Limites, derivadas e máximos e mínimos

Tamanho: px
Começar a partir da página:

Download "Limites, derivadas e máximos e mínimos"

Transcrição

1 Limites, derivadas e máimos e mínimos

2 Psicologia eperimental

3 Definição lim a f ( ) b

4 Eemplo: Seja f()=5-3. Mostre que o limite de f() quando tende a 1 é igual a 2.

5 Propriedades dos Limites Se L, M, a, c são números reais e n inteiro e lim f ( ) L g( ) M, a lim a

6 Regra da soma(subtração): Regra do Produto: Regra da multiplicação por escalar: Regra do quociente: M L g f g f a a a ) ( lim ) ( lim ) ( ) ( lim L M g f g f a a a. ) ( ).lim ( lim ) ( ). ( lim c L f c f c a a. ) (.lim ) (. lim M L g f g f a a a ) ( lim ) ( lim ) ( ) ( lim

7 Regra da potencia: Regra da raíz n n a n a L f f )) ( (lim ) ( lim n n a n a L f f ) ( lim ) ( lim

8 Regra do logaritmo: lim log a log c c L ( f ( )) se lim a log ( ) Regra do seno(o mesmo vale para o cosseno) lim sen a f ( ) Regra da eponencial: lim c a f ( ) c f c sen(lim lim a f ( ) a (lim a f c 0 f ( )) L ( )) sen L

9 Limites de Funções Polinomiais Teorema 2 Os Limites de Funções Polinomiais podem ser obtidos por Substituição: Se ) ( a a a P n n n n então.... ) ( ) ( lim a c a c a c P P c n n n n

10 Eemplo Limite de Uma Função Polinomial ) ( 3 2 2) ( 2) ( 2) ( 4 2) ( lim 2

11 Limites de Funções Racionais Teorema 3 Os Limites de Funções Racionais podem ser obtidos por Substituição, caso o limite do denominador não seja zero: P () Q() Q( c) 0 Se e são polinômios e, então lim c P( ) Q( ) P( c) Q( c)

12 Eemplo Limite de Uma Função Racional ( 1) 3 4( 1) lim ( 1)

13 Eemplo 3 Cancelando um Fator Comum 2 2 lim 1 2 Solução: Não podemos substituir = 1 porque isso resulta em um denominador zero. Testamos o numerador para ver se este também é zero em = 1. Também é, portanto apresenta o fator ( 1) em comum com o denominador. Cancelar o ( 1) resulta em uma fração mais simples, com os mesmos valores da original para 1: 2 2 ( 1)( 2) 2 2 ( 1) Se 1

14 Usando a fração simplificada, obtemos o limite desses valores quando 1 por substituição: lim lim

15 Teorema Teorema do Confronto Suponha que g( ) f ( ) h( ) para qualquer em um intervalo de aberto contendo c, eceto possivelmente em = c. Suponha também que lim c g( ) lim c h( ) L Então lim c f ( ) L

16 Limites Laterais Para ter um limite L quando se aproima de a, uma função f deve ser definida em ambos os lados de a e seus valores f() devem se aproimar de L quando se aproima de a de cada lado. Por isso, limites comuns são bilaterais. Se f não tem um limite bilateral em a, ainda pode ter um limite lateral, ou seja, um limite cuja aproimação ocorre apenas de um lado. Se a aproimação for feita pelo lado direito, o limite será um limite à direita. Se for pelo lado esquerdo, será um limite à esquerda.

17 Definições: Limites Laterais à Direita e à Esquerda. Seja f() definida em um intervalo (a, b), onde a > b. Se f() fica arbitrariamente próimo de L conforme se aproima de a nesse intervalo, dizemos que f tem limite lateral à direita L em a e escrevemos lim f ( ) L a

18 Seja f() definida em um intervalo (c, a), onde c < a. Se f() fica arbitrariamente próimo de M conforme se aproima de a nesse intervalo, dizemos que f tem limite lateral à esquerda M em a e escrevemos lim f ( ) M a

19 Teorema 5 Relação entre os Limites Lateral e Bilateral Uma função f() terá um limite quando tende a c se e somente se tiver um limite lateral à direita e um à esquerda e os dois limites laterais forem iguais: e

20 Limites Fundamentais Daremos a seguir três proposições que caracterizam os chamados limites fundamentais. Estaremos tratando de casos particulares de 0 indeterminações do tipo 0 / 0, 1 e. Proposição 1: Proposição 2: lim0 sen 1 lim (1 1/ ) e Onde e é o número irracional neperiano cujo valor aproimado é 2,

21 Continuidade Uma função y = f() é contínua em um ponto interior c de seu domínio quando: lim c f ( ) f ( c). Etremidades: Uma função y = f() é contínua na etremidade esquerda a ou é contínua na etremidade direita b de seu domínio quando: lim a f ( ) f ( a) ou f ( ) f ( b) lim b respectivamente

22 Teste de Continuidade Uma função f() será contínua em = c se e somente se ela obedecer às três condições seguintes: 1. f(c) eiste (c está no domínio de f) lim f ( ) 2. eiste (f tem um limite quando c ) c lim f ( ) f ( c) 3. (o limite é igual ao valor da função) c

23 Teorema Propriedades de Funções Contínuas Se as funções f e g são contínuas em = c, então as seguintes combinações são contínuas em = c. 1. Somas: f + g 2. Diferenças: f - g 3. Produtos: f. g 4. Constantes Múltiplas: k. f, para qualquer número k 5. Quocientes: f / g, uma vez que g(c) 0

24 Teorema Composta de Funções Contínuas Se f é contínua em c e g é contínua em f(c), então a composta g f é contínua em c.

25 Teorema do Valor Intermediário

26 Eercícios

27 3. Eiste algum número que somado a 1 é eatamente igual ao seu cubo?

28 Derivada reta tangente

29

30

31

32

33 Regras de derivação

34

35

36 Taa de variação

37 Eercícios

38 Como classificar os máimos e mínimos

39 Definição - Etremos Absolutos Seja f uma função de domínio D. Então f(c) é: (a) o máimo absoluto de f em D se e somente se f () f (c) para qualquer que seja em D. (b) o mínimo absoluto de f em D se e somente se f () f (c) para qualquer que seja em D.

40 Eemplo 3 - Encontrando Etremos Absolutos (a) Função Domínio D Etremos Absolutos em D y 2 (, ) Ausência de máimo absoluto. Mínimo absoluto 0 quando = 0. (b) (c) (d) y y y 2 [0, 2] Máimo absoluto 4 quando = 2. Mínimo absoluto 0 quando = 0. 2 (0, 2] Máimo absoluto 4 quando = 2. Ausência de mínimo absoluto. 2 (0, 2) Ausência de etremos absolutos.

41 Teorema 1 - O Teorema de Valor Etremo para Funções Contínuas Se f é contínua para todos os pontos do intervalo fechado I, então f assume tanto um valor máimo M como um valor mínimo m em I. Ou seja, há números 1 e 2 em I tais que f ( 1 ) = m e f ( 2 ) = M e m f() M para qualquer outro valor de em I. (Figura abaio)

42

43 Definição - Etremos Locais Seja c um ponto interior do domínio da função f. Então f (c) será (a) um valor máimo local em c se e somente se f () qualquer em um intervalo aberto que contenha c. f (c) para (b) um valor mínimo local em c se e somente se f () qualquer em um intervalo aberto que contenha c. f (c) para Teorema 2 - Etremos Locais Se uma função f possui valores máimo ou mínimo locais em um ponto c interior de seu domínio e se f eiste em c, então f (c) = 0.

44 Definição - Ponto Crítico Um ponto de uma função f onde f = 0 ou f não eiste é um ponto crítico de f. Eemplo 5 - Encontrando os Etremos Absolutos em um Intervalo Fechado Determine os valores máimo e mínimo absolutos de f () = 10(2 - ln ) no intervalo [1, e 2 ]. Solução: A figura 3.6 (próimo slide) sugere que f tem seu valor máimo absoluto próimo de = 3 e que, quando = e 2, seu valor mínimo absoluto é 0.

45 Os valores etremos de f () = 10(2 - ln ) ocorrem quando = e e = e 2.

46 Calculamos a função nos pontos críticos e nas etremidades e, dentre os valores obtidos, tomamos o maior e o menor. A primeira derivada é 1 f '()10(2ln)10 10(1ln). O único ponto crítico no domínio [1, e 2 ] é o ponto = e, onde ln = 1. Os valores de f nesse único ponto crítico e nas etremidades são Valor no ponto crítico: Valores nas etremidades: f( e) 10 e f(1) 10(2ln1) fe () 10(22ln) ee 0 A partir dessa lista podemos ver que o máimo absoluto dessa função 10e 2,72. Que ocorre no ponto crítico interior = e. O mínimo absoluto é 0 e ocorre na etremidade direita, quando = e 2.

47 Como Determinar os Etremos Absolutos de uma Função Contínua f em um Intervalo Fechado Passo 1: Calcule f em todos os pontos críticos e etremidades. Passo 2: Tome o maior e o menor dentre os valores obtidos. Eemplo 6 - Determinando Etremos Determine os valores etremos de 1 f () 4 2 Solução: A função f possui um mínimo absoluto de aproimadamente 0,5 quando = 0. Também parece haver haver dois máimos locais quando = -2 e = 2. No entanto, nesses pontos a função não está definida e não parece haver nenhum outro valor máimo.

48 A função f está definida apenas para 4-2 > 0, portanto seu domínio é o intervalo aberto (-2, 2). O domínio não tem etremidades, logo todos os etremos da função deverá ocorrer em pontos críticos. Rescrevemos a fórmula de f para determinar f. Assim, 1 f () (4 ) f '() (4)(2) (4) O único ponto crítico no domínio (-2, 2) é = 0. Portanto, o valor f(0) É a única possibilidade de valor etremo.

49 Para determinar se 1/2 é um valor etremo de f, eaminamos a fórmula 1 f () 4 2 À medida que se afasta de 0 para ambos os lados, os valores de f aumentam e o gráfico sobe. Temos um valor mínimo quando = 0, e o mínimo é absoluto. A função não possui máimos, nem locais nem absolutos. Isso não vai contra o Teorema 1 (Teorema do Valor Etremo), pois aqui f é definida em um intervalo aberto. Para que haja pontos etremos, o Teorema 1 eige um intervalo fechado.

50 Eemplo 7 - Pontos Críticos não Precisam Gerar Valores Etremos Embora os etremos de uma função possam ocorrer apenas em pontos críticos e etremidades, nem todo ponto crítico ou etremidade indica a presença de um valor etremo. Pontos críticos sem valores etremos: (a) y = 3 2 é 0 quando = 0, mas y = 3 não possui nenhum etremo nesse ponto. (b) y = (1/3) -2/3 não é definida quando = 0, mas y = 1/3 não possui nenhum etremo nesse ponto.

51 Teorema 3 - O Teorema de Rolle Suponha que y = f() seja contínua em todos os pontos de [a, b] e derivável em todos os pontos de (a, b). Se f() af() b0 Então há pelo menos um número c em (a, b) onde f (c) = 0. O Teorema de Rolle diz que uma curva derivável tem ao menos uma tangente horizontal entre dois pontos quaisquer onde a curva cruza o eio. Essa curva tem três.

52 Teorema 4 - O Teorema do Valor Médio Suponha que y = f() seja contínua em um intervalo fechado [a, b] e derivável no intervalo aberto (a, b). Então há pelo menos um ponto c em (a, b) em que fb () fa () fc '() ba Geometricamente, o Teorema do Valor Médio diz que, em algum lugar entre A e B, a curva apresenta pelo menos uma tangente paralela à corda AB.

53 Corolário 1 - Funções com Derivadas Nulas são Funções Constantes Se f () = 0 em todos os pontos de um intervalo I, então f () = C para qualquer em I, onde C é uma constante. Definições - Função Crescente, Função Decrescente Seja f uma função definida em um intervalo I. Então, 1. f é crescente em I se, para todos os pontos 1 e 2 em I, f () f () f é decrescente em I se, para todos os pontos 1 e 2 em I, f () f ()

54 Corolário 3 - Teste da Primeira Derivada para Crescimento e Decrescimento Suponha que f seja contínua em [a, b] e derivável em (a, b). Se f > 0 em todos os pontos de (a, b), então f é crescente em [a, b]. Se f < 0 em todos os pontos de (a, b), então f é decrescente em [a, b]. O Teste da Primeira Derivada para Etremos Locais 1. Se f é negativa à esquerda de c e positiva à direita de c, então f possui um mínimo local em c. 2. Se f é positiva à esquerda de c e negativa à direita de c, então f possui um máimo local em c. 3. Se f possui o mesmo sinal em ambos os lados de c, então c não é um etremo local de f.

55 O gráfico de f () = 3 é côncavo para baio em e côncavo para cima em (0, ). (, 0)

56 Definição - Concavidade O gráfico de uma função derivável y = f () é (a) côncavo para cima em um intervalo aberto I, se y é crescente em I. (b) côncavo para baio em um intervalo aberto I, se y é decrescente em I. Eemplo 3 - Aplicando o Teste de Concavidade A curva y = 2 é côncava para cima em qualquer intervalo, pois sua segunda derivada y = 2 é sempre positiva.

57 Definição - Ponto de Infleão Um ponto onde o gráfico de uma função possui uma reta tangente e onde há mudança de concavidade é um ponto de infleão. Teorema 5 - O Teste da Segunda Derivada para Etremos Locais 1. Se f (c) = 0 e f (c) < 0, então f possui um máimo local quando = c. 2. Se f (c) = 0 e f (c) > 0, então f possui um mínimo local quando = c.

58

59 Aplicações 1. O problema da indústria de óleo de soja Um fabricante tem de fazer uma lata cilíndrica para armazenar 1,5 litros de óleo de soja. Determine as dimensões da lata de forma a minimizar a quantidade de material utilizado em sua construção. 2. O problema de fornecimento de energia Duas fábricas estão localizadas nas coordenadas (, 0) e (-, 0) com a sua fonte de energia localizada no ponto (0, h) de um plano cartesiano (veja figura abaio). Encontre y tal que a distância total da linha de alimentação da fonte de alimentação para as fábricas seja mínimo.

60 3. Investindo em imóveis Um escritório imobiliário administra 80 unidades de apartamentos. Quando o aluguel é de R$ 600 por mês, todas as unidades estão ocupadas. No entanto, para cada aumento de R$ 20 no aluguel, uma das unidades torna-se vaga. Cada unidade ocupada requer uma média de R$ 30 por mês para o serviço e reparos. Que aluguel deve ser cobrado para que se tenha o maior lucro?

Acadêmico(a) Turma: Capítulo 7: Limites

Acadêmico(a) Turma: Capítulo 7: Limites Acadêmico(a) Turma: Capítulo 7: Limites 7.1. Noção Intuitiva de ite Considere a função f(), em que f() = 2 + 1. Para valores de que se aproima de 1, por valores maiores que 1 (Direita) e por valores menores

Leia mais

Cálculo diferencial. Motivação - exemplos de aplicações à física

Cálculo diferencial. Motivação - exemplos de aplicações à física Cálculo diferencial Motivação - eemplos de aplicações à física Considere-se um ponto móvel sobre um eio orientado, cuja posição em relação à origem é dada, em função do tempo, pela função s. st posição

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL I NOTAS DE AULAS Prof. Dr. Luiz Francisco da Cruz Departamento de Matemática UNESP/Bauru

CÁLCULO DIFERENCIAL E INTEGRAL I NOTAS DE AULAS Prof. Dr. Luiz Francisco da Cruz Departamento de Matemática UNESP/Bauru REGRA DE LHÔPITAL Teorema: Suponhamos que f (a) g(a) e que f (a) e g (a) eistam com g(a). Então: lim a f() g() f(a) g(a). in det er min ação. Forma mais avançada do Teorema de L Hospital: Suponhamos que

Leia mais

c) R 2 e f é decrescente no intervalo 1,. , e f é crescente no intervalo 2, 2

c) R 2 e f é decrescente no intervalo 1,. , e f é crescente no intervalo 2, 2 UFJF ICE Departamento de Matemática CÁLCULO I - LISTA DE EXERCÍCIOS Nº As questões de números a 9 referem-se à função f ( ). - O domínio da função f é o conjunto: a) R b) R c) R R, 0 e) R 0 - A derivada

Leia mais

1. Calcule a derivada da função dada usando a definição. (c) f(x) = 2x + 1. (a) f(x) = 2. (b) f(x) = 5x. (d) f(x) = 2x 2 + x 1

1. Calcule a derivada da função dada usando a definição. (c) f(x) = 2x + 1. (a) f(x) = 2. (b) f(x) = 5x. (d) f(x) = 2x 2 + x 1 Lista de Eercícios de Cálculo I para os cursos de Engenharia - Derivadas 1. Calcule a derivada da função dada usando a definição. (a) f() = (b) f() = 5 (c) f() = + 1 (d) f() = + 1. O limite abaio representa

Leia mais

MAT Cálculo I - POLI Gabarito da P2 - A

MAT Cálculo I - POLI Gabarito da P2 - A MAT 45 - Cálculo I - POLI - 006 Gabarito da P - A Questão A) Calcule (.0) (a) lim ( cos() ) / (.0) (b) 0 ( ( π ) ) cos + e d (a) Tem-se, ( π/4, π/4) \ {0}: (cos ) / = ep( ln(cos )). Pondo f() =. ln(cos

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL. Prof. Rodrigo Carvalho

CÁLCULO DIFERENCIAL E INTEGRAL. Prof. Rodrigo Carvalho CÁLCULO DIFERENCIAL E INTEGRAL LIMITES Uma noção intuitiva de Limite Considere a unção () = 2 + 3. Quando assume uma ininidade de valores, aproimando cada vez mais de zero, 2 + 3 assume uma ininidade de

Leia mais

Material de Apoio. Roteiro para Esboçar uma Curva 1

Material de Apoio. Roteiro para Esboçar uma Curva 1 Universidade Federal Rural de Pernambuco Departamento de Matemática Disciplina: Cálculo M I Prof a Yane Lísle Material de Apoio Roteiro para Esboçar uma Curva A lista a seguir pretende servir como um guia

Leia mais

Derivadas e suas Aplicações

Derivadas e suas Aplicações Capítulo 4 Derivadas e suas Aplicações Ao final deste capítulo você deverá: Compreender taa média de variação; Enunciar a definição de derivada de uma função interpretar seu significado geométrico; Calcular

Leia mais

Estudar mudança no valor de funções na vizinhança de pontos.

Estudar mudança no valor de funções na vizinhança de pontos. Universidade Federal de Alagoas Faculdade de Arquitetura e Urbanismo Curso de Arquitetura e Urbanismo Disciplina: Fundamentos para a Análise Estrutural Código: AURB006 Turma: A Período Letivo: 007- Professor:

Leia mais

Cálculo Diferencial em

Cálculo Diferencial em Cálculo Diferencial em Definição de Derivada Seja f uma função real de variável real definida num intervalo aberto que contém c. Chama-se derivada de f em c a caso este limite eista. f c lim ffc c, c Esta

Leia mais

CÁLCULO I. Apresentar e aplicar a Regra de L'Hospital.

CÁLCULO I. Apresentar e aplicar a Regra de L'Hospital. CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o : Limites Innitos e no Innito. Assíntotas. Regra de L'Hospital Objetivos da Aula Denir ite no innito e ites innitos; Apresentar alguns tipos

Leia mais

MAT-2453 CÁLCULO DIFERENCIAL E INTEGRAL I - BCC Prof. Juan Carlos Gutiérrez Fernández

MAT-2453 CÁLCULO DIFERENCIAL E INTEGRAL I - BCC Prof. Juan Carlos Gutiérrez Fernández MAT-2453 CÁLCULO DIFERENCIAL E INTEGRAL I - BCC Prof. Juan Carlos Gutiérrez Fernández Lista 3: Introdução à Derivada, Limites e continuidade. Ano 207. Determine a função derivada e seu domínio para a função

Leia mais

O objeto fundamental deste curso são as funções de uma variável real. As funções surgem quando uma quantidade depende de outra.

O objeto fundamental deste curso são as funções de uma variável real. As funções surgem quando uma quantidade depende de outra. Universidade Federal Fluminense Departamento de Análise GAN0045 Matemática para Economia Professora Ana Maria Luz 00. Unidade Revisão de função de uma variável real O objeto fundamental deste curso são

Leia mais

CÁLCULO DIFERENCIAL 5-1 Para cada uma das funções apresentadas determine a sua derivada formando

CÁLCULO DIFERENCIAL 5-1 Para cada uma das funções apresentadas determine a sua derivada formando 5 a Ficha de eercícios de Cálculo para Informática CÁLCULO DIFERENCIAL 5-1 Para cada uma das funções apresentadas determine a sua derivada formando o quociente f( + h) f() h e tomando o ite quando h tende

Leia mais

Instituto de Matemática - IM/UFRJ Gabarito da Primeira Prova Unificada de Cálculo I Politécnica e Engenharia Química

Instituto de Matemática - IM/UFRJ Gabarito da Primeira Prova Unificada de Cálculo I Politécnica e Engenharia Química Página de 5 Questão : (3.5 pontos) Calcule: + Instituto de Matemática - IM/UFRJ Politécnica e Engenharia Química 3 2 + (a) 3 + 2 + + ; + (b) ; + (c) 0 +(sen )sen ; (d) f (), onde f() = e sen(3 + +). (a)

Leia mais

Volume de um gás em um pistão

Volume de um gás em um pistão Universidade de Brasília Departamento de Matemática Cálculo Volume de um gás em um pistão Suponha que um gás é mantido a uma temperatura constante em um pistão. À medida que o pistão é comprimido, o volume

Leia mais

AULA 13 Aproximações Lineares e Diferenciais (página 226)

AULA 13 Aproximações Lineares e Diferenciais (página 226) Belém, de maio de 05 Caro aluno, Nesta nota de aula você aprenderá que pode calcular imagem de qualquer unção dierenciável num ponto próimo de a usando epressão mais simples que a epressão original da.

Leia mais

Universidade Federal Fluminense. Matemática I. Professora Maria Emilia Neves Cardoso

Universidade Federal Fluminense. Matemática I. Professora Maria Emilia Neves Cardoso Universidade Federal Fluminense Matemática I Professora Maria Emilia Neves Cardoso Notas de Aula / º semestre de Capítulo : Limite de uma função real O conceito de ite é o ponto de partida para definir

Leia mais

7 Derivadas e Diferenciabilidade.

7 Derivadas e Diferenciabilidade. Eercícios de Cálculo p. Informática, 006-07 1 7 Derivadas e Diferenciabilidade. E 7-1 Para cada uma das funções apresentadas determine a sua derivada formando o quociente f( + h) f() h e tomando o ite

Leia mais

CÁLCULO I. 1 Assíntotas Oblíquas. Objetivos da Aula. Aula n o 19: Grácos.

CÁLCULO I. 1 Assíntotas Oblíquas. Objetivos da Aula. Aula n o 19: Grácos. CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 9: Grácos. Objetivos da Aula Denir e determinar as assíntotas oblíquas ao gráco de uma função, Utilizar o Cálculo Diferencial

Leia mais

5.7 Aplicações da derivada ao estudo das funções.

5.7 Aplicações da derivada ao estudo das funções. Capítulo V: Derivação 0.. 4. 7. tg( ) 0 tg( π ( + + ) sen( ) + ) sen( ) Resolução: cos( ) Repare que não eiste sen( ). + 5. ( e + ) 6. 0 π ( + cos( )) cos( ) sen( ) sen( ) Mas, e como 0, então 0 + + +

Leia mais

Apostila de Cálculo I

Apostila de Cálculo I Limites Diz-se que uma variável tende a um número real a se a dierença em módulo de -a tende a zero. ( a ). Escreve-se: a ( tende a a). Eemplo : Se, N,,,4,... quando N aumenta, diminui, tendendo a zero.

Leia mais

A Prática. Perfeição. Cálculo. William D. Clark, Ph.D e Sandra Luna McCune, Ph.D

A Prática. Perfeição. Cálculo. William D. Clark, Ph.D e Sandra Luna McCune, Ph.D A Prática Leva à Perfeição Cálculo William D. Clark, P.D e Sandra Luna McCune, P.D Rio de Janeiro, 01 Para Sirley e Donice. Vocês estão sempre em nossos corações. Sumário Prefácio i I Limites 1 1 O conceito

Leia mais

Curso de Verão Exemplos para o curso de

Curso de Verão Exemplos para o curso de Curso de Verão 006 Programa de Pós-Graduação em Matemática Aplicada DCCE - Departamento de Ciência da Computação e Estatística Universidade Estadual Paulista - UNESP Instituto de Biociências, Letras e

Leia mais

= 6 lim. = lim. 2x + 2 sin(x) cos(x) 4 sin(4x) 2 x cos(x) = lim. x + ln(x) cos ) ] 3x. 3 ln. = lim x 1 x +

= 6 lim. = lim. 2x + 2 sin(x) cos(x) 4 sin(4x) 2 x cos(x) = lim. x + ln(x) cos ) ] 3x. 3 ln. = lim x 1 x + UFRGS - PAG Cálculo - MAT05-0/ Lista 5-04/05/0 - Soluções.a ln + 0 + ln = + + 0 =.b sin8 0 sin4 = 0 8 cos8 4 cos4 =.c.d + sin 0 cos4 = 0 + sin cos 4 sin4 = 0 + cos sin 6 cos4 = 4 0 + sin e cos = 0 + e

Leia mais

A Segunda Derivada: Análise da Variação de Uma Função

A Segunda Derivada: Análise da Variação de Uma Função A Segunda Derivada: Análise da Variação de Uma Função Suponhamos que a função y = f() possua derivada em um segmento [a, b] do eio-. Os valores da derivada f () também dependem de, ou seja, a derivada

Leia mais

Capítulo 1 Funções reais de uma variável 1.3 Derivadas de funções definidas implicitamente

Capítulo 1 Funções reais de uma variável 1.3 Derivadas de funções definidas implicitamente 11-1-13 1.3 Derivadas de funções definidas implicitamente Uma equação do tipo f(,y) = nem sempre permite obter eplicitamente y como função de. Por eemplo, y 1 y 1 não é uma função y 1 y 1 y 1 y 1 3 1.3

Leia mais

Para ilustrar o conceito de limite, vamos supor que estejamos interessados em saber o que acontece à

Para ilustrar o conceito de limite, vamos supor que estejamos interessados em saber o que acontece à Limite I) Noção intuitiva de Limite Os limites aparecem em um grande número de situações da vida real: - O zero absoluto, por eemplo, a temperatura T C na qual toda a agitação molecular cessa, é a temperatura

Leia mais

de ponto para ponto. Por exemplo, consideremos o seguinte gráfico: (x 2, y 2 ) (x 4, y 4 ) x

de ponto para ponto. Por exemplo, consideremos o seguinte gráfico: (x 2, y 2 ) (x 4, y 4 ) x .3. Derivadas.3.1. Definição e Interpretação Geométrica Anteriormente já mostrámos como o coeficiente angular de uma recta - declive de uma recta - indica a taa à qual a recta sobe ou desce. para uma recta,

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Faculdade de Engenharias, Arquitetura e Urbanismo Universidade do Vale do Paraíba Cálculo Diferencial e Integral I Prof. Rodrigo Sávio Pessoa São José dos Campos 0 Sumário Tópico Tópico Tópico Tópico Tópico

Leia mais

= ; a = -1, b = 3. 1 x ; a = -1, b = 0. M > 0 é um número real fixo. Prove que quaisquer que sejam x, y em I temos f ( x) < x.

= ; a = -1, b = 3. 1 x ; a = -1, b = 0. M > 0 é um número real fixo. Prove que quaisquer que sejam x, y em I temos f ( x) < x. INSTITUTO DE MATEMÁTICA -UFBA DEPARTAMENTO DE MATEMÁTICA LIMITES E DERIVADAS MAT B a LISTA DE EXERCÍCIOS - 008. - Prof a Graça Luzia Dominguez Santos. Prove que entre duas raízes consecutivas de uma função

Leia mais

Cálculo I - Curso de Matemática - Matutino - 6MAT005

Cálculo I - Curso de Matemática - Matutino - 6MAT005 Cálculo I - Curso de Matemática - Matutino - 6MAT005 Prof. Ulysses Sodré - Londrina-PR, 17 de Abril de 008 - provas005.te TOME CUIDADO COM OS GRÁFICOS E DETALHES DA SUBSTITUIÇÃO UTILIZADA.....................................................................................................

Leia mais

Módulo 1 Limites. 1. Introdução

Módulo 1 Limites. 1. Introdução Módulo 1 Limites 1. Introdução Nesta disciplina você vai estudar o cálculo diferencial e integral e suas aplicações em diversos problemas relacionados à Economia. O conceito de limite é conceito mais básico

Leia mais

LIMITES DE FUNÇÕES REAIS DE UMA VARIÁVEL

LIMITES DE FUNÇÕES REAIS DE UMA VARIÁVEL BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL LIMITES DE FUNÇÕES REAIS DE UMA VARIÁVEL a Edição Rio Grande Editora da FURG 06 Universidade Federal do Rio

Leia mais

Faculdade de Economia Universidade Nova de Lisboa Primavera 2004/2005. Cálculo I. Caderno de Exercícios 4

Faculdade de Economia Universidade Nova de Lisboa Primavera 2004/2005. Cálculo I. Caderno de Exercícios 4 Faculdade de Economia Universidade Nova de Lisboa Primavera 2004/2005 Cálculo I Caderno de Eercícios 4 Limites, continuidade e diferenciabilidade de funções; fórmulas de Taylor e MacLaurin; estudo de funções.

Leia mais

Derivada de funções na forma paramétrica

Derivada de funções na forma paramétrica Derivada de funções na forma paramétrica Sejam ( t) y y( t) (1) duas funções da mesma variável t [a,b]. Tomando e y como as coordenadas de um ponto P, podemos dizer que a cada valor de t, corresponde um

Leia mais

Gabarito Primeira Prova Unificada de Cálculo /2. Engenharia e Engenharia Química. ), (1c) lim 12 x 3 x

Gabarito Primeira Prova Unificada de Cálculo /2. Engenharia e Engenharia Química. ), (1c) lim 12 x 3 x MUniversidade Federal do Rio de Janeiro INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA Gabarito Primeira Prova Unificada de Cálculo - 0/ a Questão: Calcule: (a Engenharia e Engenharia Química 4 (,

Leia mais

CÁLCULO LIMITE S ENGENHARIA

CÁLCULO LIMITE S ENGENHARIA CÁLCULO LIMITE S ENGENHARIA Confira as aulas em vídeo e eercícios 1 DEFINIÇÃO DE Imagine o seguinte eemplo: uma formiga está tentando chegar no ponto em = 3 andando pela curva definida pela função f()=²,

Leia mais

Unidade 5 Diferenciação Incremento e taxa média de variação

Unidade 5 Diferenciação Incremento e taxa média de variação Unidade 5 Diferenciação Incremento e taa média de variação Consideremos uma função f dada por y f ( ) Quando varia de um valor inicial de para um valor final de, temos o incremento em O símbolo matemático

Leia mais

CÁLCULO I. 1 Aproximações Lineares. Objetivos da Aula. Aula n o 16: Aproximações Lineares e Diferenciais. Regra de L'Hôspital.

CÁLCULO I. 1 Aproximações Lineares. Objetivos da Aula. Aula n o 16: Aproximações Lineares e Diferenciais. Regra de L'Hôspital. CÁLCULO I Prof Marcos Diniz Prof André Almeida Prof Edilson Neri Júnior Prof Emerson Veiga Prof Tiago Coelho Aula n o 6: Aproimações Lineares e Diferenciais Regra de L'Hôspital Objetivos da Aula Denir

Leia mais

Aula 22 O teste da derivada segunda para extremos relativos.

Aula 22 O teste da derivada segunda para extremos relativos. O teste da derivada segunda para extremos relativos. MÓDULO 2 - AULA 22 Aula 22 O teste da derivada segunda para extremos relativos. Objetivo: Utilizar a derivada segunda para determinar pontos de máximo

Leia mais

Aula 26 A regra de L Hôpital.

Aula 26 A regra de L Hôpital. MÓDULO - AULA 6 Aula 6 A regra de L Hôpital Objetivo Usar a derivada para determinar certos ites onde as propriedades básicas de ites, vistas nas aulas 3, 4, e 5, não se aplicam Referência: Aulas 3, 4,

Leia mais

Determinação de uma tangente para o gráfico de uma função. O coeficiente angular da reta tangente em P é

Determinação de uma tangente para o gráfico de uma função. O coeficiente angular da reta tangente em P é Revisão Determinação de uma tangente para o gráfico de uma função f '( x 0) = O coeficiente angular da reta tangente em P é Taxas de variação: derivada em um ponto A expressão abaixo é chamada de quociente

Leia mais

Resolução dos Exercícios sobre Derivadas

Resolução dos Exercícios sobre Derivadas Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva = 0 e = y = nos pontos onde Vamos determinar a reta tangente à curva y = nos pontos

Leia mais

Lista 8: Análise do comportamento de funções - Cálculo Diferencial e Integral I - Turma D. Professora: Elisandra Bär de Figueiredo

Lista 8: Análise do comportamento de funções - Cálculo Diferencial e Integral I - Turma D. Professora: Elisandra Bär de Figueiredo Lista 8: Análise do comportamento de funções - Cálculo Diferencial e Integral I - Turma D Professora: Elisandra Bär de Figueiredo 1. Seja f() = 5 + + 1. Justique a armação: f tem pelo menos uma raiz no

Leia mais

LIMITE. Para uma melhor compreensão de limite, vamos considerar a função f dada por =

LIMITE. Para uma melhor compreensão de limite, vamos considerar a função f dada por = LIMITE Aparentemente, a idéia de se aproimar o máimo possível de um ponto ou valor, sem nunca alcançá-lo, é algo estranho. Mas, conceitos do tipo ite são usados com bastante freqüência. A produtividade

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano.

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano. CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 4 09/2014 Zeros reais de funções Parte 1 Objetivo Determinar valores aproimados para as soluções (raízes) de equações da forma:

Leia mais

Ficha de Problemas n o 6: Cálculo Diferencial (soluções) 2.Teoremas de Rolle, Lagrange e Cauchy

Ficha de Problemas n o 6: Cálculo Diferencial (soluções) 2.Teoremas de Rolle, Lagrange e Cauchy Ficha de Problemas n o 6: Cálculo Diferencial soluções).teoremas de Rolle, Lagrange e Cauchy. Seja f) = 3 e. Então f é contínua e diferenciável em R. Uma vez que f) = +, f0) = conclui-se do Teorema do

Leia mais

UFRJ - Instituto de Matemática

UFRJ - Instituto de Matemática UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática www.pg.im.ufrj.br/pemat Mestrado em Ensino de Matemática Seleção 9 Etapa Questão. Determine se as afirmações abaio são verdadeiras

Leia mais

Limites: Noção intuitiva e geométrica

Limites: Noção intuitiva e geométrica Eemplo : f : R {} R, f sen a Gráfico de f b Ampliação do gráfico de f perto da origem Limites: Noção intuitiva e geométrica f Apesar de f não estar definida em, faz sentido questionar o que acontece com

Leia mais

O TEOREMA DO VALOR MÉDIO E APLICAÇÕES DAS DERIVADAS

O TEOREMA DO VALOR MÉDIO E APLICAÇÕES DAS DERIVADAS 14 O TEOREMA DO VALOR MÉDIO E APLICAÇÕES DAS DERIVADAS Gil da Costa Marques 14.1 Introdução 14. O crescimento/decrescimento de uma função num intervalo e os pontos de etremo 14.3 A concavidade do gráfico

Leia mais

Apostila 2: Matemática - Funções

Apostila 2: Matemática - Funções de 9 UNERJ - Centro Universitário de Jaraguá do Sul Curso: Administração / Ciências Contábeis Disciplina: Matemática Prof.: JOABLE Apostila : Matemática - Funções Conjuntos Numéricos Conjunto: conceito

Leia mais

(versão preliminar) exceto possivelmente para x = a. Dizemos que o limite de f(x) quando x tende para x = a é um numero L, e escrevemos

(versão preliminar) exceto possivelmente para x = a. Dizemos que o limite de f(x) quando x tende para x = a é um numero L, e escrevemos LIMITE DE FUNÇÕES REAIS JOSÉ ANTÔNIO G. MIRANDA versão preinar). Revisão: Limite e Funções Continuas Definição Limite de Seqüências). Dizemos que uma seqüência de números reais n convergente para um número

Leia mais

Quadro de Respostas Valor: 110 pontos Alternativa/Questão A B C D E. Rascunho

Quadro de Respostas Valor: 110 pontos Alternativa/Questão A B C D E. Rascunho UFJF ICE Departamento de Matemática Cálculo I Prova Opcional º Semestre Letivo de 04 9//04 FILA A Aluno (a): Matrícula: Turma: Instruções Gerais: - Preencher o quadro de respostas das questões de múltipla

Leia mais

AULA 16 Esboço de curvas (gráfico da função

AULA 16 Esboço de curvas (gráfico da função Belém, 1º de junho de 015 Caro aluno, Seguindo os passos dados você ará o esboço detalhado do gráico de uma unção. Para achar o zero da unção, precisamos de teorias que você estudará na disciplina Cálculo

Leia mais

SMA333 8a. Lista - séries de Taylor 07/06/2013

SMA333 8a. Lista - séries de Taylor 07/06/2013 SMA333 8a Lista - séries de Taylor 7/6/213 Definição Para qualquer n = 1, 2, 3,, se uma função f tiver todas as derivadas até ordem n em algum intervalo contendo a como ponto interior, então o polinômio

Leia mais

Limite e continuidade

Limite e continuidade Limite e continuidade Noção intuitiva de ite Considere a função f qualquer que seja o número real o Eemplo Se f ( ) Esta função está definida para todo R, isto é, f está bem definido, o valor ( ) o então

Leia mais

Cálculo I IM UFRJ Lista 1: Pré-Cálculo Prof. Marco Cabral Versão Para o Aluno. Tópicos do Pré-Cálculo

Cálculo I IM UFRJ Lista 1: Pré-Cálculo Prof. Marco Cabral Versão Para o Aluno. Tópicos do Pré-Cálculo Cálculo I IM UFRJ Lista : Pré-Cálculo Prof. Marco Cabral Versão 7.03.05 Para o Aluno O sucesso (ou insucesso) no Cálculo depende do conhecimento de tópicos do ensino médio que chamaremos de pré-cálculo.

Leia mais

Traçado do gráfico de uma função; otimização

Traçado do gráfico de uma função; otimização 15 Traçado do gráfico de uma função; otimização Sumário 15.1 Traçado do gráco de uma função.......... 15. Problemas de otimização............... 15 1 Unidade 15 Traçado do gráfico de uma função 15.1 Traçado

Leia mais

3 A Reta Tangente Definição: Seja y = f(x) uma curva definida no intervalo. curva y = f(x). A reta secante s é a reta que passa pelos pontos

3 A Reta Tangente Definição: Seja y = f(x) uma curva definida no intervalo. curva y = f(x). A reta secante s é a reta que passa pelos pontos 3 A Reta Tangente Definição: Seja y = f(x) uma curva definida no intervalo (a, b) Sejam P(p, f(p)) e Q(x, f(x)) dois pontos distintos da curva y = f(x). A reta secante s é a reta que passa pelos pontos

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ano 05 - a Fase Proposta de resolução GRUPO I. Escolhendo os lugares das etremidades para os dois rapazes, eistem hipóteses correspondentes a uma troca entre os rapazes.

Leia mais

DERIVADA. A Reta Tangente

DERIVADA. A Reta Tangente DERIVADA A Reta Tangente Seja f uma função definida numa vizinança de a. Para definir a reta tangente de uma curva = f() num ponto P(a, f(a)), consideramos um ponto vizino Q(,), em que a e traçamos a S,

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 4 Zeros reais de funções Parte 1 Objetivo Determinar valores aproimados para as soluções (raízes) de equações da forma: f

Leia mais

CONTINUIDADE DE FUNÇÕES REAIS DE UMA VARIÁVEL

CONTINUIDADE DE FUNÇÕES REAIS DE UMA VARIÁVEL BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL CONTINUIDADE DE FUNÇÕES REAIS DE UMA VARIÁVEL a Edição Rio Grande Editora da FURG 206 Universidade Federal

Leia mais

( ) ( ) 3 a Lista de Exercícios MAT CÁLCULO I. d x. d t. x d x

( ) ( ) 3 a Lista de Exercícios MAT CÁLCULO I. d x. d t. x d x a Lista de Eercícios MAT 0 - CÁLCULO I ) Utilizando o Teorema Fundamental do Cálculo, determine as seguintes integrais definidas: ) I = 7 0 d 6 + 9 ) I = d ) I = ) I = d t t + d ( 8 ) 6 0 5 ( ) 5) I =

Leia mais

Exercícios de Cálculo p. Informática, Ex 1-1 Nas alíneas seguintes use os termos inteiro, racional, irracional, para classificar

Exercícios de Cálculo p. Informática, Ex 1-1 Nas alíneas seguintes use os termos inteiro, racional, irracional, para classificar Eercícios de Cálculo p. Informática, 2006-07 Números Reais. E - Nas alíneas seguintes use os termos inteiro, racional, irracional, para classificar o número dado: 7 a) b) 6 7 c) 2.(3) = 2.33 d) 2 3 e)

Leia mais

Cálculo I (2015/1) IM UFRJ Lista 2: Limites e Continuidade Prof. Milton Lopes e Prof. Marco Cabral Versão Exercícios de Limite

Cálculo I (2015/1) IM UFRJ Lista 2: Limites e Continuidade Prof. Milton Lopes e Prof. Marco Cabral Versão Exercícios de Limite Eercícios de Limite. Eercícios de Fiação Cálculo I (05/) IM UFRJ Lista : Limites e Continuidade Prof. Milton Lopes e Prof. Marco Cabral Versão 30.03.05 Fi.: Considere o gráco de = f() esboçada no gráco

Leia mais

Rafael A. Rosales 29 de maio de Diferencial 1. 4 l Hôpital 3. 5 Série de Taylor 3 01.

Rafael A. Rosales 29 de maio de Diferencial 1. 4 l Hôpital 3. 5 Série de Taylor 3 01. Departamento de Computação é Matemática Cálculo I USP- FFCLRP Física Médica Rafael A. Rosales 9 de maio de 07 Sumário Diferencial Teorema do Valor Médio 3 Máimos e Mínimos. Gráficos 4 l Hôpital 3 5 Série

Leia mais

3 Cálculo Diferencial

3 Cálculo Diferencial Aula 6 26/0/206 (cont.) 3 Cálculo Diferencial Entramos agora num dos tópicos principais desta cadeira: o Cálculo Diferencial. usar derivadas como ferramentas no estudo de funções, em particular, cálculo

Leia mais

Resolução dos Exercícios Propostos no Livro

Resolução dos Exercícios Propostos no Livro Resolução dos Eercícios Propostos no Livro Eercício : Considere agora uma função f cujo gráfico é dado por y 0 O que ocorre com f() quando se aproima de por valores maiores que? E quando se aproima de

Leia mais

Derivada da função composta, derivada da função inversa, derivada da função implícita e derivada de funções definidas parametricamente.

Derivada da função composta, derivada da função inversa, derivada da função implícita e derivada de funções definidas parametricamente. Análise Matemática - 007/008.5.- Derivada da função composta, derivada da função inversa, derivada da função implícita e derivada de funções definidas parametricamente. Teorema.31 Derivada da Função Composta

Leia mais

Cálculo Diferencial e Integral I - LEIC

Cálculo Diferencial e Integral I - LEIC INSTITUTO SUPERIOR TÉCNICO Departamento de Matemática de Janeiro de Cálculo Diferencial e Integral I - LEIC ō Teste - Versão - Resolução. Indique uma primitiva para a função definida em ], e [ pela epressão

Leia mais

QUESTÕES ANPEC CÁLCULO A UMA VARIÁVEL 2 2., calcule a derivada dw dt t = 1.

QUESTÕES ANPEC CÁLCULO A UMA VARIÁVEL 2 2., calcule a derivada dw dt t = 1. QUESTÕES ANPEC CÁLCULO A UMA VARIÁVEL QUESTÃO Se ( ) a, e a, eamine as seguintes afirmações: () A função é crescente () A função d/d é crescente () lim ( ) () lim ( ) ( ) ( y) y Se, y, então (4) QUESTÃO

Leia mais

UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática Mestrado em Ensino de Matemática

UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática  Mestrado em Ensino de Matemática UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática www.pg.im.ufrj.br/pemat Mestrado em Ensino de Matemática Seleção 0 Etapa Questão. Considere f : [, ] R a função cujo gráfico

Leia mais

ANEXO A: Critérios para determinar o comportamento de uma função através do estudo da derivada.

ANEXO A: Critérios para determinar o comportamento de uma função através do estudo da derivada. ANEXO A: Critérios para determinar o comportamento de uma unção através do estudo da derivada. Vamos relembrar critérios que permitem determinar o comportamento de uma unção nas proimidades de um ponto

Leia mais

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-2453 Cálculo Diferencial e Integral I Escola Politécnica) Segunda Lista de Eercícios - Professor: Equipe de Professores EXERCÍCIOS. Calcule

Leia mais

CAP. 2 ZEROS REAIS DE FUNÇÕES REAIS

CAP. 2 ZEROS REAIS DE FUNÇÕES REAIS 5 CAP. ZEROS REAIS DE FUNÇÕES REAIS OBJETIVO: Estudo de métodos iterativos para resolução de equações não lineares. DEFINIÇÃO : Um nº real é um zero da função f() ou raiz da equação f() = 0 se f( )=0.

Leia mais

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ FUNDAMENTOS DE MATEMÁTICA PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR - 30/11/2014 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES:

Leia mais

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A - 009. A LISTA DE EXERCÍCIOS a Questão:. Para cada uma das funções seguintes, determine as derivadas indicadas: a) f(u) = u, u() =,

Leia mais

Zero de Funções ou Raízes de Equações

Zero de Funções ou Raízes de Equações Zero de Funções ou Raízes de Equações Um número ξ é um zero de uma função f() ou raiz da equação se f(ξ). Graficamente os zeros pertencentes ao conjunto dos reais, IR, são representados pelas abscissas

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA MAT A02 CÁLCULO A ª LISTA ( QUESTÕES DE PROVAS )

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA MAT A02 CÁLCULO A ª LISTA ( QUESTÕES DE PROVAS ) UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA MAT A0 CÁLCULO A 009 ª LISTA ( QUESTÕES DE PROVAS ) Regra da cadeia ( f ( g( h(( t( )))))) f ( g( h(( t( ))))) g ( h(( t(

Leia mais

2a. Lista de Exercícios

2a. Lista de Exercícios UFPR - Universidade Federal do Paraná Departamento de Matemática Prof. José Carlos Eidam CM04 - Cálculo I - Turma C - 0/ a. Lista de Eercícios Teoremas do valor intermediário e do valor médio. Seja h()

Leia mais

Lista 6 Gráficos: Pontos críticos, máximos e mínimos, partes crescentes e decrescentes. L Hôpital. Diferencial. Polinômio de Taylor

Lista 6 Gráficos: Pontos críticos, máximos e mínimos, partes crescentes e decrescentes. L Hôpital. Diferencial. Polinômio de Taylor Departamento de Computação é Matemática Cálculo I USP- FFCLRP Prof. Rafael A. Rosales 5 de março de 014 Lista 6 Gráficos: Pontos críticos, máimos e mínimos, partes crescentes e decrescentes. L Hôpital.

Leia mais

Teste de Aferição de Competências

Teste de Aferição de Competências UNIVERSIDADE DE SANTIAGO Departamento de Ciências da Saúde, Ambiente e Tecnologias Teste de Aferição de Competências Matemática Escola Superior de Tecnologias e Gestão Praia Tlf. +38 6 96 50 Fa: +38 6

Leia mais

CÁLCULO I - MAT Estude a função dada com relação à concavidade e pontos de inflexão. Faça o esboço do gráfico de cada uma das funções.

CÁLCULO I - MAT Estude a função dada com relação à concavidade e pontos de inflexão. Faça o esboço do gráfico de cada uma das funções. UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e da Natureza Centro Interdisciplinar de Ciências da Natureza CÁLCULO I - MAT0009 9 a Lista de eercícios.

Leia mais

12. Diferenciação Logarítmica

12. Diferenciação Logarítmica 2. Diferenciação Logarítmica A diferenciação logarítmica é uma técnica útil para diferenciar funções compostas de potências, produtos e quocientes de funções. Esta técnica consiste em executar os seguintes

Leia mais

Cálculo Diferencial e Integral I 1 o Sem. 2015/16 - LEAN, LEMat, MEQ FICHA 8

Cálculo Diferencial e Integral I 1 o Sem. 2015/16 - LEAN, LEMat, MEQ FICHA 8 Instituto Superior Técnico Departamento de Matemática Cálculo Diferencial e Integral I o Sem. 05/6 - LEAN, LEMat, MEQ FICHA 8 Regra de Cauchy. Estudo de funções. a. a) b 0 é uma indeterminação do tipo

Leia mais

Aula 4. Zeros reais de funções Parte 1

Aula 4. Zeros reais de funções Parte 1 CÁLCULO NUMÉRICO Aula 4 Zeros reais de funções Parte 1 Objetivo Determinar valores aproimados para as soluções (raízes) de equações da forma: f 0 sendo f uma função real dada. Cálculo Numérico 3/60 APLICAÇÃO

Leia mais

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-2453 Cálculo Diferencial e Integral I (Escola Politécnica) Segunda Lista de Eercícios - Professor: Equipe de Professores EXERCÍCIOS.

Leia mais

MAT140 - Cálculo I - Máximos e Mínimos Locais e Globais, Pontos Críticos e o Teste da Derivada Primeira

MAT140 - Cálculo I - Máximos e Mínimos Locais e Globais, Pontos Críticos e o Teste da Derivada Primeira MAT140 - Cálculo I - Máximos e Mínimos Locais e Globais, Pontos Críticos e o Teste da Derivada Primeira 4 de novembro de 2015 Vimos que a derivada de uma função em um ponto é a inclinação da reta tangente

Leia mais

Noções de Cálculo Diferencial e Integral para Tecnólogos. João Carlos Vieira Sampaio Guillermo Antonio Lobos Villagra

Noções de Cálculo Diferencial e Integral para Tecnólogos. João Carlos Vieira Sampaio Guillermo Antonio Lobos Villagra Noções de Cálculo Diferencial e Integral para Tecnólogos João Carlos Vieira Sampaio Guillermo Antonio Lobos Villagra 9 de dezembro de 20 Sumário APRESENTAÇÃO 9 Funções e suas derivadas. Velocidade média

Leia mais

(x 2,y 2 ) (x 4,y 4 ) x

(x 2,y 2 ) (x 4,y 4 ) x 2.3. Derivadas 2.3.1. Definição e Interpretação Geométrica Anteriormente já mostrámos como o coeficiente angular de uma recta - declive de uma recta - indica a taa à qual a recta sobe ou desce. para uma

Leia mais

Itens para resolver (CONTINUAÇÃO)

Itens para resolver (CONTINUAÇÃO) PREPARAR EXAME NACINAL Itens para resolver (CNTINUAÇÃ) e. Seja g a função, de domínio IR\{}, definida por g(). Sem usar a calculadora, determine, se eistirem, as equações das assíntotas do gráfico de g.

Leia mais

Lista de Exercícios do capítulo 4

Lista de Exercícios do capítulo 4 Lista de Eercícios do capítulo 4 1. Eplique a diferença entre um mínimo local e um mínimo absoluto. 2. Nos gráficos abaio, diga se a função tem um máimo local, um mínimo local, um máimo absoluto, um mínimo

Leia mais

Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial II. Aula nº 5 do plano de trabalho nº 5

Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial II. Aula nº 5 do plano de trabalho nº 5 Escola Secundária com 3º ciclo D. Dinis º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial II Aula nº 5 do plano de trabalho nº 5 Resolver os eercícios 03, 0, 05, 0 e 6 das páginas 95 e 0.

Leia mais

26 CAPÍTULO 4. LIMITES E ASSÍNTOTAS

26 CAPÍTULO 4. LIMITES E ASSÍNTOTAS Capítulo 4 Limites e assíntotas 4.1 Limite no ponto Considere a função f(x) = x 1 x 1. Observe que esta função não é denida em x = 1. Contudo, fazendo x sucientemente próximo de 1 (mais não igual a1),

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano.

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano. CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 4 Zeros reais de funções Parte 1 Objetivo Determinar valores aproimados para as soluções (raízes) de equações da forma: f

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 4 Zeros reais de funções Parte 1 Objetivo Determinar valores aproimados para as soluções (raízes) de equações da forma: f

Leia mais