Física IV. Difração. Sears capítulo 36. Prof. Nelson Luiz Reyes Marques. Capítulo 36 Difração

Tamanho: px
Começar a partir da página:

Download "Física IV. Difração. Sears capítulo 36. Prof. Nelson Luiz Reyes Marques. Capítulo 36 Difração"

Transcrição

1 Física IV Difração Sears capítulo 36 Prof. Nelson Luiz Reyes Marques

2 Difração e a Teoria Ondulatória da Luz

3 Difração e a Teoria Ondulatória da Luz A difração é um fenômeno essencialmente ondulatório, ou seja, acontece apenas porque a luz é uma onda e é observado também em outros tipos de onda. A difração pode ser definida, sem muito rigor, como o alargamento sofrido por um feixe luminoso ao passar por uma fenda estreita. Algo mais acontece, porém, já que a difração, além de alargar um feixe luminoso, produz uma série de franjas claras e escuras que constituem a chamada figura de difração.

4 Difração e a Teoria Ondulatória da Luz

5 Difração e a Teoria Ondulatória da Luz

6 Difração e a Teoria Ondulatória da Luz

7 Difração e a Teoria Ondulatória da Luz Todos os pontos de uma frente de onda se comportam como fontes pontuais para ondas secundárias.

8 Difração por uma Fenda

9 Difração por uma Fenda

10 Princípio de Huygens-Fresnel Huygens: (...) cada partícula do meio através do qual a onda evolui não só transmite o seu movimento à partícula seguinte, ao, longo da reta que parte do ponto luminoso, mas também a todas as partículas que a rodeiam e que se opõem ao movimento. O resultado é uma onda em torno de cada partícula e que a tem como centro. Fresnel: As componentes da onda em direções fora da direção de propagação sofrem interferência destrutiva, gerando outra frente de onda que segue o padrão anterior.

11 Princípio de Huygens-Fresnel A fonte e a tela estão relativamente próximas do obstáculo que produz a difração.

12 Princípio de Huygens-Fresnel

13 Difração Fraunhofer A distância entre a fonte, o obstáculo e a tela são suficientemente grandes para que todas as retas que ligam pontos do obstáculo com pontos da tela possam ser considerados paralelos. As ondas luminosas são desviadas ao passarem pela superfície de uma esfera, produzindo um ponto claro no centro da sombra da esfera, conhecido como Ponto Claro de Fresnel.

14 Difração Fraunhofer Raios paralelos provenientes de uma fonte de luz coerente (no plano focal obj. de uma lente convergente)

15 Difração Fraunhofer

16 Difração por uma Fenda: Posições dos Mínimos Em primeiro lugar, dividimos mentalmente a fenda em duas regiões de mesma largura a/2. Em seguida, estendemos até P 1 um raio luminoso r 1 proveniente da extremidade superior da região de cima e um raio luminoso r 2 proveniente da extremidade superior da região de baixo. Para que haja interferência destrutiva no ponto P 1, devemos ter

17 Difração por uma Fenda: Posições dos Mínimos

18 Difração por uma Fenda: Posições dos Mínimos Em primeiro lugar, dividimos mentalmente a fenda em duas regiões de mesma largura a/2. Em seguida, estendemos até P 1 um raio luminoso r 1 proveniente da extremidade superior da região de cima e um raio luminoso r 2 proveniente da extremidade superior da região de baixo. Para que haja interferência destrutiva no ponto P 1, devemos ter

19 Difração por uma Fenda: Posições dos Mínimos A posição da segunda franja escura pode ser determinada da mesma forma, exceto pelo fato de que, agora, dividimos a fenda em quatro regiões de mesma largura

20 Difração por uma Fenda: Posições dos Mínimos No caso geral,

21 Difração por uma Fenda: Posições dos Mínimos

22 Exemplo 36.1 Difração de fenda simples Você faz um feixe de luz laser de 633 nm incidir sobre uma fenda estrita e observa a figura de difração sobre uma tela situada a uma distância de 6,0 m. Você verifica que é de 32 mm a distância entre o centro do primeiro mínimo central e o centro do primeiro mínimo abaixo do máximo central. Qual a largura da fenda? Neste caso, a distância entre os pontos sobre a tela é muito menor do que a distância entre a tela e a fenda, de modo que o ângulo mostrado na FIGURA 36.5a é muito pequeno. Logo, podemos usar a relação aproximada fornecida pela equação encontrar a largura da fenda. y m = x m a para

23 Exemplo 36.1 Difração de fenda simples O primeiro mínimo corresponde a m=1. A distância y 1 entre o máximo central e o primeiro mínimo é igual à metade da distância entre os dois primeiros mínimos, logo, y 1 = (32 mm)/2. y m = x m a x a = = y 1 a= 2, m = 0,24 mm 6,

24 Exemplo: Figura de Difração de uma Fenda Iluminada com Luz Branca

25 Exemplo: Figura de Difração de uma Fenda Iluminada com Luz Branca

26 Exemplo: Figura de Difração de uma Fenda Iluminada com Luz Branca

27 Exemplo: Figura de Difração de uma Fenda Iluminada com Luz Branca

28 Exemplo: Figura de Difração de uma Fenda Iluminada com Luz Branca

29 Verificação Produzimos uma figura de difração em uma tela iluminando uma fenda longa e estreita com luz azul. A figura se dilata (os máximos e mínimos se afastam do centro) ou se contrai (os máximos e mínimos se aproximam do centro) quando (a) substituímos a luz azul por uma luz amarela ou (b) diminuímos a largura da fenda?

30 Verificação The Optics project: (a)

31 Verificação The Optics project: (a)

32 Verificação The Optics project: (b)

33 Verificação The Optics project: (b)

34 Determinação da Intensidade da Luz Difratada por uma Fenda: Método Quantitativo Intensidade relativa da figura de difração de uma fenda para três valores da razão a/λ. Quanto maior é a fenda, mais estreito é o máximo central.

35 Determinação da Intensidade da Luz Difratada por uma Fenda: Método Quantitativo

36 Determinação da Intensidade da Luz Difratada por uma Fenda: Método Quantitativo As intensidades são dadas por: I = I 0 sen (β/2) β/2 onde β 2 = πa senθ Os mínimos são dados por mπ = πa senθ β 2 para m = 1, 2, 3, = mπ para m = 1, 2, 3, 2 asenθ = m para m = 1,2, 3, (mínimos; franjas escuras)

37 Determinação da Intensidade da Luz Difratada por uma Fenda: Método Quantitativo Figura Diagrama de fasores para determinar a amplitude do campo resultante E na difração da fenda única. Cada fasor representa o campo E de uma única faixa no interior da fenda.

38 Determinação da Intensidade da Luz Difratada por uma Fenda: Método Quantitativo Figura Diagrama de fasores para determinar a amplitude do campo resultante E na difração da fenda única. Cada fasor representa o campo E de uma única faixa no interior da fenda.

39 Determinação da Intensidade da Luz Difratada por uma Fenda: Método Quantitativo sen 1 2 β = E P 2R β = E 0 R E P = E 0 1 sen 1 2 β 2 β I I 0 = E2 E 0 2 I = I 0 sen (β/2) β/2 2 Fenda única

40 Determinação da Intensidade da Luz Difratada por uma Fenda: Método Quantitativo Do capitulo anterior, a diferença de fase é dada por: = 2π (r 2 r 1 ) Da figura, a diferença de caminho entre o raio proveniente do topo da fenda e o raio que sai do meio da fenda é dada por: r 2 r 1 = a 2 senθ = 2π r 2 r 1 = π a senθ A diferença de caminho entre o raio proveniente do topo da fenda e o raio que sai da extremidade inferior da fenda é igual ao dobro desse valor β = 2π asenθ

41 Determinação da Intensidade da Luz Difratada por uma Fenda: Método Quantitativo Fenda única sen (β/2) I = I 0 β/2 β = 2π asenθ 2

42 Determinação da Intensidade da Luz Difratada por uma Fenda: Método Quantitativo As franjas escuras da figura de difração correspondem a I = 0. Esses pontos correspondem quando o numerador da equação I = I 0 sen (β/2) β/2 Pela equação 2 a senθ é zero, ou seja, é múltiplo de 2. β = 2π asenθ, essa condição corresponde a = m (m = ±1, ±2,...) senθ = m a (m = ±1, ±2,...)

43 Verificação Dois comprimentos de onda, 650 e 430 nm, são usados separadamente em um experimento de difração por uma fenda. A figura mostra os resultados na forma de gráficos da intensidade I em função do ângulo q para as duas figuras de difração. Se os dois comprimentos de onda forem usados simultaneamente, que cor será vista na figura de difração resultante (a) para o ângulo A e (b) para o ângulo B? I 0 A B

44 Verificação Lembrando: a senθ = m, m = 1, 2, 3, (min. franja ecuras) Portanto: I =650nm =430nm 0 só vermelho A B só azul

45 Determinação da Intensidade da Luz Difratada por uma Fenda: Método Quantitativo sen (β/2) I = I 0 β/2 β = 2π asenθ 2

46 Determinação da Intensidade da Luz Difratada por uma Fenda: Método Quantitativo

47 Exemplo 36.2 Intensidade I a) Em uma figura de difração da fenda única, qual é a intensidade em um ponto onde a diferença de fase total entre as ondas secundárias provenientes do topo da parte superior da fenda é igual a 66 rad? β = 66 rad, β 2 I = I 0 sen (β/2) β/2 = 33 rad 2 = I 0 sen(33rad) 33rad b) Se esse ponto está 7º afastado do máximo central, quantos comprimentos de ondas de largura tem a fenda? 2 = 9, I 0 β = 2π asenθ a = β 2πsemθ = (66 rad)λ 2π rad sen 7 = 86

48 Exemplo 36.3 Intensidade II Na experiência descrita no exemplo 36.1, qual é a intensidade em um ponto sobre a tela a uma distancia de 3 mm do centro da figura de difração? A intensidade no centro é igual a I 0. tgθ = y x = = , logo senθ = tagθ = θ = rad Do exemplo 36.1, a= 2, m = 0,24 mm e = 633 nm I = I 0 sen πa(senθ)/λ πa(senθ)/λ 2 I = I 0 sen π. 2, ( )/ π. 2, ( )/ I = I 0 sen 0,60 0,60 2 = 089I 0

49 Exemplo: Intensidades dos Máximos da Figura de Difração de uma Fenda

50 Exemplo: Intensidades dos Máximos da Figura de Difração de uma Fenda

51 Determinação da Intensidade da Luz Difratada por uma Fenda: Método Qualitativo

52 Difração por uma abertura circular d Importante: aberturas sistemas ópticos Primeiro mínimo: Disco de Airy (círculo central)

53 Difração por uma abertura circular Critério de resolução de Rayleigh A mínima separação angular possível de ser resolvida ou o limite angular de resolução é: máximo do disco de Airy de uma das fontes coincide com o primeiro mínimo do padrão de difração da outra fonte. Como ângulos são pequenos:

54 Difração por uma abertura circular Critério de resolução de Rayleigh Maior aproximação Difícil separação

55 Difração por uma abertura circular Critério de resolução de Rayleigh

56 Difração por uma abertura circular Verificação Suponha que você mal consiga resolver dois pontos vermelhos por causa da difração na pupila do olho. Se a iluminação ambiente aumentar, fazendo a pupila diminuir de diâmetro, será mais fácil ou mais difícil distinguir os pontos? Considere apenas o efeito da difração. Lembrando: Portanto diminuindo d ficaria mais difícil resolver as duas fontes.

57 Exercício 1. Pinturas Pontilhistas e a Difração da Pupila O pintor neoimpressionista Georges Seurat (final do século XIX) pertencia à escola do pontilhismo. Suas obras consistiam em um enorme número de pequenos pontos igualmente espaçados (aprox. 2,54 mm) de pigmento puro. A ilusão da mistura de cores é produzida somente nos olhos do observador. A que distância mínima de uma pintura como esta deveria o observador estar para observar a mistura desejada de cores? Le Pont de Courbevoie

58 Exercício 1. Pinturas Pontilhistas e a Difração da Pupila O diâmetro da pupila humana varia com certeza, mas tomando uma média para situação de claridade, como sendo de aproximadamente 2 mm, para um comprimento de onda de 550 nm: Onde l é 2,54mm, a distância entre os pigmentos, e d a distância do observador, portanto:

59 Exercício 2. Pinturas Pontilhistas e a Difração da Pupila

60 Exercício 2. Pinturas Pontilhistas e a Difração da Pupila

61 Exercício 2. Pinturas Pontilhistas e a Difração da Pupila

62 Exercício 2. Pinturas Pontilhistas e a Difração da Pupila

63 Exercício 2. Pinturas Pontilhistas e a Difração da Pupila

64 Exercício 2. Pinturas Pontilhistas e a Difração da Pupila

65 Exercício 2. Pinturas Pontilhistas e a Difração da Pupila

66 Exercício 3. O Critério de Rayleigh para Resolver Dois Objetos Distantes

67 Exercício 3. O Critério de Rayleigh para Resolver Dois Objetos Distantes

68 Exercício 3. O Critério de Rayleigh para Resolver Dois Objetos Distantes

69 Exercício 3. O Critério de Rayleigh para Resolver Dois Objetos Distantes

70 Difração por Duas Fendas onda incidente

71 Difração por Duas Fendas Distribuição de Intensidade: Difração Fenda Única + Interferência =

72 Difração por Duas Fendas Distribuição de Intensidade: Difração Fenda Única + Interferência i. ii. I = I 0 cos 2 2 I = I 0 sen (β/2) β/2 intesidade na interferência de duas fontes 2 intesidade da diofração de fenda única

73 Difração por Duas Fendas Distribuição de Intensidade: Difração Fenda Única + Interferência A intensidade é proporcional ao produto de i e ii em que: I = I 0 cos 2 2 sen (β/2) β/2 (duas fendas com larguras finitas) φ 2 = πd λ senθ e β 2 = πa λ senθ 2

74 Redes de Difração

75 Redes de Difração

76 Redes de Difração Diferença de caminho entre dois raios de fendas adjacentes (mesmo procedimento adotado para interf. em fenda dupla): d sen m ( m 0, 1, 2,...) m = 0 (máximo central): é o mesmo para todos os comprimentos de onda.

77 Redes de Difração

78 Difração de raios-x R-x 1 Å

79 Difração de raios-x R-x 1 Å Tubo de raios-x Colimador Cristal Raios-x Filme fotográfico

80 Difração de raios-x Fenômeno de espalhamento da radiação eletromagnética, provocada pela interação entre o feixe de raios-x incidente e os elétrons dos átomos componentes de um material. Raios X Feixe difratado Feixe atravessa o cristal

81 Difração de raios-x: lei de Bragg (1913) Feixe incidente Feixe refletido Plano superior Plano inferior (lei de Bragg)

82 Difração de raios-x: lei de Bragg λ θ d d d senθ θ d senθ Parâmetro experimental: - Comprimento de onda da radiação ( 1.54 A) m = 2 d sen( ) Diferença dos caminhos e/ raios Parâmetros da amostra: d - distância entre planos atômicos - orientação desses planos em relação ao feixe, ângulo de Bragg m - ordem de difração (numero inteiro 1,2,3)

83 Difração de raios-x: lei de Bragg Quem cumpre essas condições? Material Materiais cristalinos (rede cristalina) d = 5 15 Å Radiação Incidente Raios X λ 1 Å

84 Difração de raios-x: lei de Bragg (a) A estrutura cúbica do NaCl, mostrando os íons de sódio e cloro e uma célula unitária (sombreada). (b) Os raios X incidentes são difratados pelo cristal representado em (a). Os raios X são difratados como se fossem refletidos por uma família de planos paralelos, com o ângulo de reflexão igual ao ângulo de incidência, ambos medidos em relação aos planos (e não em relação à normal, como na ótica). (c) A diferença de percurso dos raios refletidos por planos vizinhos é 2d sen θ.

85 Exercício Raios-X de comprimento de onda de 0,12 nm sofrem reflexão de segunda ordem em um cristal de fluoreto de lítio para um ângulo de Bragg de 28 o. Qual é a distância interplanar dos planos cristalinos responsáveis pela reflexão?

Física IV. Interferência

Física IV. Interferência Física IV Interferência Sears capítulo 35 Prof. Nelson Luiz Reyes Marques Interferência Arco-íris = Bolha de sabão refração interferência Princípio da superposição Quando duas ou mais ondas se superpõem,

Leia mais

Formas regulares e simétricas assim como a ordenação das partículas que os formam. Cristalografia e Difração em Raio X - Michele Oliveira

Formas regulares e simétricas assim como a ordenação das partículas que os formam. Cristalografia e Difração em Raio X - Michele Oliveira Formas regulares e simétricas assim como a ordenação das partículas que os formam. Cristalografia e Difração em Raio X - Michele Oliveira 2 Cristais são arranjos atômicos ou moleculares cuja estrutura

Leia mais

DIFRAÇÃO DE RAIOS X DRX

DIFRAÇÃO DE RAIOS X DRX DIFRAÇÃO DE RAIOS X DRX O espectro eletromagnético luz visível raios-x microondas raios gama UV infravermelho ondas de rádio Comprimento de onda (nm) Raios Absorção, um fóton de energia é absorvido promovendo

Leia mais

Física IV. Instituto de Física - Universidade de São Paulo. Aula: difração

Física IV. Instituto de Física - Universidade de São Paulo. Aula: difração Física IV Instituto de Física - Universidade de São Paulo Professor: Valdir Guimarães E-mail: valdirg@if.usp.br Aula: difração Difração da Luz Para garantir que as ondas saindo de S1 e S2 sejam coerentes.

Leia mais

DRIFRAÇÃO DE RAIOS-X

DRIFRAÇÃO DE RAIOS-X DRIFRAÇÃO DE RAIOS-X Prof. Márcio Antônio Fiori Prof. Jacir Dal Magro O espectro eletromagnético luz visível raios-x microondas raios gama UV infravermelho ondas de rádio Comprimento de onda (nm) Absorção,

Leia mais

Roteiro 23 Difração e Interferência de ondas bidimensionais num meio líquido

Roteiro 23 Difração e Interferência de ondas bidimensionais num meio líquido Roteiro 23 Difração e Interferência de ondas bidimensionais num meio líquido 1 INTRODUÇÃO As ondas podem sofrer o efeito de diversos fenômenos, dentre eles estão a difração e a interferência. A difração

Leia mais

Cor e frequência. Frequência ( ) Comprimento de onda ( )

Cor e frequência. Frequência ( ) Comprimento de onda ( ) Aula Óptica Luz visível A luz que percebemos tem como característica sua freqüência que vai da faixa de 4.10 14 Hz ( vermelho) até 8.10 14 Hz (violeta). Esta faixa é a de maior emissão do Sol, por isso

Leia mais

Volume 8 óptica. Capítulo 49 Espelhos Planos

Volume 8 óptica. Capítulo 49 Espelhos Planos Volume 8 óptica Vídeo 49.1 Vídeo 49.2 Vídeo 49.3 Vídeo 49.4 Vídeo 49.5 Vídeo 49.6 Vídeo 49.7 Vídeo 49.8 Vídeo 49.9 Capítulo 49 Espelhos Planos Um feixe de micro-ondas refletido por uma placa metálica plana

Leia mais

Nosso objetivo será mostrar como obter informações qualitativas sobre a refração da luz em um sistema óptico cilíndrico.

Nosso objetivo será mostrar como obter informações qualitativas sobre a refração da luz em um sistema óptico cilíndrico. Introdução Nosso objetivo será mostrar como obter informações qualitativas sobre a refração da luz em um sistema óptico cilíndrico. A confecção do experimento permitirá também a observação da dispersão

Leia mais

Aula 8 Fótons e ondas de matéria II. Física Geral F-428

Aula 8 Fótons e ondas de matéria II. Física Geral F-428 Aula 8 Fótons e ondas de matéria II Física Geral F-428 1 Resumo da aula anterior: Planck e o espectro da radiação de um corpo negro: introdução do conceito de estados quantizados de energia para os osciladores

Leia mais

OBJETIVO Verificar as leis da Reflexão Verificar qualitativamente e quantitativamente a lei de Snell. Observar a dispersão da luz em um prisma.

OBJETIVO Verificar as leis da Reflexão Verificar qualitativamente e quantitativamente a lei de Snell. Observar a dispersão da luz em um prisma. UNIVERSIDADE CATÓLICA DE BRASÍLIA CURSO DE FÍSICA LABORATÓRIO ÓPTICA REFLEXÃO E REFRAÇÃO OBJETIVO Verificar as leis da Reflexão Verificar qualitativamente e quantitativamente a lei de Snell. Observar a

Leia mais

INTERFERÊNCIA E DIFRAÇÃO DAS ONDAS ELETROMAGNÉTICAS

INTERFERÊNCIA E DIFRAÇÃO DAS ONDAS ELETROMAGNÉTICAS INTERFERÊNCIA E DIFRAÇÃO DAS ONDAS ELETROMAGNÉTICAS Aula 10 META Aplicar conceitos básicos de interferência ondulatória, estudados na aula 05, para o caso das ondas eletromagnéticas. Discutir peculiaridades

Leia mais

APRESENTAÇÃO DO PROFESSOR

APRESENTAÇÃO DO PROFESSOR FUNDAÇÃO UNIVERSIDADE FEDERAL DE RONDÔNIA, CAMPUS DE JI-PARANÁ, DEPARTAMENTO DE FÍSICA DE JI-PARANÁ DEFIJI SEMESTRE TURMA ESPECIAL ÓPTICA PROF. DR. ROBINSON APRESENTAÇÃO DO PROFESSOR Robinson Viana Figueroa

Leia mais

3ª Série de Problemas Mecânica e Ondas MEBM, MEFT, LMAC, LEGM

3ª Série de Problemas Mecânica e Ondas MEBM, MEFT, LMAC, LEGM 3ª Série de Problemas Mecânica e Ondas MEBM, MEFT, LMAC, LEGM 1. Um cientista está no seu moinho, no topo de uma falésia junto à costa marítima, apontando o seu pequeno radiotelescópio para uma estrela

Leia mais

ÓPTICA GEOMÉTRICA PREGOLINI

ÓPTICA GEOMÉTRICA PREGOLINI ÓPTICA GEOMÉTRICA PREGOLINI ÓPTICA GEOMÉTRICA É a parte da Física que estuda os fenômenos relacionados com a luz e sua interação com meios materiais quando as dimensões destes meios é muito maior que o

Leia mais

Difração. Espectrometria por Raios X 28/10/2009. Walmor Cardoso Godoi, M.Sc. http://ww.walmorgodoi.com

Difração. Espectrometria por Raios X 28/10/2009. Walmor Cardoso Godoi, M.Sc. http://ww.walmorgodoi.com Difração Espectrometria por Raios X Fenômeno encontrado enquanto ondas (sísmicas, acústicas, ondas de água, ondas eletromagnéticos, luz visível, ondas de rádio, raios X) encontram um obstáculo teia de

Leia mais

GABARITO DO GUIA DE ESTUDO 3 POLARIZAÇÃO

GABARITO DO GUIA DE ESTUDO 3 POLARIZAÇÃO GABARTO DO GUA DE ESTUDO POLARZAÇÃO GE.) Placas polarizadoras. GE..) Um vendedor alega que os óculos de sol que ele deseja lhe vender possuem lentes com filtro polaróide; porém, você suspeita que as lentes

Leia mais

www.fisicanaveia.com.br

www.fisicanaveia.com.br www.fisicanaveia.com.br Lentes Esféricas Lentes Esféricas: construção Biconvexa Lentes Esféricas: construção PLANO-CONVEXA Lentes Esféricas: construção CÔNCAVO-CONVEXA Lentes Esféricas: construção BICÔNCAVA

Leia mais

Lembrando: Portanto diminuindo d ficaria mais difícil resolver as duas fontes.

Lembrando: Portanto diminuindo d ficaria mais difícil resolver as duas fontes. Lembrando: Portanto diminuindo d ficaria mais difícil resolver as duas fontes. Exercícios e Problemas Le Pont de Courbevoie 1886-1887 O pintor neoimpressionista Georges Seurat (final do século XIX) pertencia

Leia mais

EXPERIMENTO N o 6 LENTES CONVERGENTES INTRODUÇÃO

EXPERIMENTO N o 6 LENTES CONVERGENTES INTRODUÇÃO EXPERIMENTO N o 6 LENTES CONVERGENTES INTRODUÇÃO Ao incidir em uma lente convergente, um feixe paralelo de luz, depois de passar pela lente, é concentrado em um ponto denominado foco (representado por

Leia mais

Óptica Geométrica Ocular Séries de Exercícios 2009/2010

Óptica Geométrica Ocular Séries de Exercícios 2009/2010 Óptica Geométrica Ocular Séries de Exercícios 2009/2010 2 de Junho de 2010 Série n.1 Propagação da luz 1. A velocidade da luz amarela de sódio num determinado líquido é 1, 92 10 8 m/s. Qual o índice de

Leia mais

NOTAS DE AULAS DE FÍSICA MODERNA

NOTAS DE AULAS DE FÍSICA MODERNA NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 5 PROPRIEDADES ONDULATÓRIAS DA MATÉRIA Primeira Edição junho de 2005 CAPÍTULO 5 PROPRIEDADES ONDULATÓRIAS DA MATÉRIA ÍNDICE 5.1- Postulados

Leia mais

Tópicos de Física Moderna ano 2005/2006

Tópicos de Física Moderna ano 2005/2006 Trabalho Prático Nº 3 ESTUDO DA DIFRAÇÃO Tópicos de Física Moderna ano 005/006 Objectivos: Familiarização com os fenómenos de interferência e difracção da luz, com utilização de uma rede de difracção para

Leia mais

Introdução. Esta figura de difração apareceu em uma tela de observação quando a luz que havia passado por uma fenda vertical estreita chegou à tela.

Introdução. Esta figura de difração apareceu em uma tela de observação quando a luz que havia passado por uma fenda vertical estreita chegou à tela. Introdução Esta figura de difração apareceu em uma tela de observação quando a luz que havia passado por uma fenda vertical estreita chegou à tela. A difração fez com que o feixe luminoso se alargasse

Leia mais

Lista de Revisão Óptica na UECE e na Unifor Professor Vasco Vasconcelos

Lista de Revisão Óptica na UECE e na Unifor Professor Vasco Vasconcelos Lista de Revisão Óptica na UECE e na Unifor Professor Vasco Vasconcelos 0. (Unifor-998. CE) Um objeto luminoso está inicialmente parado a uma distância d de um espelho plano fixo. O objeto inicia um movimento

Leia mais

LUZ: se propaga por meio de ondas eletromagnéticas. É o agente físico responsável pela sensação visual.

LUZ: se propaga por meio de ondas eletromagnéticas. É o agente físico responsável pela sensação visual. LUZ: É uma forma de energia radiante, que se propaga por meio de ondas eletromagnéticas. É o agente físico responsável pela sensação visual. RAIO DE LUZ: É uma representação da propagação da Luz RAIO DE

Leia mais

2.1: Espalhamento de Raios X

2.1: Espalhamento de Raios X Unidade 1 - Aula * Tradução e adaptação livre das aulas do Professor Rick Trebino em: www.physics.gatech.edu/frog Propriedades da Onda de Matéria ria* * + Difração de Elétrons.1 Espalhamento de Raios X.

Leia mais

Refração da Luz Prismas

Refração da Luz Prismas Refração da Luz Prismas 1. (Fuvest 014) Um prisma triangular desvia um feixe de luz verde de um ângulo θ A, em relação à direção de incidência, como ilustra a figura A, abaixo. Se uma placa plana, do mesmo

Leia mais

Aula 9 A Difração. Física 4 Ref. Halliday Volume4. Profa. Keli F. Seidel

Aula 9 A Difração. Física 4 Ref. Halliday Volume4. Profa. Keli F. Seidel Aula 9 A Difração Física 4 Ref. Halliday Volume4 Sumário Difração de fenda única circular A difração de Raios-X Relembrando... Uma única fenda com Largura Finita A figura de difração de fenda simples com

Leia mais

Lentes de vidro comprimento focal fixo Para: - Focar - Ampliar a Imagem - Controlar a Intensidade de Iluminação Alteração da posição relativa entre o

Lentes de vidro comprimento focal fixo Para: - Focar - Ampliar a Imagem - Controlar a Intensidade de Iluminação Alteração da posição relativa entre o Lentes e Aberturas Lentes de vidro comprimento focal fixo Para: - Focar - Ampliar a Imagem - Controlar a Intensidade de Iluminação Alteração da posição relativa entre o conjunto de lentes Lentes Magnéticas

Leia mais

Óptica. Estudo da luz, como sendo a onda eletromagnética pertencentes à faixa do espectro visível (comprimento de 400 nm até 700 nm).

Óptica. Estudo da luz, como sendo a onda eletromagnética pertencentes à faixa do espectro visível (comprimento de 400 nm até 700 nm). Óptica Estudo da luz, como sendo a onda eletromagnética pertencentes à faixa do espectro visível (comprimento de 400 nm até 700 nm). Fenômenos ópticos Professor: Éder (Boto) Sobre a Luz O que emite Luz?

Leia mais

Laboratório Virtual Kit Óptico

Laboratório Virtual Kit Óptico Laboratório Virtual Kit Óptico Reflexão A luz nem sempre se propaga indefinidamente em linha reta: em algumas situações eles podem se quebrar, como acontece quando um espelho é colocado em seu caminho.

Leia mais

Ondas II F-228 UNICAMP

Ondas II F-228 UNICAMP Ondas II F-228 UNICAMP http://thenonist.com/index.php/thenonist/permalink/stick_charts/ Superposição de ondas Resumo de ondas mecânicas Superposição de ondas Exemplos Representação matemática Interferência

Leia mais

10/11/2014 PROF. ROBINSON PROF. ROBINSON FUNDAÇÃO UNIVERSIDADE FEDERAL DE RONDÔNIA, CAMPUS DE JI-PARANÁ, DEPARTAMENTO DE FÍSICA DE JI-PARANÁ DEFIJI

10/11/2014 PROF. ROBINSON PROF. ROBINSON FUNDAÇÃO UNIVERSIDADE FEDERAL DE RONDÔNIA, CAMPUS DE JI-PARANÁ, DEPARTAMENTO DE FÍSICA DE JI-PARANÁ DEFIJI FUNDAÇÃO UNIVERSIDADE FEDERAL DE RONDÔNIA, CAMPUS DE JI-PARANÁ, DEPARTAMENTO DE FÍSICA DE JI-PARANÁ DEFIJI DISCIPLINA DE FÍSICA EXPERIMENTAL II SEMESTRE 2014/2 LABORATÓRIO 5: LEIS DA ÓPTICA GEOMÉTRICA

Leia mais

FUNDAMENTOS DE ONDAS, Prof. Emery Lins Curso Eng. Biomédica

FUNDAMENTOS DE ONDAS, Prof. Emery Lins Curso Eng. Biomédica FUNDAMENTOS DE ONDAS, RADIAÇÕES E PARTÍCULAS Prof. Emery Lins Curso Eng. Biomédica Questões... O que é uma onda? E uma radiação? E uma partícula? Como elas se propagam no espaço e nos meios materiais?

Leia mais

ÓTICA e ONDAS. Ótica estudo da luz e dos fenômenos luminosos em geral.

ÓTICA e ONDAS. Ótica estudo da luz e dos fenômenos luminosos em geral. 1 ÓTICA e ONDAS Ótica estudo da luz e dos fenômenos luminosos em geral. Propagação Retilínea da Luz Observando os corpos que nos rodeiam, verificamos que alguns deles emitem luz, isto é, são fontes de

Leia mais

Polarização de Ondas Eletromagnéticas Propriedades da Luz

Polarização de Ondas Eletromagnéticas Propriedades da Luz Polarização de Ondas Eletromagnéticas Propriedades da Luz Polarização Polarização: Propriedade das ondas transversais Ondas em uma corda Oscilação no plano vertical. Oscilação no plano horizontal. Onda

Leia mais

Física VIII Ondas eletromagnéticas e Física Moderna

Física VIII Ondas eletromagnéticas e Física Moderna Física VIII Ondas eletromagnéticas e Física Moderna Aula 5: Interferência e Difração (Parte I) 1 Baseado no material preparado por Sandro Fonseca de Souza Helena Malbouisson Difração: Desvio da propagação

Leia mais

3B SCIENTIFIC PHYSICS

3B SCIENTIFIC PHYSICS 3B SCIENTIFIC PHYSICS Kit de ótica laser de demonstração U17300 e kit complementar Manual de instruções 1/05 ALF Índice de conteúdo Página Exp - N Experiência Kit de aparelhos 1 Introdução 2 Fornecimento

Leia mais

TEORIA 08/12/2014. Reflexão. Refração INTRODUÇÃO INTRODUÇÃO REFLEXÃO E REFRACÃO RAIOS INTRODUÇÃO 1 1 = 2 2 O ÍNDICE DE REFRAÇÃO

TEORIA 08/12/2014. Reflexão. Refração INTRODUÇÃO INTRODUÇÃO REFLEXÃO E REFRACÃO RAIOS INTRODUÇÃO 1 1 = 2 2 O ÍNDICE DE REFRAÇÃO ÍNDICE DE REFRAÇÃ INTRDUÇÃ Ótica Lentes Esféricos DEFIJI Semestre204-2 Quando a luz passa de um meio para outro, sua velocidade aumenta ou diminui devido as diferenças das estruturas atômicas das duas

Leia mais

O Polarímetro na determinação de concentrações de soluções

O Polarímetro na determinação de concentrações de soluções O Polarímetro na determinação de concentrações de soluções 1. O polarímetro Polarímetros são aparelhos que medem directamente a rotação de polarização, através da medição do ângulo de rotação de um analisador.

Leia mais

Física IV Ondas Eletromagnéticas parte 3

Física IV Ondas Eletromagnéticas parte 3 Física IV Ondas Eletromagnéticas parte 3 Sandro Fonseca de Souza Marcia Begalli IF-UERJ Difração e a teoria ondulatória da luz tela fonte I/I 0 canto Objeto opaco região de sombra Luz na sombra ou sombra

Leia mais

DEFIJI Semestre2014-1 10:07:19 1 INTRODUÇÃO

DEFIJI Semestre2014-1 10:07:19 1 INTRODUÇÃO 1 DEFIJI Semestre2014-1 Ótica Lentes Esféricos Prof. Robinson 10:07:19 1 O ÍNDICE DE REFRAÇÃO INTRODUÇÃO Quando a luz passa de um meio para outro, sua velocidade aumenta ou diminui devido as diferenças

Leia mais

UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS DEPARTAMENTO DE ENGENHARIA MECÂNICA TÉCNICAS DE ANÁLISE

UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS DEPARTAMENTO DE ENGENHARIA MECÂNICA TÉCNICAS DE ANÁLISE UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS DEPARTAMENTO DE ENGENHARIA MECÂNICA TÉCNICAS DE ANÁLISE CMA CIÊNCIA DOS MATERIAIS 2º Semestre de 2014 Prof. Júlio César Giubilei

Leia mais

ESTRUTURAS CRISTALINAS - TEORIA

ESTRUTURAS CRISTALINAS - TEORIA ESTRUTURAS CRISTALINAS - TEORIA Introdução Sólidos são compostos que apresentam uma alta regularidade estrutural. Com exceção dos sólidos amorfos, nos quais essa regularidade só existe em um curto espaço,

Leia mais

2015 Dr. Walter F. de Azevedo Jr. Lei de Bragg e Espaço Recíproco

2015 Dr. Walter F. de Azevedo Jr. Lei de Bragg e Espaço Recíproco 2015 Dr. Walter F. de Azevedo Jr. 000000000000000000000000000000000000000 000000000000000000000000000000000000000 000000000000111111111110001100000000000 000000000001111111111111111111000000001 000000000111111111111111111111111000000

Leia mais

Teste de Avaliação 3 A - 06/02/2013

Teste de Avaliação 3 A - 06/02/2013 E s c o l a S e c u n d á r i a d e A l c á c e r d o S a l Ano letivo 201 2/2013 Física e Química A Bloco II (11ºano) Teste de Avaliação 3 A - 06/02/2013 1. Suponha que um balão de observação está em

Leia mais

EXP. 5 - DIFRAÇÃO DA LUZ POR FENDAS

EXP. 5 - DIFRAÇÃO DA LUZ POR FENDAS Capítulo 5 EXP. 5 - DIFRAÇÃO DA LUZ POR FENDAS 5.1 OBJETIVOS Estudo da figura de difração da luz por uma fenda fina em função da largura da fenda. Estudo da figura de interferência e da figura de difração

Leia mais

Introdução: Mas, todas estas lentes podem ser na verdade convergentes ou divergentes, dependendo do que acontece com a luz quando esta passa por ela.

Introdução: Mas, todas estas lentes podem ser na verdade convergentes ou divergentes, dependendo do que acontece com a luz quando esta passa por ela. Introdução: Com este trabalho experimental pretende-se observar o comportamento de feixes ao atravessar lentes e, ao mesmo tempo, verificar o comportamento dos feixes ao incidir em espelhos. Os conceitos

Leia mais

)tvlfd,, 0,(QJ4XtPLFD. ²ž6HPHVWUH ÐSWLFD

)tvlfd,, 0,(QJ4XtPLFD. ²ž6HPHVWUH ÐSWLFD )tvlfd,, 0,(QJ4XtPLFD Óptica Geométrica ²ž6HPHVWUH ÐSWLFD Exercício 1: Um feixe de luz cujo comprimento de onda é 650 nm propaga-se no vazio. a) Qual é a velocidade da luz desse feixe ao propagar-se num

Leia mais

MÓDULO DE RECUPERAÇÃO

MÓDULO DE RECUPERAÇÃO DISCIPLINA Física II 2º ANO ENSINO MÉDIO MÓDULO DE RECUPERAÇÃO ALUNO(A) Nº TURMA TURNO Manhã 1º SEMESTRE DATA / / 01- A figura representa um feixe de raios paralelos incidentes numa superfície S e os correspondentes

Leia mais

Aula Prática 1. Análise de Difração de Raios X (DRX) Centro de Engenharia Modelagem e Ciências Sociais Aplicadas

Aula Prática 1. Análise de Difração de Raios X (DRX) Centro de Engenharia Modelagem e Ciências Sociais Aplicadas Aula Prática 1 Análise de Difração de Raios X (DRX) Centro de Engenharia Modelagem e Ciências Sociais Aplicadas Raios-X Raios-X são uma forma de radiação eletromagnética com alta energia e pequeno comprimento

Leia mais

Luz, olho humano e óculos Capítulo 12 (pág. 219)

Luz, olho humano e óculos Capítulo 12 (pág. 219) Luz, olho humano e óculos Capítulo 12 (pág. 219) Raios de Luz - Alguns filósofos gregos pensavam que nossos olhos emitiam raios que permitiam enxergar os objetos; - Só nos é possível ver quando há luz

Leia mais

Ondas Interferência

Ondas Interferência Ondas - 2010 Interferência Profa. Ana Barros 1º Semestre 2011 Interferência Princípio de Huygens A Lei da Refração Difração O Experimento de Young Intensidade das Franjas de Interferência Interferência

Leia mais

DIFRAÇÃO DE RAIO X. Daiane Bueno Martins

DIFRAÇÃO DE RAIO X. Daiane Bueno Martins DIFRAÇÃO DE RAIO X Daiane Bueno Martins Descoberta e Produção de Raios-X Em 1895 Wilhen Konrad von Röntgen (pronúncia: rêntguen) investigando a produção de ultravioleta descobriu uma radiação nova. Descobriu

Leia mais

ONDAS MECÂNICAS, ONDA ELETROMAGNETICA E ÓPTICA FÍSICA

ONDAS MECÂNICAS, ONDA ELETROMAGNETICA E ÓPTICA FÍSICA FUNDAÇÃO UNIVERSIDADE FEDERAL DE RONDÔNIA, CAMPUS DE JI-PARANÁ, DEPARTAMENTO DE ENGENHARIA AMBIENTAL DE JI-PARANÁ DEFIJI 1 SEMESTRE 2013-2 ONDAS MECÂNICAS, ONDA ELETROMAGNETICA E ÓPTICA FÍSICA Prof. Robinson

Leia mais

Aluno(a): Nº. Professor: Fabrízio Gentil Série: 3 o ano Disciplina: Física - Óptica

Aluno(a): Nº. Professor: Fabrízio Gentil Série: 3 o ano Disciplina: Física - Óptica Lista de Exercícios Pré Universitário Uni-Anhanguera Aluno(a): Nº. Professor: Fabrízio Gentil Série: 3 o ano Disciplina: Física - Óptica 01 - (PUC SP) Um objeto é inicialmente posicionado entre o foco

Leia mais

Reflexão. A reflexão ocorre quando a luz incide sobre a superfície de separação entre dois meios com propriedades distintas.

Reflexão. A reflexão ocorre quando a luz incide sobre a superfície de separação entre dois meios com propriedades distintas. Ótica Reflexão A reflexão ocorre quando a luz incide sobre a superfície de separação entre dois meios com propriedades distintas. A reflexibilidade é a tendência dos raios de voltarem para o mesmo meio

Leia mais

MEDIÇÃO DO COMPRIMENTO DE ONDA DA RADIAÇÃO DE UM LASER POR INTERFERÊNCIA ÓPTICA COM O BIPRISMA DE FRESNEL

MEDIÇÃO DO COMPRIMENTO DE ONDA DA RADIAÇÃO DE UM LASER POR INTERFERÊNCIA ÓPTICA COM O BIPRISMA DE FRESNEL MEDIÇÃO DO COMPRIMENTO DE ONDA DA RADIAÇÃO DE UM LASER POR INTERFERÊNCIA ÓPTICA COM O BIPRISMA DE FRESNEL 1. Objectivo Estudo da interferência óptica. Medição do comprimento de onda da radiação de um laser

Leia mais

Lista de Problemas rad.)

Lista de Problemas rad.) Universidade Federal do Rio Grande do Sul Instituto de Física Departamento de Física FIS01044 UNIDADE III Difração Lista de Problemas Problemas extraídos de HALLIDAY, D., RESNICK, R., WALKER, J. Fundamentos

Leia mais

Imagens ópticas (1)ë - Dióptros

Imagens ópticas (1)ë - Dióptros Imagens ópticas (1)ë - Dióptros Dióptros Dióptro : sistema óptico constituído por dois meios transparentes homogéneos, separados por uma superfície bem definida. Se a superfície de separação é plana, chama-se-lhe

Leia mais

Cap. 36 -Difração. Difração por uma fenda estreita e comprida; Posição de mínimos; Intensidade;

Cap. 36 -Difração. Difração por uma fenda estreita e comprida; Posição de mínimos; Intensidade; Cap. 36 -Difração Teoria ondulatória da luz; Difração por uma fenda estreita e comprida; Posição de mínimos; Intensidade; Difração por uma fenda circular; Posição de 1º mínimo; Resolução; Difração por

Leia mais

30 cm, determine o raio da esfera.

30 cm, determine o raio da esfera. 1. (Ufes 015) Enche-se uma fina esfera, feita de vidro transparente, com um líquido, até completar-se exatamente a metade de seu volume. O resto do volume da esfera contém ar (índice de refração n 1).

Leia mais

Óptica geométrica, óptica física e o olho humano. 1 Foco na retina 2 Difração da luz na pupila 3 Sensibilidade do olho humano e a Muralha da China

Óptica geométrica, óptica física e o olho humano. 1 Foco na retina 2 Difração da luz na pupila 3 Sensibilidade do olho humano e a Muralha da China Óptica geométrica, óptica física e o olho humano 1 Foco na retina 2 Difração da luz na pupila 3 Sensibilidade do olho humano e a Muralha da China Otaviano Helene, IFUSP, 2010 1 1 Foco na retina Evolução

Leia mais

Prof. Dr. Lucas Barboza Sarno da Silva

Prof. Dr. Lucas Barboza Sarno da Silva Prof. Dr. Lucas Barboza Sarno da Silva Difração numa fenda simples Lente convergente Princípio de Huygens 03/09/2015 Prof. Dr. Lucas Barboza Sarno da Silva 2 De acordo com o princípio de Huygens, cada

Leia mais

Prof. João Maria Soares UERN/DF/Mossoró E-mail: joaomsoares@gmail.com

Prof. João Maria Soares UERN/DF/Mossoró E-mail: joaomsoares@gmail.com Prof. João Maria Soares UERN/DF/Mossoró E-mail: joaomsoares@gmail.com 1. Estrutura cristalina redes de Bravais 2. Principais estruturas cristalinas 3. Sistemas cristalinos 4. Simetria e grupos de simetria

Leia mais

Aula de Véspera - Inv-2009 Professor Leonardo

Aula de Véspera - Inv-2009 Professor Leonardo 01. Dois astronautas, A e B, encontram-se livres na parte externa de uma estação espacial, sendo desprezíveis as forças de atração gravitacional sobre eles. Os astronautas com seus trajes espaciais têm

Leia mais

Biofísica da visão II. Ondas eletromagnéticas, o olho humano, Funcionamento da visão, Defeitos da visão.

Biofísica da visão II. Ondas eletromagnéticas, o olho humano, Funcionamento da visão, Defeitos da visão. Biofísica da visão II Ondas eletromagnéticas, o olho humano, Funcionamento da visão, Defeitos da visão. Sistema de líquidos do olho Glaucoma: aumento da pressão intra-ocular SIMULAÇÃO DE PERDA NO GLAUCOMA

Leia mais

Lentes e formação de imagem

Lentes e formação de imagem Lentes e formação de imagem Princípio de Huygens e por quê precisamos de instrumentos de formação de imagem Um instrumento simples de formação de imagem: a câmera pinhole Princípio de formação de imagem

Leia mais

LENTES E ESPELHOS. O tipo e a posição da imagem de um objeto, formada por um espelho esférico de pequena abertura, é determinada pela equação

LENTES E ESPELHOS. O tipo e a posição da imagem de um objeto, formada por um espelho esférico de pequena abertura, é determinada pela equação LENTES E ESPELHOS INTRODUÇÃO A luz é uma onda eletromagnética e interage com a matéria por meio de seus campos elétrico e magnético. Nessa interação, podem ocorrer alterações na velocidade, na direção

Leia mais

Exercícios de Óptica

Exercícios de Óptica Exercícios de Óptica PROFESSOR WALESCKO 22 de dezembro de 2005 Sumário 1 Exercícios 1 2 UFRGS 11 3 Gabarito 24 1 Exercícios 1. A figura abaixo representa um raio de luz que incide no espelho plano E e

Leia mais

Colégio Jesus Adolescente

Colégio Jesus Adolescente olégio Jesus dolescente Ensino Médio 2º imestre Disciplina Física Setor Turma 1º NO Professor Gnomo Lista de Exercício Mensal ulas 1 à 15 1) Um raio de luz monocromático se propaga no com velocidade 200.000

Leia mais

Todo o conjunto que compõe a visão humana é chamado globo ocular.

Todo o conjunto que compõe a visão humana é chamado globo ocular. Olho humano O olho humano é um sistema óptico complexo, formado por vários meios transparentes além de um sistema fisiológico com inúmeros componentes. Olho humano Todo o conjunto que compõe a visão humana

Leia mais

Aula 7 Difração. Física 4 Ref. Halliday Volume4. Profa. Keli F. Seidel

Aula 7 Difração. Física 4 Ref. Halliday Volume4. Profa. Keli F. Seidel Aula 7 Difração Física 4 Ref. Halliday Volume4 Sumário ; Difração de Fresnel e Difração de Fraunhofer; Intensidade na Difração Produzida por uma Fenda Simples; Introdução Sabemos que o som é capaz de contornar

Leia mais

Formação de imagens por superfícies esféricas

Formação de imagens por superfícies esféricas UNIVESIDADE FEDEAL DO AMAZONAS INSTITUTO DE CIÊNCIAS EXATAS DEPATAMENTO DE FÍSICA Laboratório de Física Geral IV Formação de imagens por superfícies esféricas.. Objetivos:. Primeira parte: Espelho Côncavo

Leia mais

DETERMINAÇÃO DA ESTRUTURA TRIDIMENSIONAL DE PROTEÍNAS POR DIFRAÇÃO DE RAIOS-X

DETERMINAÇÃO DA ESTRUTURA TRIDIMENSIONAL DE PROTEÍNAS POR DIFRAÇÃO DE RAIOS-X DETERMINAÇÃO DA ESTRUTURA TRIDIMENSIONAL DE PROTEÍNAS POR DIFRAÇÃO DE RAIOS-X Disciplina: Engenharia de Proteínas Ma. Flávia Campos Freitas Vieira NÍVEIS ESTRUTURAIS DAS PROTEÍNAS Fonte: Lehninger, 2010.

Leia mais

Luz e Visão. Capítulo 8 8º ano - CSA

Luz e Visão. Capítulo 8 8º ano - CSA Luz e Visão Capítulo 8 8º ano - CSA 2014 Afinal, o que é luz? Luz é uma forma de transmissão de energia pelo espaço. Como a luz se propaga? Propagação da luz Corpos luminosos: emitem a própria luz. São

Leia mais

UFJF CONCURSO VESTIBULAR 2012 GABARITO DA PROVA DE FÍSICA

UFJF CONCURSO VESTIBULAR 2012 GABARITO DA PROVA DE FÍSICA UFJF CONCURSO VESTIBULAR GABARITO DA PROVA DE FÍSICA Na solução da prova, use quando necessário: Aceleração da gravidade g = m / s ; Densidade da água ρ =, g / cm = kg/m 8 Velocidade da luz no vácuo c

Leia mais

EFEITO FOTOELÉTRICO. J.R. Kaschny

EFEITO FOTOELÉTRICO. J.R. Kaschny EFEITO FOTOELÉTRICO J.R. Kaschny Histórico 1886-1887 Heinrich Hertz realizou experimentos que pela primeira vez confirmaram a existência de ondas eletromagnéticas e a teoria de Maxwell sobre a propagação

Leia mais

1 Fibra Óptica e Sistemas de transmissão ópticos

1 Fibra Óptica e Sistemas de transmissão ópticos 1 Fibra Óptica e Sistemas de transmissão ópticos 1.1 Introdução Consiste em um guia de onda cilíndrico, conforme ilustra a Figura 1, formado por núcleo de material dielétrico (em geral vidro de alta pureza),

Leia mais

ÓPTICA. Conceito. Divisões da Óptica. Óptica Física: estuda os fenômenos ópticos que exigem uma teoria sobre a natureza das ondas eletromagnéticas.

ÓPTICA. Conceito. Divisões da Óptica. Óptica Física: estuda os fenômenos ópticos que exigem uma teoria sobre a natureza das ondas eletromagnéticas. ÓPTICA Conceito A óptica é um ramo da Física que estuda os fenomenos relacionados a luz ou, mais amplamente, a radiação eletromagnética, visível ou não. A óptica explica os fenômenos de reflexão, refração

Leia mais

Extensivo noite - Aulas 01 e 02

Extensivo noite - Aulas 01 e 02 1. (Unesp 2011) A figura 1 mostra um quadro de Georges Seurat, grande expressão do pontilhismo. De forma grosseira podemos dizer que a pintura consiste de uma enorme quantidade de pontos de cores puras,

Leia mais

ÓPTICA GEOMÉTRICA MENU DE NAVEGAÇÃO. LENTES ESFÉRICAS LENTES CONVERGENTES Elementos

ÓPTICA GEOMÉTRICA MENU DE NAVEGAÇÃO. LENTES ESFÉRICAS LENTES CONVERGENTES Elementos ÓPTICA GEOMÉTRICA MENU DE NAVEGAÇÃO Clique em um item abaixo para iniciar a apresentação LENTES ESFÉRICAS LENTES CONVERGENTES Elementos Propriedades Construção Geométrica de Imagens LENTES DIVERGENTES

Leia mais

Transmissão das Ondas Eletromagnéticas. Prof. Luiz Claudio

Transmissão das Ondas Eletromagnéticas. Prof. Luiz Claudio Transmissão das Ondas Eletromagnéticas Prof. Luiz Claudio Transmissão/Recebimento das ondas As antenas são dispositivos destinados a transmitir ou receber ondas de rádio. Quando ligadas a um transmissor

Leia mais

Física VIII Ondas eletromagnéticas e Física Moderna

Física VIII Ondas eletromagnéticas e Física Moderna Física VIII Ondas eletromagnéticas e Física Moderna Aula 5: Interferência (continuação), Difração Parte I 1 Baseado no material preparado por Sandro Fonseca de Souza Helena Malbouisson Interferômetro de

Leia mais

Seleção de comprimento de onda com espectrômetro de rede

Seleção de comprimento de onda com espectrômetro de rede Seleção de comprimento de onda com espectrômetro de rede Fig. 1: Arranjo do experimento P2510502 O que você vai necessitar: Fotocélula sem caixa 06779.00 1 Rede de difração, 600 linhas/mm 08546.00 1 Filtro

Leia mais

Atira mais em cima! O pessoal está reunido na casa de Gaspar e

Atira mais em cima! O pessoal está reunido na casa de Gaspar e A U A UL LA Atira mais em cima! O pessoal está reunido na casa de Gaspar e Alberta. O almoço acabou e todos conversam em torno da mesa. - Eu soube que você está interessado em ótica - diz Gaspar a Ernesto.

Leia mais

TIPOS DE REFLEXÃO Regular Difusa

TIPOS DE REFLEXÃO Regular Difusa Reflexão da luz TIPOS DE REFLEXÃO Regular Difusa LEIS DA REFLEXÃO RI = raio de luz incidente i normal r RR = raio de luz refletido i = ângulo de incidência (é formado entre RI e N) r = ângulo de reflexão

Leia mais

ÓPTICA GEOMÉTRICA. Lista de Problemas

ÓPTICA GEOMÉTRICA. Lista de Problemas Universidade Federal do Rio Grande do Sul Instituto de Física Departamento de Física FIS01044 UNIDADE II ÓPTICA GEOMÉTRICA Lista de Problemas Problemas extraídos de HALLIDAY, D., RESNICK, R., WALKER, J.

Leia mais

a) I b) II c) III d) IV e) V

a) I b) II c) III d) IV e) V 1. (Cesgranrio 1991) Sobre uma lente semiesférica de vidro incide um raio de luz, cuja direção é paralela ao eixo óptico da lente. Qual dos raios (I, II, III, IV ou V) indicados na figura a seguir que

Leia mais

Aula-4 Difração. Curso de Física Geral F-428

Aula-4 Difração. Curso de Física Geral F-428 Aula-4 Difração Curso de Física Geral F-428 A Sunday on La Grande Jatte Georges Seurat (French, 1859-1891) A Sunday on La Grande Jatte -- 1884, 1884-86 Oil on canvas, 81 3/4 x 121 1/4 in. (207.5 x 308.1

Leia mais

Física Quântica Caex 2005 Série de exercícios 1

Física Quântica Caex 2005 Série de exercícios 1 Física Quântica Caex 005 Questão 1 Se as partículas listadas abaixo têm todas a mesma energia cinética, qual delas tem o menor comprimento de onda? a) elétron b) partícula α c) nêutron d) próton Questão

Leia mais

OTI0001- Óptica Física

OTI0001- Óptica Física OTI0001- Óptica Física Lúcio Minoru Tozawa dfilmt@joinville.udesc.br UDESC CCT - DFI Aula 15 Difração em Fendas Simples, Abertura Circular e Poder de Resolução. Difração Quando a luz monocromática passa

Leia mais

FÍSICA ÓPTICA GEOMÉTRICA FÍSICA 1

FÍSICA ÓPTICA GEOMÉTRICA FÍSICA 1 2014_Física_2 ano FÍSICA Prof. Bruno ÓPTICA GEOMÉTRICA FÍSICA 1 1. (Uftm 2012) Uma câmara escura de orifício reproduz uma imagem de 10 cm de altura de uma árvore observada. Se reduzirmos em 15 m a distância

Leia mais

Curso: Ensino Fundamental II Disciplina: MATEMÁTICA Professor: Álvaro / Leandro

Curso: Ensino Fundamental II Disciplina: MATEMÁTICA Professor: Álvaro / Leandro Nome do aluno: nº série/turma 9 Curso: Ensino Fundamental II Disciplina: MATEMÁTICA Professor: Álvaro / Leandro Data: De 17 a 21/08/2009 Bimestre: 3º Tipo de atividade: Lista de Exercícios A REFLEXÃO DA

Leia mais

Anual de Física 2014 1ª Lista de embasamento Espelhos Planos e Esféricos

Anual de Física 2014 1ª Lista de embasamento Espelhos Planos e Esféricos nual de Física 2014 Questão 01 figura mostra um par de espelhos E 1 e E 2 verticais distanciados 40 cm entre si. Dois pontos e encontram-se alinhados verticalmente e equidistantes dos dois espelhos como

Leia mais

Professora Bruna FÍSICA B. Aula 17 Seus Óculos. Página 232

Professora Bruna FÍSICA B. Aula 17 Seus Óculos. Página 232 FÍSICA B Aula 17 Seus Óculos. Página 232 INTRODUÇÃO Na aula de hoje, estudaremos os defeitos da visão e os tipos de lentes indicadas para correção destes defeitos. Para isso, estudaremos primeiramente

Leia mais

1- Fonte Primária 2- Fonte Secundária. 3- Fonte Puntiforme 4- Fonte Extensa

1- Fonte Primária 2- Fonte Secundária. 3- Fonte Puntiforme 4- Fonte Extensa Setor 3210 ÓPTICA GEOMÉTRICA Prof. Calil A Óptica estuda a energia denominada luz. 1- Quando nos preocupamos em estudar os defeitos da visão e como curá-los, estamos estudando a Óptica Fisiológica. Estudar

Leia mais

SETOR A. 2. Um espelho côncavo tem 80 cm de raio. Um objeto real é colocado a 30 cm de distância dele. Determine: a) A distância focal

SETOR A. 2. Um espelho côncavo tem 80 cm de raio. Um objeto real é colocado a 30 cm de distância dele. Determine: a) A distância focal 2014_Física_2 ano_3º tri ALUNO(a): Nº: SÉRIE: 2º TURMA: UNIDADE: VV JC JP PC DATA: / /2014 Obs.: Esta lista deve ser entregue apenas ao professor no dia da aula de Recuperação SETOR A 1. Um objeto é colocado

Leia mais