XII Encontro Gaúcho de Educação Matemática Inovar a prática valorizando o Professor Porto Alegre, RS 10 a 12 de setembro de 2015

Tamanho: px
Começar a partir da página:

Download "XII Encontro Gaúcho de Educação Matemática Inovar a prática valorizando o Professor Porto Alegre, RS 10 a 12 de setembro de 2015"

Transcrição

1 Inovar a prática valorizando o Professor REPRESENTAÇÕES SEMIÓTICAS E O CONCEITO DE NÚMEROS REAIS Janice Rachelli Universidade Federal de Santa Maria - UFSM Centro Universitário Franciscano - UNIFRA janicerachelli@gmail.com Eleni Bisognin Centro Universitário Franciscano - UNIFRA eleni@unifra.br Resumo: Este trabalho é resultado de um estudo realizado na disciplina de Análise Real: ensino e aprendizagem tendo como propósito a construção do conjunto dos números reais e analisar as diferentes representações semióticas utilizadas. Trata-se de uma pesquisa bibliográfica, de cunho teórico, em que foram analisados os aspectos históricos com vistas a enfatizar a necessidade de extensão dos números racionais e construído o conceito de número real por meio de intervalos aninhados, cortes de Dedekind, classes de equivalência de sequências de Cauchy e a noção de supremo e ínfimo de um conjunto. Foi utilizada a teoria dos registros de representação semiótica, de Duval, para fundamentar a análise das representações. Palavras-chave: Números reais; representações semióticas; ensino superior. 1. Introdução O conceito de número está associado à capacidade de contar e medir. Os homens primitivos utilizavam os números apenas para a contagem, porém, com a vida em sociedade e o estabelecimento do regime de propriedades e das relações comerciais, tornou-se necessário criar formas práticas de registrar medidas de grandezas. Para medir, estabelece-se uma unidade fixa de uma grandeza e encontra-se quantas dessa unidade são necessárias para obter a quantidade da grandeza que tem-se. Nem sempre se possui quantidades inteiras da unidade e precisa-se usar frações ou parte da unidade para representar a quantidade total. Os matemáticos gregos tratavam a questão da medida usando o conceito de grandezas comensuráveis. Dois segmentos e são ditos comensuráveis se existem números inteiros e tais que, ou seja, a razão entre a medida dos segmentos e é um número racional. Porém, os pitagóricos descobriram que há grandezas que não são comensuráveis, chamadas de grandezas incomensuráveis, como por exemplo, o número que exprime o comprimento da diagonal de um quadrado de

2 lado 1 tomando o comprimento do lado como unidade de medida. Isso não significa que o tamanho da diagonal seja impreciso ou inexato, mas que essa medida não pode ser expresso por meio de uma fração. Esse fato impulsionou a criação de um sistema numérico, o conjunto dos números irracionais, capaz de medir o contínuo e que completou uma lacuna dos racionais. O problema que envolve a relação entre o descontínuo aritmético e contínuo geométrico, ou seja, a passagem dos números naturais aos pontos que na reta se sucedem, sem buracos, esteve sempre presente ao longo da história da matemática até a criação dos números reais. O propósito desse trabalho é analisar os diferentes tipos de representação utilizados na construção do conceito de número real. Será utilizada a noção de intervalos aninhados, cortes de Dedekind, sequências de Cauchy e a noção de supremo e ínfimo de um conjunto para construção do conceito de número real e para fundamentar essa análise será utilizada a teoria dos registros de representação semiótica, de Duval. 2. Representação Semiótica A teoria dos Registros de Representação Semiótica desenvolvida pelo psicólogo e filósofo francês Raymond Duval tem servido de base para várias pesquisas que se referem à aquisição do conhecimento matemático e à organização de situações de aprendizagem desses conhecimentos. A matemática trabalha constantemente com objetos abstratos e, segundo Duval (2003) ao olhar para a história do desenvolvimento da matemática, observa-se que o desenvolvimento das representações semióticas, foi uma condição essencial para a evolução do pensamento matemático. Assim, para apropriar-se de um determinado objeto matemático, o sujeito deve recorrer a sua representação. Para Duval (2012), uma figura geométrica, um enunciado em linguagem natural, uma fórmula algébrica, um gráfico são representações semióticas que são essenciais à atividade cognitiva do pensamento, pelo fato de desempenharem um papel primordial no desenvolvimento das representações mentais, na realização de diferentes funções cognitivas e na produção de conhecimentos. Para o autor, a originalidade da atividade matemática está na mobilização simultânea de ao menos dois registros de representação ao mesmo tempo, ou na possibilidade de trocar a todo o momento de registro de representação (DUVAL, 2003, p. 14). As representações semióticas são definidas como as produções constituídas pelo emprego de signos pertencentes a um sistema de representação, os quais têm suas dificuldades próprias de significado e funcionamento (DUVAL, 2012, p. 269).

3 O termo registro de representação semiótica é usado para indicar diferentes tipos de representação como, por exemplo, escrita em linguagem natural, sistemas de escrita (numérica, algébrica ou simbólica), figuras geométricas (planas e em perspectiva) e gráficos cartesianos. A articulação entre esses diferentes registros de representação é condição necessária para a compreensão em matemática. Conforme afirma Duval, (...) é essencial, na atividade matemática, poder mobilizar muitos registros de representação semiótica (figuras, gráficos, escrituras simbólicas, língua natural, etc...) no decorrer de um mesmo passo, poder escolher um registro no lugar de outro. E, independente de toda comodidade de tratamento, o recurso a muitos registros parece mesmo uma condição necessária para que os objetos matemáticos não sejam confundidos com suas representações e que possam também ser reconhecidos em cada uma de suas representações (DUVAL, 2012, p. 270). Nesse sentido, é que apresentamos, neste trabalho, diferentes registros de representação utilizados na construção do conceito de número real. 3. Conceituando número real Conceituando número real por meio de Intervalos Aninhados Para obter uma definição mais geral do contínuo numérico, será utilizada a definição de números irracionais por intervalos aninhados. De acordo com Courant e Robbins (2000), uma sequência,,,,, de intervalos sobre a reta numérica com pontos extremos racionais, e com cada um, contido no anterior, ou seja,, e de tal forma que o comprimento do n-ésimo intervalo tenda a zero na medida em que aumenta, é chamada de sequência de intervalos aninhados. Os números reais são definidos, via intervalos aninhados, com base no Postulado Fundamental da Geometria, como segue. Correspondendo a cada uma destas sequências de intervalos aninhados existe precisamente um ponto sobre a reta numérica que está contida em todos eles. Este ponto é chamado, por definição, de número real; se não for um número racional, é chamado de número irracional (COURANT; ROBBINS, 2000, p. 79). Por exemplo, ao considerar a sequência de intervalos aninhados 1,1+,! 1,2,3,., tem-se que e que 1 ". Ou seja, existe um número racional que pertence a todos os intervalos aninhados. Além disso, o comprimento do intervalo é igual a suficientemente grande. que pode tornar-se suficientemente pequeno quando for Neste exemplo, o número 1, pode ser representado no registro de representação algébrica e no registro de representação geométrica via intervalos aninhados, conforme mostra o Quadro1, a seguir.

4 Quadro 1 - Representação de um número real por meio de intervalos aninhados. Representação algébrica! 1 ", onde 1,1+, 1,2,3,., com Representação geométrica A definição de um número irracional por uma sequência de intervalos aninhados corresponde à determinação do valor de alguma quantidade observável por uma sequência de medidas de exatidão cada vez maior. Quanto menor for o comprimento do intervalo, mais próximo estaremos do número racional ou irracional que pertence a todos os intervalos aninhados. Conceituando número real por meio de Cortes de Dedekind O matemático Richard Dedekind ( ) publicou em 1872 uma obra intitulada Continuidade e números irracionais, onde estabeleceu uma maneira diferente de definir números irracionais. Dedekind usou ideias abstratas ao invés de utilizar sequências específicas de intervalos aninhados. Seu procedimento tem por base a ideia de um corte onde todo ponto da reta determina uma decomposição da mesma em duas partes de tal forma que todo ponto de uma delas está à esquerda de todo o ponto da outra. A construção envolve a correspondência entre pontos da reta e números e, a partir dessa correspondência, Dedekind observa a incompletude do conjunto dos números racionais. Para definir um corte considera-se P um ponto sobre a reta. Todos os pontos da reta se repartem em duas classes: a classe A, dos pontos que estão à esquerda de P, e a classe B, dos pontos que estão à direita de P, de tal modo que cada elemento b da classe B seja maior do que cada elemento a da classe A. O ponto P, que produz a repartição, pode pertencer à classe A ou à classe B. Sempre que numa reta se tem uma repartição dos seus pontos em duas classes A e B, diz-se que se tem um corte, do qual A e B são as classes constitutivas (CARAÇA, 1951, p. 58).

5 Como exemplo seja P, tal que P 2 =2. Considere o conjunto como sendo o conjunto de todos os números racionais com quadrado menor que 2 e o conjunto de todos os números racionais com quadrado maior que 2, ou seja, {$ %;$ <2} e {$ %;$ >2}. Os conjuntos e juntos incluem todos os racionais, pois não existe número racional cujo quadrado é 2. Neste caso, não existe um maior elemento em e nem um menor elemento em, pois o número que satisfaz a condição $ 2, com $>0 é 2, que não é racional. Tem-se que num corte existem três possibilidades, sendo que uma e somente uma deve ser válida: a) existe um maior elemento, em ; b) existe um menor elemento. em ou c) não existe nem um maior elemento em e nem um menor elemento em. O caso em que possui um maior elemento, e um menor elemento. é impossível, pois nesse caso o número racional / 01 seria maior que, e menor que. e, portanto, não poderia pertencer a nenhum dos dois. Quando não há nem um maior número racional em, nem um menor número racional em, o corte, segundo Dedekind, define um número irracional. É o que ocorre com 2. por Dedekind: Assim, os números reais são definidos através da seguinte definição, estabelecida Chamo número real ao elemento de separação das duas classes dum corte qualquer no conjunto dos números racionais; se existe um número racional a separar as duas classes, o número real coincidirá com esse número racional; se não existe tal número, o número real dir-se-á irracional (CARAÇA, 1951, p. 62). Esta definição constitui um registro de representação expresso por meio da linguagem natural. No Quadro 2, a seguir, o número real 2 é representado por meio de uma representação algébrica e uma representação geométrica. Representação geométrica Quadro 2 - Representações do número real 2 por meio de corte de Dedekind. Representação algébrica O número 2 é o elemento de separação das duas classes {$ %;$ <2} e {$ %;$ >2} do corte de Dedekind no conjunto dos números racionais.

6 Conceituando número real por meio de sequências de Cauchy Georg Cantor ( ) abordou o problema da criação dos números reais de um ponto de vista diferente do adotado por Dedekind. Começando, como Dedekind, com o conjunto dos números racionais, Cantor utilizou a noção de sequência de Cauchy para definir número real. De acordo com Lima (1976), uma sequência 2, 3 é dita uma sequência de Cauchy, se dado arbitrariamente um número real 4>0, é possível obter 5 6, tal que se, > 5 e > 0 implicam,, <4. Cantor associou a toda sequência de Cauchy de números racionais, um número real. O número racional r era ele próprio, associado a uma sequência constituída pelo próprio elemento. Mas existem sequências, como, por exemplo, a sequência 1, 1,4, 1,41, 1,414,..., gerada por um algoritmo clássico para o cálculo de 2, que não está associada a nenhum número racional. Além disso, duas sequências podem convergir para o mesmo número real. Cantor definiu então uma relação de equivalência no conjunto de todas essas sequências. O conjunto dos números reais corresponde então ao conjunto das classes de equivalência de sequências de Cauchy. Segundo Lima (1976), uma sequência de números reais é convergente, se e só se, ela for de Cauchy. Este é o critério de convergência de Cauchy que estabelece uma maneira de saber se uma dada sequência é convergente, sem se ter o conhecimento de seu limite, o qual pode não ter uma representação fracionária ou decimal simples. Porém, considerando apenas racionais, existem sequências de Cauchy, de números racionais, que não convergem para um número racional. O Quadro 3, a seguir, mostra um exemplo de sequência de Cauchy, representada por meio de uma representação numérica, geométrica e na linguagem natural, que não converge para um número racional. Quadro 3 - Representações de uma sequência de Cauchy que converge para 2. Representação numérica, 1,, 1,4,, 1,41,, 9 1,414,, : 1,4142,, ; 1, Representação geométrica Representação por meio da linguagem natural e numérica. A sequência, 1,, 1,4,, 1,41,, 9 1,414,, : 1,4142,, ; 1,41421,... é uma sequência de Cauchy que converge para 2, que não é um racional.

7 Pelo fato de haver sequências de Cauchy de racionais, que não convergem para um número racional, diz-se, que o conjunto dos racionais não é completo. De acordo com o processo de Cantor o conjunto dos números reais pode ser construído a partir dos números racionais. Para isso, considera-se o conjunto de todas as sequências de Cauchy de números racionais. Seja < o conjunto cujos elementos são subconjuntos de. O conjunto dos números reais é então formado pelas classes de equivalência de sequências de Cauchy. A definição de números reais através de classes de equivalência de sequências de Cauchy é equivalente à definição dada por Dedekind via cortes, visto que para cada número real, racional ou irracional, que representa um corte, pode-se construir sequências de Cauchy que convergem para este número. Sobre a diversificação de registros de representação semiótica, Duval considera que na medida em que a matemática tende a diversificar os registros de representação, sua aprendizagem específica pode contribuir fortemente para o desenvolvimento das capacidades cognitivas globais do indivíduo (DUVAL, 2003, p ). Conceituando número real por meio de supremo e ínfimo de um conjunto O conjunto dos números reais também pode ser definido por meio da definição de supremo ou ínfimo de um conjunto. Lima (1976), Figueiredo (2013) e Rudin (1971) apresentam os números reais usando esta definição. Inicialmente consideram-se as definições de cota superior e cota inferior que são utilizadas para definir o supremo e o ínfimo de um conjunto. Seja um subconjunto de um corpo ordenado =. Um elemento, = é uma cota superior de, se, $, para todo $, nesse caso é um conjunto limitado superiormente. Um elemento. = é uma cota inferior de, se. $, para todo $. Se chama-se possuir uma cota inferior ele é limitado inferiormente (FIGUEIREDO, 2013, p. 7). Se é um conjunto limitado superiormente o supremo do conjunto, denotado é definido como sendo a menor das cotas superiores de e se é limitado inferiormente o ínfimo do conjunto, denotado por CD, é definido como sendo a maior das cotas inferiores de. Lima (1976) mostra que o conjunto {$ %;$ <2, $>0} não tem supremo e {$ %;$ >2,$>0} não tem ínfimo no conjunto dos números racionais, isto é, não existe um número racional tal que $ 2.

8 Desta forma, pode-se concluir que existem subconjuntos de números racionais tais que o supremo ou o ínfimo não pertencem aos subconjuntos dados. Daí, a necessidade de construir um conjunto mais amplo que satisfaça a condição de possuir ínfimo ou supremo. Figueiredo (2013) define o conjunto dos números reais como sendo um corpo ordenado onde todo subconjunto, não vazio, constituído de elementos positivos, tem um ínfimo (FIGUEIREDO, 2013, p. 9). Se existe um número racional, que é ínfimo do subconjunto o número real coincidirá com esse número racional; se não existe tal número que seja ínfimo deste subconjunto, o número real será chamado de irracional. O Quadro 4, a seguir, mostra as representações dos conjuntos {$ %;$ 0} e {$ %;$ >2,$>0} sendo que ínfimo de pertence a e é um número racional, enquanto que o ínfimo de é um número irracional que não pertence ao conjunto. Representação algébrica Representação geométrica Quadro 4 - Representações dos conjuntos e {$ %;$ 0}; {$ %;$ >2,$>0} Cada um dos processos de construção do conjunto dos números reais e seus diferentes modos de representação proporcionam distintas caracterizações do conceito de número real e cada uma delas destaca propriedades importantes do conceito. 4. Considerações finais Acredita-se que a utilização de várias representações de um objeto matemático, em particular dos números reais, como apresentado neste trabalho, deve fazer parte dos recursos didáticos utilizados pelos professores para o desenvolvimento de atividades em sala de aula e podem auxiliar os alunos a compreenderem o conceito de número real. Estudar os diferentes processos de construção do conjunto dos números reais e utilizar as diferentes representações propiciam, que as características que não são claramente explicitadas por meio de um registro, podem ser identificadas em outro. Acredita-se que mostrar a equivalência entre os diferentes modos de construção do conjunto dos números reais e suas representações pode desempenhar um papel importante na compreensão do

9 conceito de número real e cada um dos registros propicia a exploração de propriedades e características do conceito complementando-se entre si. Referências CARAÇA, B. J. Conceitos Fundamentais da Matemática. Lisboa: Tipografia Matemática, COURANT, R.; ROBBINS, H. O que é Matemática?. Rio de Janeiro: Editora Ciência Moderna, DUVAL, R. Registros de representações semióticas e funcionamento cognitivo da compreensão em matemática. In: MACHADO, S. D. A. (org.) Aprendizagem em Matemática: registros de representação semiótica. Campinas: Papirus, p , DUVAL, R. Registros de representação semiótica e funcionamento cognitivo do pensamento. Trad. MORETTI, M. T. Revemat, Florianópolis, v. 7, n. 2, p , FIGUEIREDO, D. G. Análise I. Rio de Janeiro: LTC, LIMA, E. L. Curso de Análise. Rio de Janeiro: Projeto Euclides, 1976, v.1. RUDIN, W. Princípios de Análise Matemática. Rio de Janeiro: Ao Livro Técnico, 1971.

Notas de aula: Cálculo e Matemática Aplicados às Notas de aula: Ciências dos Alimentos

Notas de aula: Cálculo e Matemática Aplicados às Notas de aula: Ciências dos Alimentos Notas de aula: Cálculo e Matemática Aplicados às Notas de aula: Ciências dos Alimentos 1 Conjuntos Um conjunto está bem caracterizado quando podemos estabelecer com certeza se um elemento pertence ou não

Leia mais

O CAMPO DOS NÚMEROS REAIS. Capítulos IV, V e VI do livro Conceitos fundamentais da Matemática Bento de Jesus Caraça

O CAMPO DOS NÚMEROS REAIS. Capítulos IV, V e VI do livro Conceitos fundamentais da Matemática Bento de Jesus Caraça O CAMPO DOS NÚMEROS REAIS Capítulos IV, V e VI do livro Conceitos fundamentais da Matemática Bento de Jesus Caraça Aula passada... Números Naturais: 1, 2, 3, Números Inteiros: 0, 1, 2, 3, Relações Biunívocas

Leia mais

Curso de Administração Centro de Ciências Sociais Aplicadas Universidade Católica de Petrópolis. Matemática 1. Revisão - Conjuntos e Relações v. 0.

Curso de Administração Centro de Ciências Sociais Aplicadas Universidade Católica de Petrópolis. Matemática 1. Revisão - Conjuntos e Relações v. 0. Curso de Administração Centro de Ciências Sociais Aplicadas Universidade Católica de Petrópolis Matemática 1 Revisão - Conjuntos e Relações v. 0.1 Baseado nas notas de aula de Matemática I da prof. Eliane

Leia mais

OFICINA 14 DESCOBRINDO E CONSTRUINDO NÚMEROS IRRACIONAIS

OFICINA 14 DESCOBRINDO E CONSTRUINDO NÚMEROS IRRACIONAIS OFICINA 4 DESCOBRINDO E CONSTRUINDO NÚMEROS IRRACIONAIS Profª Dra. Virgínia Cardia Cardoso I PROBLEMAS. Uma estrada é muito perigosa, com muitos acidentes. Existem dois trechos retilíneos onde resolveram

Leia mais

DOS REAIS AOS DECIMAIS

DOS REAIS AOS DECIMAIS DOS REAIS AOS DECIMAIS Número é a sua representação Na sua origem, número é resultado dos processos de contagem ou de medida. Tais números precisam ter algum tipo de representação, para possibilitar as

Leia mais

O CAMPO DOS NÚMEROS REAIS. Capítulos IV, V e VI do livro Conceitos fundamentais da Matemática Bento de Jesus Caraça

O CAMPO DOS NÚMEROS REAIS. Capítulos IV, V e VI do livro Conceitos fundamentais da Matemática Bento de Jesus Caraça O CAMPO DOS NÚMEROS REAIS Capítulos IV, V e VI do livro Conceitos fundamentais da Matemática Bento de Jesus Caraça Aula passada... Números Naturais: 1, 2, 3, Números Inteiros: 0, 1, 2, 3, Relações Biunívocas

Leia mais

Revisão de conceitos Matemáticos. Matemática e Fundamentos de Informática

Revisão de conceitos Matemáticos. Matemática e Fundamentos de Informática Revisão de conceitos Matemáticos Matemática e Fundamentos de Informática 1 1 Conjuntos Teoria dos conjuntos Em Matemática, conjunto é uma coleção de objetos (chamados elementos). Os elementos podem representar

Leia mais

Artigo Teórico. Os Números Reais Um Olhar Para as Definições e os Conceitos. Willian José da Cruz 20

Artigo Teórico. Os Números Reais Um Olhar Para as Definições e os Conceitos. Willian José da Cruz 20 Artigo Teórico Página 45 Os Números Reais Um Olhar Para as Definições e os Conceitos Willian José da Cruz 20 Resumo Este trabalho faz parte dos resultados apresentados na pesquisa concluída em 2011, intitulada:

Leia mais

HISTÓRIA DOS NÚMEROS

HISTÓRIA DOS NÚMEROS HISTÓRIA DOS NÚMEROS O número é um conceito fundamental em matemática que foi construído numa longa história. Existem evidências arqueológicas de que o homem, já há 50.000 anos, era capaz de contar. O

Leia mais

Sobre a noção de número real

Sobre a noção de número real Sobre a noção de número real Um devaneio (meta)matemático Sílvia Cavadas Orientado por Eduardo Rêgo Seminário Diagonal 30/05/13 Uma pergunta (quase) inevitável... f ( x) N Qual o significado do que andamos

Leia mais

7º Ano. Planificação Matemática 2014/2015. Escola Básica Integrada de Fragoso 7º Ano

7º Ano. Planificação Matemática 2014/2015. Escola Básica Integrada de Fragoso 7º Ano 7º Ano Planificação Matemática 2014/2015 Escola Básica Integrada de Fragoso 7º Ano Domínio Subdomínio Conteúdos Objetivos gerais / Metas Números e Operações Números racionais - Simétrico da soma e da diferença

Leia mais

Análise na Reta - Verão UFPA 1a lista - Números naturais; Corpos ordenados

Análise na Reta - Verão UFPA 1a lista - Números naturais; Corpos ordenados Análise na Reta - Verão UFPA 1a lista - Números naturais; Corpos ordenados A lista abaixo é formada por um subconjunto dos exercícios dos seguintes livros: Djairo G. de Figueiredo, Análise na reta Júlio

Leia mais

Cálculo Diferencial e Integral Química Notas de Aula

Cálculo Diferencial e Integral Química Notas de Aula Cálculo Diferencial e Integral Química Notas de Aula João Roberto Gerônimo 1 1 Professor Associado do Departamento de Matemática da UEM. E-mail: jrgeronimo@uem.br. ÍNDICE 1. INTRODUÇÃO Esta notas de aula

Leia mais

ALGUNS ASPECTOS HISTÓRICOS DA EVOLUÇÃO DO CONCEITO DE NÚMERO REAL 1 SOME HISTORIC ASPECTS OF THE EVOLUTION OF THE CONCEPT OF REAL NUMBER

ALGUNS ASPECTOS HISTÓRICOS DA EVOLUÇÃO DO CONCEITO DE NÚMERO REAL 1 SOME HISTORIC ASPECTS OF THE EVOLUTION OF THE CONCEPT OF REAL NUMBER Disc. Scientia. Série: Naturais e Tecnológicas, S. Maria, v. 5, n. 1, p. 127-137, 2004. 127 ISSN 1519-0625 ALGUNS ASPECTOS HISTÓRICOS DA EVOLUÇÃO DO CONCEITO DE NÚMERO REAL 1 SOME HISTORIC ASPECTS OF THE

Leia mais

Números - Aula 03. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

Números - Aula 03. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil Números - Aula 03 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 28 de Fevereiro de 2014 Primeiro Semestre de 2014 Turma 2013106 - Engenharia Mecânica Corpos Vimos que o

Leia mais

Pré-Cálculo. Humberto José Bortolossi. Aula 6 29 de março de Departamento de Matemática Aplicada Universidade Federal Fluminense

Pré-Cálculo. Humberto José Bortolossi. Aula 6 29 de março de Departamento de Matemática Aplicada Universidade Federal Fluminense Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 6 29 de março de 2010 Aula 6 Pré-Cálculo 1 Implicações e teoria dos conjuntos f (x) =g(x) u(x)

Leia mais

Palavras-chave: Números racionais. Medida. Cortes de Dedekind. Números reais.

Palavras-chave: Números racionais. Medida. Cortes de Dedekind. Números reais. Números reais e o problema da medida Real numbers and the measurement problem Resumo Carlos Eduardo de Lima Duarte 1 Nos livros didáticos do ensino médio, os números reais são normalmente apresentados

Leia mais

Números Irracionais. Dinâmica 3. 9º Ano 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO. 9º Ano do Ensino Fundamental

Números Irracionais. Dinâmica 3. 9º Ano 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO. 9º Ano do Ensino Fundamental Reforço escolar M ate mática Números Irracionais Dinâmica 3 9º Ano 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Matemática 9º Ano do Ensino Fundamental Numérico Aritmético. Números reais. Primeira Etapa

Leia mais

Hewlett-Packard CONJUNTOS NUMÉRICOS. Aulas 01 a 08. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos

Hewlett-Packard CONJUNTOS NUMÉRICOS. Aulas 01 a 08. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Hewlett-Packard CONJUNTOS NUMÉRICOS Aulas 01 a 08 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Ano: 2019 Sumário CONJUNTOS NUMÉRICOS... 2 Conjunto dos números Naturais... 2 Conjunto dos números

Leia mais

Análise Real. IF Sudeste de Minas Gerais. Primeiro semestre de Prof: Marcos Pavani de Carvalho. Marcos Pavani de Carvalho

Análise Real. IF Sudeste de Minas Gerais. Primeiro semestre de Prof: Marcos Pavani de Carvalho. Marcos Pavani de Carvalho IF Sudeste de Minas Gerais Prof: Primeiro semestre de 2014 Proposição: É uma afirmação que pode ser classificada em verdadeira ou falsa, mas que faça sentido. Exemplo: Sejam as proposições: A: A soma dos

Leia mais

Matemática I. 1 Propriedades dos números reais

Matemática I. 1 Propriedades dos números reais Matemática I 1 Propriedades dos números reais O conjunto R dos números reais satisfaz algumas propriedades fundamentais: dados quaisquer x, y R, estão definidos a soma x + y e produto xy e tem-se 1 x +

Leia mais

AGRUPAMENTO de ESCOLAS Nº1 de SANTIAGO do CACÉM Ano Letivo 2013/2014 PLANIFICAÇÃO ANUAL

AGRUPAMENTO de ESCOLAS Nº1 de SANTIAGO do CACÉM Ano Letivo 2013/2014 PLANIFICAÇÃO ANUAL AGRUPAMENTO de ESCOLAS Nº1 de SANTIAGO do CACÉM Ano Letivo 2013/2014 PLANIFICAÇÃO ANUAL Documento(s) Orientador(es): Programa e Metas de Aprendizagem e manual adoptado 3º CICLO MATEMÁTICA 7ºANO TEMAS/DOMÍNIOS

Leia mais

DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA:

DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: ANO LETIVO 2015/2016 DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: Matemática (7º Ano) METAS CURRICULARES/CONTEÚDOS... 1º Período Metas / Objetivos Conceitos / Conteúdos Aulas Previstas Números e

Leia mais

1ª Ana e Eduardo. Competência Objeto de aprendizagem Habilidade

1ª Ana e Eduardo. Competência Objeto de aprendizagem Habilidade Matemática 1ª Ana e Eduardo 8º Ano E.F. Competência Objeto de aprendizagem Habilidade Competência 1 Foco: Leitura Compreender e utilizar textos, selecionando dados, tirando conclusões, estabelecendo relações,

Leia mais

INTRODUÇÃO À TEORIA DOS CONJUNTOS

INTRODUÇÃO À TEORIA DOS CONJUNTOS 1 INTRODUÇÃO À TEORIA DOS CONJUNTOS Gil da Costa Marques 1.1 Introdução 1.2 Conceitos básicos 1.3 Subconjuntos e intervalos 1.4 O conjunto dos números reais 1.4.1 A relação de ordem em 1.5 Intervalos 1.5.1

Leia mais

Capítulo 1 Números Reais

Capítulo 1 Números Reais Departamento de Matemática Disciplina MAT154 - Cálculo 1 Capítulo 1 Números Reais Conjuntos Numéricos Conjunto dos naturais: N = {1,, 3, 4,... } Conjunto dos inteiros: Z = {..., 3,, 1, 0, 1,, 3,... } {

Leia mais

Sexta Feira. Cálculo Diferencial

Sexta Feira. Cálculo Diferencial Sexta Feira Cálculo Diferencial 15/0/013 Funções Reais Domínio, imagem e gráficos Código: EXA37 A Turmas: ELE1AN, MEC1AN Prof. HANS-ULRICH PILCHOWSKI Prof. Hans-Ulrich Pilchowski Notas de aula Cálculo

Leia mais

CÁLCULO I. 1 Número Reais. Objetivos da Aula

CÁLCULO I. 1 Número Reais. Objetivos da Aula CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida EMENTA: Conceitos introdutórios de limite, limites trigonométricos, funções contínuas, derivada e aplicações. Noções introdutórias sobre a integral

Leia mais

Sumário. 1 CAPÍTULO 1 Revisão de álgebra

Sumário. 1 CAPÍTULO 1 Revisão de álgebra Sumário 1 CAPÍTULO 1 Revisão de álgebra 2 Conjuntos numéricos 2 Conjuntos 3 Igualdade de conjuntos 4 Subconjunto de um conjunto 4 Complemento de um conjunto 4 Conjunto vazio 4 Conjunto universo 5 Interseção

Leia mais

7.º Ano. Planificação Matemática 2016/2017. Escola Básica Integrada de Fragoso 7.º Ano

7.º Ano. Planificação Matemática 2016/2017. Escola Básica Integrada de Fragoso 7.º Ano 7.º Ano Planificação Matemática 201/2017 Escola Básica Integrada de Fragoso 7.º Ano Geometria e medida Números e Operações Domínio Subdomínio Conteúdos Objetivos gerais / Metas Números racionais - Simétrico

Leia mais

Capítulo 1. Conjuntos e Relações. 1.1 Noção intuitiva de conjuntos. Notação dos conjuntos

Capítulo 1. Conjuntos e Relações. 1.1 Noção intuitiva de conjuntos. Notação dos conjuntos Conjuntos e Relações Capítulo Neste capítulo você deverá: Identificar e escrever os tipos de conjuntos, tais como, conjunto vazio, unitário, finito, infinito, os conjuntos numéricos, a reta numérica e

Leia mais

Aula 5 Aula 6 Aula 7. Ana Carolina Boero. Página:

Aula 5 Aula 6 Aula 7. Ana Carolina Boero.   Página: E-mail: ana.boero@ufabc.edu.br Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Números naturais Como somos apresentados aos números? Num primeiro momento, aprendemos

Leia mais

8º ANO Segmentos de reta incomensuráveis. Pontos irracionais da reta numérica. Nuno Marreiros Comensurável VS Incomensurável

8º ANO Segmentos de reta incomensuráveis. Pontos irracionais da reta numérica. Nuno Marreiros Comensurável VS Incomensurável NÚMEROS REAIS 8º ANO Segmentos de reta incomensuráveis. Pontos irracionais da reta numérica. Nuno Marreiros Comensurável VS Incomensurável A medida pode ser comparada com um padrão. A medida não pode ser

Leia mais

1 Conjunto dos números naturais N

1 Conjunto dos números naturais N Conjuntos numéricos Os primeiros números concebidos pela humanidade surgiram da necessidade de contar objetos. Porém, outras necessidades, práticas ou teóricas, provocaram a criação de outros tipos de

Leia mais

AULA DO CPOG. Teoria dos conjutos

AULA DO CPOG. Teoria dos conjutos AULA DO CPOG Teoria dos conjutos TEORIA DOS CONJUNTOS Professor Felipe Técnico de Operações P-25 Petrobras Contatos Felipe da Silva Cardoso professorpetrobras@gmail.com www.professorfelipecardoso.blogspot.com

Leia mais

ESCOLA E B 2,3/S MIGUEL LEITÃO DE ANDRADA - AGRUPAMENTO DE ESCOLAS DE PEDRÓGÃO GRANDE DEPARTAMENTO DAS CIÊNCIAS EXATAS 2015/2016

ESCOLA E B 2,3/S MIGUEL LEITÃO DE ANDRADA - AGRUPAMENTO DE ESCOLAS DE PEDRÓGÃO GRANDE DEPARTAMENTO DAS CIÊNCIAS EXATAS 2015/2016 ESCOLA E B 2,3/S MIGUEL LEITÃO DE ANDRADA - AGRUPAMENTO DE ESCOLAS DE PEDRÓGÃO GRANDE DEPARTAMENTO DAS CIÊNCIAS EXATAS 2015/2016 PLANIFICAÇÃO DE MATEMÁTICA 7ºANO 1º Período 2º Período 3º Período Apresentação,

Leia mais

Curso de Matemática Aplicada.

Curso de Matemática Aplicada. Aula 1 p.1/25 Curso de Matemática Aplicada. Margarete Oliveira Domingues PGMET/INPE Sistema de números reais e complexos Aula 1 p.2/25 Aula 1 p.3/25 Conjuntos Conjunto, classe e coleção de objetos possuindo

Leia mais

Capítulo 2. Conjuntos Infinitos

Capítulo 2. Conjuntos Infinitos Capítulo 2 Conjuntos Infinitos Não é raro encontrarmos exemplos equivocados de conjuntos infinitos, como a quantidade de grãos de areia na praia ou a quantidade de estrelas no céu. Acontece que essas quantidades,

Leia mais

Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão Lista 1. Números Naturais

Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão Lista 1. Números Naturais Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão 01 Lista 1 Números Naturais 1. Demonstre por indução as seguintes fórmulas: (a) (b) n (j 1) = n (soma dos n primeiros ímpares).

Leia mais

Matemática Básica Noções Básicas de Operações com Conjuntos / Conjuntos Numéricos

Matemática Básica Noções Básicas de Operações com Conjuntos / Conjuntos Numéricos Matemática Básica Noções Básicas de Operações com Conjuntos / Conjuntos Numéricos 02 1. Noção intuitiva de conjunto Intuitivamente, entendemos como um conjunto: toda coleção bem definida de objetos (chamados

Leia mais

INTRODUÇÃO À TEORIA DOS CONJUNTOS1

INTRODUÇÃO À TEORIA DOS CONJUNTOS1 INTRODUÇÃO À TEORIA DOS CONJUNTOS1 TÓPICO Gil da Costa Marques 1.1 Elementos da Teoria dos Conjuntos 1.2 Introdução 1.3 Conceitos Básicos 1.4 Subconjuntos e Intervalos 1.5 Conjuntos Numéricos 1.5.1 O Conjunto

Leia mais

Planificação de Matemática 7º ano. Ano letivo: 2014/15

Planificação de Matemática 7º ano. Ano letivo: 2014/15 Planificação 7º ano Ano letivo: 0/5.º Período: Capítulo - Números racionais Domínio: Números e operações (NO). Álgebra (ALG) Total previstas: 65 Apresentação e avaliação : Momentos avaliação: 6 Autoavaliação:

Leia mais

Programação anual. 6 º.a n o. Sistemas de numeração Sequência dos números naturais Ideias associadas às operações fundamentais Expressões numéricas

Programação anual. 6 º.a n o. Sistemas de numeração Sequência dos números naturais Ideias associadas às operações fundamentais Expressões numéricas Programação anual 6 º.a n o 1. Números naturais 2. Do espaço para o plano Sistemas de numeração Sequência dos números naturais Ideias associadas às operações fundamentais Expressões numéricas Formas geométricas

Leia mais

Agrupamento de Escolas de Águeda Escola Básica Fernando Caldeira

Agrupamento de Escolas de Águeda Escola Básica Fernando Caldeira Agrupamento de Escolas de Águeda Escola Básica Fernando Caldeira Currículo da disciplina de Matemática - 7ºano Unidade 1 Números inteiros Propriedades da adição de números racionais Multiplicação de números

Leia mais

dividendo e reconhecer que.

dividendo e reconhecer que. Agrupamento de Escolas General Humberto Delgado Sede na Escola Secundária/3 José Cardoso Pires Santo António dos Cavaleiros 3º Ciclo - 7º Ano Planificação Anual 2016-2017 - Matemática METAS CURRICULARES

Leia mais

Números e Funções Reais, E. L. Lima, Coleção PROFMAT.

Números e Funções Reais, E. L. Lima, Coleção PROFMAT. 1/12 Aviso Este material é apenas um resumo de parte do conteúdo da disciplina. O material completo a ser estudado encontra-se no Capítulo 4 - Seções 4.1 e 4.2 do livro texto da disciplina: Números e Funções

Leia mais

1.1. Conhecer e aplicar propriedades dos números primos.

1.1. Conhecer e aplicar propriedades dos números primos. Agrupamento de Escolas General Humberto Delgado Sede na Escola Secundária/3 José Cardoso Pires Santo António dos Cavaleiros 3º Ciclo - 7º Ano Planificação Anual 2014-2015 Matemática METAS CURRICULARES

Leia mais

Agrupamento de Escolas General Humberto Delgado Sede na Escola Secundária/3 José Cardoso Pires Santo António dos Cavaleiros

Agrupamento de Escolas General Humberto Delgado Sede na Escola Secundária/3 José Cardoso Pires Santo António dos Cavaleiros Agrupamento de Escolas General Humberto Delgado Sede na Escola Secundária/3 José Cardoso Pires Santo António dos Cavaleiros 3º Ciclo - 7º Ano Planificação Anual 2015-2016 Matemática METAS CURRICULARES

Leia mais

Fundamentos de Matemática

Fundamentos de Matemática Fundamentos de Matemática Aula 1 Antonio Nascimento Plano de Ensino Conteúdos Teoria dos Conjuntos; Noções de Potenciação, Radiciação; Intervalos Numéricos; Fatoração, Equações e Inequações; Razão, Proporção,

Leia mais

Teoria dos Conjuntos. Teoria dos Conjuntos. Teoria dos Conjuntos. Teoria dos Conjuntos. Teoria dos Conjuntos. Teoria dos Conjuntos

Teoria dos Conjuntos. Teoria dos Conjuntos. Teoria dos Conjuntos. Teoria dos Conjuntos. Teoria dos Conjuntos. Teoria dos Conjuntos Pode-se dizer que a é em grande parte trabalho de um único matemático: Georg Cantor (1845-1918). noção de conjunto não é suscetível de definição precisa a partir d noções mais simples, ou seja, é uma noção

Leia mais

Aula 4 Aula 5 Aula 6. Ana Carolina Boero. Página:

Aula 4 Aula 5 Aula 6. Ana Carolina Boero.   Página: E-mail: ana.boero@ufabc.edu.br Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Números naturais Como somos apresentados aos números? Num primeiro momento, aprendemos

Leia mais

ARTICULAÇÃO ENTRE REPRESENTAÇÕES ALGÉBRICAS E GRÁFICAS DE UMA FUNÇÃO: CONSTRUINDO CONJECTURAS POR MEIO DO GEOGEBRA

ARTICULAÇÃO ENTRE REPRESENTAÇÕES ALGÉBRICAS E GRÁFICAS DE UMA FUNÇÃO: CONSTRUINDO CONJECTURAS POR MEIO DO GEOGEBRA ARTICULAÇÃO ENTRE REPRESENTAÇÕES ALGÉBRICAS E GRÁFICAS DE UMA FUNÇÃO: CONSTRUINDO CONJECTURAS POR MEIO DO GEOGEBRA Fernanda Elisbão Silva de Souza Programa de Pós-Graduação em Educação Matemática UFMS

Leia mais

APLICAÇÃO DO TEOREMA DO PONTO FIXO DE BANACH A UM PROBLEMA EM PROBABILIDADE 1

APLICAÇÃO DO TEOREMA DO PONTO FIXO DE BANACH A UM PROBLEMA EM PROBABILIDADE 1 Disciplinarum Scientia. Série: Ciências Exatas, S. Maria, v.2, n.1, p.59-68, 2001 59 APLICAÇÃO DO TEOREMA DO PONTO FIXO DE BANACH A UM PROBLEMA EM PROBABILIDADE 1 APPLICATION OF BANACH FIXED POINT THEOREM

Leia mais

PLANEJAMENTO Disciplina: Matemática Série: 6º Ano Ensino: Fundamental II Prof(a).: Jeane

PLANEJAMENTO Disciplina: Matemática Série: 6º Ano Ensino: Fundamental II Prof(a).: Jeane Disciplina: Matemática Série: 6º Ano Ensino: Fundamental II Prof(a).: Jeane 1ª UNIDADE EIXOS COGNITIVOS CONTEÚDOS HABILIDADES Contagem 1. Números pra quê? H 1 ( Reconhecer, no contexto social, diferentes

Leia mais

PLANO DE ESTUDOS DE MATEMÁTICA - 7.º ANO

PLANO DE ESTUDOS DE MATEMÁTICA - 7.º ANO DE MATEMÁTICA - 7.º ANO Ano Letivo 2014 2015 PERFIL DO ALUNO No domínio dos Números e Operações, o aluno deve ser capaz de multiplicar e dividir números racionais relativos. No domínio da Geometria e Medida,

Leia mais

2ª Ana e Eduardo. Competência Objeto de aprendizagem Habilidade

2ª Ana e Eduardo. Competência Objeto de aprendizagem Habilidade Matemática 2ª Ana e Eduardo 8 Ano E.F. Competência Objeto de aprendizagem Habilidade Competência 2 Foco: Os conjuntos numéricos. Construir significados para os números naturais, inteiros, racionais e reais.

Leia mais

PLANO DE ESTUDOS DE MATEMÁTICA 7.º ANO

PLANO DE ESTUDOS DE MATEMÁTICA 7.º ANO DE MATEMÁTICA 7.º ANO Ano Letivo 2015 2016 PERFIL DO ALUNO No domínio dos Números e Operações, o aluno deve ser capaz de multiplicar e dividir números racionais relativos. No domínio da Geometria e Medida,

Leia mais

AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2016/2017

AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2016/2017 AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM 3º CICLO Ano Letivo 2016/2017 MATEMÁTICA 7ºANO PLANIFICAÇÃO ANUAL Documento(s) Orientador(es): Programa e Metas de Aprendizagem, apoiado pelas novas Orientações

Leia mais

Geometria e Medida: Figuras Geométricas

Geometria e Medida: Figuras Geométricas ANO LETIVO 2015/2016 DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: Matemática (7º Ano) METAS CURRICULARES/CONTEÚDOS... 2º Período Metas / Objetivos Conceitos / Conteúdos Aulas Previstas Geometria

Leia mais

Análise I Solução da 1ª Lista de Exercícios

Análise I Solução da 1ª Lista de Exercícios FUNDAÇÃO EDUCACIONAL SERRA DOS ÓRGÃOS CENTRO UNIVERSITÁRIO SERRA DOS ÓRGÃOS Centro de Ciências e Tecnologia Curso de Graduação em Matemática Análise I 0- Solução da ª Lista de Eercícios. ATENÇÃO: O enunciado

Leia mais

Bases Matemáticas. Relembrando: representação geométrica para os reais 2. Aula 8 Números Reais: módulo ou valor absoluto, raízes, intervalos

Bases Matemáticas. Relembrando: representação geométrica para os reais 2. Aula 8 Números Reais: módulo ou valor absoluto, raízes, intervalos 1 Bases Matemáticas Aula 8 Números Reais: módulo ou valor absoluto, raízes, intervalos Rodrigo Hausen 10 de outubro de 2012 v. 2012-10-15 1/34 Relembrando: representação geométrica para os reais 2 Uma

Leia mais

ENSINO BÁSICO. ESCOLA: Secundária Dr. Solano de Abreu DISCIPLINA: Matemática ANO: 7º ANO LETIVO 2013/2014 CONTEÚDOS PROGRAMÁTICOS AULAS PREVISTAS

ENSINO BÁSICO. ESCOLA: Secundária Dr. Solano de Abreu DISCIPLINA: Matemática ANO: 7º ANO LETIVO 2013/2014 CONTEÚDOS PROGRAMÁTICOS AULAS PREVISTAS ENSINO BÁSICO Agrupamento de Escolas Nº 1 de Abrantes ESCOLA: Secundária Dr. Solano de Abreu DISCIPLINA: Matemática ANO: 7º ANO LETIVO 2013/2014 CONTEÚDOS PROGRAMÁTICOS METAS DE APRENDIZAGEM ATIVIDADES

Leia mais

AGRUPAMENTO DE ESCOLAS GONÇALO SAMPAIO ESCOLA E.B. 2, 3 PROFESSOR GONÇALO SAMPAIO

AGRUPAMENTO DE ESCOLAS GONÇALO SAMPAIO ESCOLA E.B. 2, 3 PROFESSOR GONÇALO SAMPAIO AGRUPAMENTO DE ESCOLAS GONÇALO SAMPAIO ESCOLA E.B. 2, 3 PROFESSOR GONÇALO SAMPAIO DEPARTAMENTO DE MATEMÁTICA MATEMÁTICA 7º ANO PLANIFICAÇÃO ANUAL 2016/2017 PLANIFICAÇÃO ANUAL DISCIPLINA: Matemática ANO

Leia mais

AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2015/2016 PLANIFICAÇÃO ANUAL. Documento(s) Orientador(es): Programa e Metas de Aprendizagem

AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2015/2016 PLANIFICAÇÃO ANUAL. Documento(s) Orientador(es): Programa e Metas de Aprendizagem AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2015/2016 PLANIFICAÇÃO ANUAL Documento(s) Orientador(es): Programa e Metas de Aprendizagem 3º CICLO MATEMÁTICA 7ºANO TEMAS/DOMÍNIOS CONTEÚDOS OBJETIVOS

Leia mais

ENSINO BÁSICO. ESCOLA: Secundária Dr. Solano de Abreu DISCIPLINA: Matemática ANO: 8º ANO LETIVO 2013/2014 CONTEÚDOS PROGRAMÁTICOS

ENSINO BÁSICO. ESCOLA: Secundária Dr. Solano de Abreu DISCIPLINA: Matemática ANO: 8º ANO LETIVO 2013/2014 CONTEÚDOS PROGRAMÁTICOS ENSINO BÁSICO Agrupamento de Escolas Nº 1 de Abrantes ESCOLA: Secundária Dr. Solano de Abreu DISCIPLINA: Matemática ANO: 8º ANO LETIVO 2013/2014 CONTEÚDOS PROGRAMÁTICOS METAS DE APRENDIZAGEM ATIVIDADES

Leia mais

DISCIPLINA: MATEMÁTICA ANO: 8º ANO LETIVO 2012/2013 ATIVIDADES ESTRATÉGIAS. Atividades de diagnóstico. Atividades de revisão e recuperação.

DISCIPLINA: MATEMÁTICA ANO: 8º ANO LETIVO 2012/2013 ATIVIDADES ESTRATÉGIAS. Atividades de diagnóstico. Atividades de revisão e recuperação. Escola Secundária Dr. Solano de Abreu Abrantes ENSINO BÁSICO DISCIPLINA: MATEMÁTICA ANO: 8º ANO LETIVO 2012/2013 CONTEÚDOS PROGRAMÁTICOS METAS DE APRENDIZAGEM ATIVIDADES ESTRATÉGIAS INSTRUMENTOS DE AVALIAÇÃO

Leia mais

Capítulo 2. Conjuntos Infinitos. 2.1 Existem diferentes tipos de infinito

Capítulo 2. Conjuntos Infinitos. 2.1 Existem diferentes tipos de infinito Capítulo 2 Conjuntos Infinitos Um exemplo de conjunto infinito é o conjunto dos números naturais: mesmo tomando-se um número natural n muito grande, sempre existe outro maior, por exemplo, seu sucessor

Leia mais

AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2017/2018 PLANIFICAÇÃO ANUAL

AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2017/2018 PLANIFICAÇÃO ANUAL AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM 3º CICLO Ano Letivo 2017/2018 PLANIFICAÇÃO ANUAL MATEMÁTICA 7ºANO Documento(s) Orientador(es): Programa e Metas de Aprendizagem, apoiado pelas novas Orientações

Leia mais

Quadro de conteúdos MATEMÁTICA

Quadro de conteúdos MATEMÁTICA Quadro de conteúdos MATEMÁTICA 1 Apresentamos a seguir um resumo dos conteúdos trabalhados ao longo dos quatro volumes do Ensino Fundamental II, ou seja, um panorama dos temas abordados na disciplina de

Leia mais

ÁLGEBRA. AULA 1 _ Conjuntos Professor Luciano Nóbrega. Maria Auxiliadora

ÁLGEBRA. AULA 1 _ Conjuntos Professor Luciano Nóbrega. Maria Auxiliadora 1 ÁLGEBRA AULA 1 _ Conjuntos Professor Luciano Nóbrega Maria Auxiliadora 2 Pode-se dizer que a é, em grande parte, trabalho de um único matemático: Georg Cantor (1845-1918). A noção de conjunto não é suscetível

Leia mais

UM ESTUDO DA REPRESENTAÇÃO DE TRIÂNGULOS NOS LIVROS DIDÁTICOS DE MATEMÁTICA DOS ANOS INICIAIS DO ENSINO FUNDAMENTAL

UM ESTUDO DA REPRESENTAÇÃO DE TRIÂNGULOS NOS LIVROS DIDÁTICOS DE MATEMÁTICA DOS ANOS INICIAIS DO ENSINO FUNDAMENTAL UM ESTUDO DA REPRESENTAÇÃO DE TRIÂNGULOS NOS LIVROS DIDÁTICOS DE MATEMÁTICA DOS ANOS INICIAIS DO ENSINO FUNDAMENTAL Amanda Barbosa da Silva Universidade Federal de Pernambuco amanda_mat123@hotmail.com

Leia mais

MARCELO CARLOS DA SILVA FUNÇÃO QUADRÁTICA: UMA PROPOSTA DE ATIVIDADE PARA O ESTUDO DOS COEFICIENTES

MARCELO CARLOS DA SILVA FUNÇÃO QUADRÁTICA: UMA PROPOSTA DE ATIVIDADE PARA O ESTUDO DOS COEFICIENTES MARCELO CARLOS DA SILVA FUNÇÃO QUADRÁTICA: UMA PROPOSTA DE ATIVIDADE PARA O ESTUDO DOS COEFICIENTES 1ª Edição São Paulo 2014 Todos os direitos reservados Título Função Quadrática: uma proposta de atividade

Leia mais

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos Unidade I MATEMÁTICA Prof. Celso Ribeiro Campos Números reais Três noções básicas são consideradas primitivas, isto é, são aceitas sem a necessidade de definição. São elas: a) Conjunto. b) Elemento. c)

Leia mais

Compreende, concebe e aplica estratégias de resolução de problemas e avalia a adequação dos resultados obtidos.

Compreende, concebe e aplica estratégias de resolução de problemas e avalia a adequação dos resultados obtidos. DEPARTAMENTO DE CONSELHO DE DOCENTES Matemática_º ANO_B Ano Letivo: 2012/201 1. Introdução / Finalidades A Matemática é uma das ciências mais antigas e também uma das disciplinas mais antigas, ocupando

Leia mais

Números e Operações (NO) Álgebra (ALG) DOMÍNIO SUBDOMÍNIO OBJETIVO GERAL/DESCRITORES RECURSOS. Conhecer e aplicar propriedades dos divisores

Números e Operações (NO) Álgebra (ALG) DOMÍNIO SUBDOMÍNIO OBJETIVO GERAL/DESCRITORES RECURSOS. Conhecer e aplicar propriedades dos divisores ESCOLA BÁSICA CRISTÓVÃO FALCÃO ANO LETIVO: 2016/2017 SERVIÇO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS DATA: Set 2016 ASSUNTO PLANIFICAÇÃO ANUAL 5º Ano RESPONSÁVEL: Grupo 230 DOMÍNIO SUBDOMÍNIO

Leia mais

A = B, isto é, todo elemento de A é também um elemento de B e todo elemento de B é também um elemento de A, ou usando o item anterior, A B e B A.

A = B, isto é, todo elemento de A é também um elemento de B e todo elemento de B é também um elemento de A, ou usando o item anterior, A B e B A. Capítulo 1 Números Reais 1.1 Conjuntos Numéricos Um conjunto é uma coleção de elementos. A relação básica entre um objeto e o conjunto é a relação de pertinência: quando um objeto x é um dos elementos

Leia mais

MA11 - Unidade 3 A Reta Real Semana de 11/04 a 17/04

MA11 - Unidade 3 A Reta Real Semana de 11/04 a 17/04 MA11 - Unidade 3 A Reta Real Semana de 11/04 a 17/04 Nos dois capítulos anteriores, foram introduzidos os números naturais e foi mostrado como eles são empregados na operação de contagem. Veremos agora

Leia mais

TEORIA DOS CONJUNTOS. Professor: Marcelo Silva Natal - RN, agosto de 2013.

TEORIA DOS CONJUNTOS. Professor: Marcelo Silva Natal - RN, agosto de 2013. TEORIA DOS CONJUNTOS Professor: Marcelo Silva marcelo.silva@ifrn.edu.br Natal - RN, agosto de 2013. 1 INTRODUÇÃO Um funcionário do departamento de seleção de pessoal de uma indústria automobilística, analisando

Leia mais

Matriz de Referência da área de Matemática Ensino Fundamental

Matriz de Referência da área de Matemática Ensino Fundamental Matemática EF Matriz de Referência da área de Matemática Ensino Fundamental C1 Utilizar o conhecimento numérico para operar e construir argumentos ao interpretar situações que envolvam informações quantitativas.

Leia mais

MATEMÁTICA I. Profa. Dra. Amanda L. P. M. Perticarrari

MATEMÁTICA I. Profa. Dra. Amanda L. P. M. Perticarrari MATEMÁTICA I Profa. Dra. Amanda L. P. M. Perticarrari amanda.perticarrari@unesp.br www.fcav.unesp.br/amanda MATEMÁTICA I AULA 1: PRÉ-CÁLCULO Profa. Dra. Amanda L. P. M. Perticarrari CONJUNTOS NUMÉRICOS

Leia mais

Produtos de potências racionais. números primos.

Produtos de potências racionais. números primos. MATEMÁTICA UNIVERSITÁRIA n o 4 Dezembro/2006 pp. 23 3 Produtos de potências racionais de números primos Mário B. Matos e Mário C. Matos INTRODUÇÃO Um dos conceitos mais simples é o de número natural e

Leia mais

Um espaço métrico incompleto 1

Um espaço métrico incompleto 1 Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência anos c Publicação Eletrônica do KIT http://www.dma.uem.br/kit Um espaço métrico incompleto

Leia mais

Pré-Cálculo. Humberto José Bortolossi. Aula 5 27 de agosto de Departamento de Matemática Aplicada Universidade Federal Fluminense

Pré-Cálculo. Humberto José Bortolossi. Aula 5 27 de agosto de Departamento de Matemática Aplicada Universidade Federal Fluminense Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 5 27 de agosto de 200 Aula 5 Pré-Cálculo Expansões decimais: exemplo Números reais numericamente

Leia mais

Calendarização da Componente Letiva

Calendarização da Componente Letiva Calendarização da Componente Letiva 2015/2016 7º Ano Matemática s 1º 2º 3º Número de aulas previstas (45 minutos) 61 50 48 Apresentação e Diagnóstico 2 Avaliação (preparação, fichas de avaliação e correção)

Leia mais

Conjuntos Enumeráveis e Não-Enumeráveis

Conjuntos Enumeráveis e Não-Enumeráveis Conjuntos Enumeráveis e Não-Enumeráveis João Antonio Francisconi Lubanco Thomé Bacharelado em Matemática - UFPR jolubanco@gmail.com Prof. Dr. Fernando de Ávila Silva (Orientador) Departamento de Matemática

Leia mais

Lista 1. 9 Se 0 < x < y e n N então 0 < x n < y n.

Lista 1. 9 Se 0 < x < y e n N então 0 < x n < y n. UFPR - Universidade Federal do Paraná Departamento de Matemática CM095 - Análise I Prof. José Carlos Eidam Lista 1 Em toda a lista, K denota um corpo ordenado qualquer. Corpos ordenados 1. Verifique as

Leia mais

Conjuntos. Notações e Símbolos

Conjuntos. Notações e Símbolos Conjuntos A linguagem de conjuntos é interessante para designar uma coleção de objetos. Quando os estatísticos selecionam indivíduos de uma população eles usam a palavra amostra, frequentemente. Todas

Leia mais

Conjuntos Numéricos. É o conjunto no qual se encontram os elementos de todos os conjuntos estudados.

Conjuntos Numéricos. É o conjunto no qual se encontram os elementos de todos os conjuntos estudados. Conjuntos Numéricos INTRODUÇÃO Conjuntos: São agrupamentos de elementos com algumas características comuns. Ex.: Conjunto de casas, conjunto de alunos, conjunto de números. Alguns termos: Pertinência Igualdade

Leia mais

XII Encontro Gaúcho de Educação Matemática Inovar a prática valorizando o Professor Porto Alegre, RS 10 a 12 de setembro de 2015

XII Encontro Gaúcho de Educação Matemática Inovar a prática valorizando o Professor Porto Alegre, RS 10 a 12 de setembro de 2015 Inovar a prática valorizando o Professor MODELAGEM GEOMÉTRICA E GRÁFICOS DE FUNÇÕES SEM LEI : CRIANDO SEQUÊNCIAS DIDÁTICAS EM UM GEOGEBRABOOK. Resumo: Este minicurso aborda a criação de applets no GeoGebra

Leia mais

O TEOREMA DE ARZELÁ ASCOLI. Osmar Rogério Reis Severiano¹, Fernando Pereira de Souza².

O TEOREMA DE ARZELÁ ASCOLI. Osmar Rogério Reis Severiano¹, Fernando Pereira de Souza². Encontro de Ensino, Pesquisa e Extensão, Presidente Prudente, 22 a 25 de outubro, 2012 51 O TEOREMA DE ARZELÁ ASCOLI Osmar Rogério Reis Severiano¹, Fernando Pereira de Souza² ¹Acadêmico do Curso de matemática

Leia mais

ESCOLA BÁSICA DE MAFRA 2016/2017 MATEMÁTICA (2º ciclo)

ESCOLA BÁSICA DE MAFRA 2016/2017 MATEMÁTICA (2º ciclo) (2º ciclo) 5º ano Operações e Medida Tratamento de Dados Efetuar com números racionais não negativos. Resolver problemas de vários passos envolvendo com números racionais representados por frações, dízimas,

Leia mais

SEQUÊNCIA DIDÁTICA PARA O ESTUDO DAS SECÇÕES CÔNICAS COM O AUXILIO DO SOFTWARE GEOGEBRA NA MATEMÁTICA.

SEQUÊNCIA DIDÁTICA PARA O ESTUDO DAS SECÇÕES CÔNICAS COM O AUXILIO DO SOFTWARE GEOGEBRA NA MATEMÁTICA. SEQUÊNCIA DIDÁTICA PARA O ESTUDO DAS SECÇÕES CÔNICAS COM O AUXILIO DO SOFTWARE GEOGEBRA NA MATEMÁTICA. G7 - Ensino e Aprendizagem de Matemática no Ensino Médio e no Ensino Superior Aluna Sandra Pereira

Leia mais

3ª Igor/ Eduardo. Competência Objeto de aprendizagem Habilidade

3ª Igor/ Eduardo. Competência Objeto de aprendizagem Habilidade Matemática 3ª Igor/ Eduardo 9º Ano E.F. Competência Objeto de aprendizagem Habilidade C3 - Espaço e forma Números racionais. Números irracionais. Números reais. Relações métricas nos triângulos retângulos.

Leia mais

Construção dos Números Reais

Construção dos Números Reais 1 Universidade de Brasília Departamento de Matemática Construção dos Números Reais Célio W. Manzi Alvarenga Sumário 1 Seqüências de números racionais 1 2 Pares de Cauchy 2 3 Um problema 4 4 Comparação

Leia mais

OBJETIVOS E CONTEÚDOS

OBJETIVOS E CONTEÚDOS OBJETIVOS E CONTEÚDOS 1º BIMESTRE SISTEMA INTERATIVO DE ENSINO Matemática 1º ano Capítulo 1 Noções e conceitos Comparar e diferenciar grandezas e medidas (comprimento, massa, capacidade, tempo), estabelecendo

Leia mais

Planificação Anual Matemática 9º Ano Ano lectivo 2014/2015

Planificação Anual Matemática 9º Ano Ano lectivo 2014/2015 nº 1 de (EB23) Organização e tratamento de dados Desenvolver nos alunos a capacidade de compreender e de produzir informação estatística bem como de a utilizar para resolver problemas e tomar decisões

Leia mais

MATEMÁTICA - 7.º Ano. Ana Soares ) Catarina Coimbra ) NÚMEROS RACIONAIS

MATEMÁTICA - 7.º Ano. Ana Soares ) Catarina Coimbra ) NÚMEROS RACIONAIS Salesianos de Mogofores - 2016/2017 MATEMÁTICA - 7.º Ano Ana Soares (ana.soares@mogofores.salesianos.pt ) Catarina Coimbra (catarina.coimbra@mogofores.salesianos.pt ) Rota de aprendizage m por Projetos

Leia mais

Resolução de problemas. Meta Final 1) Compreende o problema. Meta Final 2) Concebe estratégias de resolução de problemas.

Resolução de problemas. Meta Final 1) Compreende o problema. Meta Final 2) Concebe estratégias de resolução de problemas. AGRUPAMENTO DE ESCOLAS LUÍS DE CAMÕES ESCOLA E.B 2,3 LUÍS DE CAMÕES DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS PROJECTO CURRICULAR DE MATEMÁTICA - 9.º ANO - 2014/2015 Critérios de Avaliação Capacidades

Leia mais

Lista de Exercícios da Primeira Semana Análise Real

Lista de Exercícios da Primeira Semana Análise Real Lista de Exercícios da Primeira Semana Análise Real Nesta lista, a n, b n, c n serão sempre sequências de números reais.. Mostre que todo conjunto ordenado com a propriedade do supremo possui a propriedade

Leia mais