E INT. I. Professor Dr. Jair Silvério dos Santos TEOREMA DO SANDUICHE

FFCLRP-USP LIMITES FUNDAMENTAIS - CÁL. DIF. E INT. I. Professor Dr. Jair Silvério dos Santos TEOREMA DO SANDUICHE FFCLRP-USP LIMITES FUNDAMENTAIS - CÁL. DIF. E INT. I Professor Dr. Jair Silvério dos Santos TEOREMA DO SANDUICHE Teorema 0.. Dadas f,g, : A R funções e 0 ponto de acumulação de A. (i) Supona eiste ǫ >

Leia mais

CÁLCULO I. Calcular integrais envolvendo funções trigonométricas; Apresentar a substituição trigonométrica. Iniciaremos com o seguinte exemplo:

CÁLCULO I. Calcular integrais envolvendo funções trigonométricas; Apresentar a substituição trigonométrica. Iniciaremos com o seguinte exemplo: CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Prof. Emerson Veiga Prof. Tiago Coelho Aula n o 8: Integrais Trigonométricas. Substituição Trigonométrica. Objetivos da Aula Calcular

Leia mais

MAT 1351 : Cálculo para Funções de Uma Variável Real I. Sylvain Bonnot (IME-USP)

MAT 1351 : Cálculo para Funções de Uma Variável Real I. Sylvain Bonnot (IME-USP) MAT 1351 : Cálculo para Funções de Uma Variável Real I Sylvain Bonnot (IME-USP) 2016 1 Limites of differences: como tratar Exemplos: 2 Como trabalhar com ites infinitos: somas e produtos Somas: 1. (+ )

Leia mais

Noções Elementares Sobre Derivadas

Noções Elementares Sobre Derivadas Noções Elementares Sobre Derivadas da Silva, M.Ilsangela Departamento de Matemática Universidade Estadual Vale do Acaraú 7 de dezembro de 2007 milsangela@gmail.com pré-prints do Curso de Matemática de

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo específico Integração Numérica Conteúdo temático Conceitos básicos

Leia mais

26 CAPÍTULO 4. LIMITES E ASSÍNTOTAS

26 CAPÍTULO 4. LIMITES E ASSÍNTOTAS Capítulo 4 Limites e assíntotas 4.1 Limite no ponto Considere a função f(x) = x 1 x 1. Observe que esta função não é denida em x = 1. Contudo, fazendo x sucientemente próximo de 1 (mais não igual a1),

Leia mais

Derivadas. Derivadas. ( e )

Derivadas. Derivadas. ( e ) Derivadas (24-03-2009 e 31-03-2009) Recta Tangente Seja C uma curva de equação y = f(x). Para determinar a recta tangente a C no ponto P de coordenadas (a,f(a)), i.e, P(a, f(a)), começamos por considerar

Leia mais

13 Fórmula de Taylor

13 Fórmula de Taylor 13 Quando estudamos a diferencial vimos que poderíamos calcular o valor aproimado de uma função usando a sua reta tangente. Isto pode ser feito encontrandose a equação da reta tangente a uma função y =

Leia mais

1 Definição de Derivada

1 Definição de Derivada Departamento de Computação é Matemática Cálculo I USP- FFCLRP Prof. Rafael A. Rosales 5 de março de 2014 Lista 5 Derivada 1 Definição de Derivada Eercício 1. O que é f (a)? Eplique com suas palavras o

Leia mais

Continuidade e Limite

Continuidade e Limite Continuidade e Limite Antônio Calixto de Souza Filho Escola de Artes, Ciências e Humanidades Universidade de São Paulo 20 de maio de 2013 1 Remoção da indeterminação 0 0 2 3 Propriedades da derivada Derivada

Leia mais

QUESTÕES DE MÚLTIPLA-ESCOLHA (1-5)

QUESTÕES DE MÚLTIPLA-ESCOLHA (1-5) Física I para a Escola Politécnica (4323101) - P1 (10/04/2015) [16A7]-p1/6 QUESTÕES DE MÚLTIPLA-ESCOLHA (1-5) ando necessário, use g=10 m/s 2 (1) [1,0 pt] A figura abaixo representa dois blocos 1 e 2,

Leia mais

Derivada. Capítulo Retas tangentes e normais Número derivado

Derivada. Capítulo Retas tangentes e normais Número derivado Capítulo 3 Derivada 3.1 Retas tangentes e normais Vamos considerar o problema que consiste em traçar a reta tangente e a reta normal a uma curvay= f(x) num determinado ponto (a,f(a)) da curva. Por isso

Leia mais