Funções - Segunda Lista de Exercícios

Tamanho: px
Começar a partir da página:

Download "Funções - Segunda Lista de Exercícios"

Transcrição

1 Funções - Segunda Lista de Exercícios Módulo - Trigonometria e Funções Trigonométricas. Converta de graus para radianos: (a) 30 (b) 0 (c) 45 (d) 35 (e) 70 (f) 70 (g) 5 (h) 700 (i) 080 (j) 36. Converta de radianos para graus: (a) 5π 3 (b) π (c) 3π (d) π 36 (e) 0π (f) 3π 3. Um caçador está sentado numa plataforma construída numa árvore a 30 metros do chão. Ele vê um tigre sob um ângulo de 30 abaixo da horizontal. A que distância está o tigre? 4. Considere um triângulo com lados a, b e c, onde os ângulos opostos a estes lados são Â, B e Ĉ, respectivamente. Prove a lei dos senos onde: sen  a = sen B b = senĉ. c (Dica: Calcule a área deste triângulo considerando cada um dos lados como a base. Estas serão todas iguais.) 5. Considere um triângulo ABC, com lados a, b e c e ângulo θ como mostra a figura. Com base nele, prove a lei dos cossenos: (Dica: use o Teorema de Pitágoras.) a = b + c bc cosθ,

2 6. Deduza fórmulas em termos de senθ e cosθ de: (a) sen 3θ (b) cos3θ (c) cos4θ (d) sen 4θ 7. Prove as seguintes identidades trigonométricas (a) + tg t = sec t (c) sen(a ± b) = sen a cosb ± senb cos a (d) cos(a ± b) = cos a cosb sen a senb tg a + tgb (e) tg(a + b) = tg a tgb (b) + cotg t = cossec t (f) cosθ = cos θ sen θ = cos θ = sen θ (g) sen θ = cosθ (h) cos θ = + cosθ 8. Utilize o que foi verificado no exercício anterior para mostrar que: (a) sen θ sen φ = [cos(θ φ) cos(θ + φ)] (b) cosθ cosφ = [cos(θ φ) + cos(θ + φ)] (c) sen θ cosφ = [sen(θ + φ) + sen(θ φ)] ( ) ( ) θ + φ θ φ (d) sen θ + sen φ = sen cos ( ) ( ) θ + φ θ φ (e) sen θ sen φ = cos sen ( ) ( ) θ + φ θ φ (f) cosθ + cosφ = cos cos ( ) ( ) θ + φ θ φ (g) cosθ cosφ = sen sen 9. Resolva: (a) cos x + 3 = 5cos x (b) cos7x = cos3x (c) sen x + cos x = 0 (d) sen 3x sen x + sen x = 0 0. Faça o estudo completo das funções cossecante e cotangente, definidas respectivamente por: (a) f : t cossec t = sen t (b) f : t cotg t = cos t sen t.

3 . Sem utilizar calculadora, complete a seguinte tabela, marcando quando a função não estiver definida. θ 0 π 6 senθ cosθ tanθ secθ cotgθ cossec θ π 4 π 3 π π 3 3π 4 π 5π 4 3π 0π 6. Qual é a diferença entre sen x, sen x e sen(sen x)? Expresse cada uma das três funções em forma de composição. 3. Utilizando uma calculadora, calcule o valor da função para valores de θ dados em radianos. (a) senθ, onde θ = 0; ;,5; -,6; π; π ; e (b) cosθ, onde θ = 0; ;,5; 3; 580; -78; π, π ; e 3π. (c) tgθ, onde θ = 0; ;,5; π; π 4 ; e 000. (d) cotgθ, onde θ = ;,5; π ; π 3 ; π 4 ; e 700. (e) secθ, onde θ = 0; ;,5; π; π 4 ; e 000. (f) cossecθ, onde θ = ;,5; π ; π 3 ; π 4 ; e Expresse as seguintes funções em termos de funções seno e/ou cosseno somente (a) tgθ (b) cos θ (c) sen θ (d) cossec θ (e) cotg θ 5. Se os ângulos de um triângulo medem x, x + e x + (em radianos), encontre x. 6. Um satélite foi lançado em uma órbita circular ao redor da Terra. Se sua distância do centro da Terra é de aproximadamente km, que distância ele percorre quando varre um ângulo de π 4, com respeito ao centro da Terra? 3

4 7. A seguir temos o triângulo ABC, onde AB = BC = C A = e AM = MC. Com base nele encontre: (a) O comprimento B M (c) senθ, cosθ, senβ, cosβ, tgθ e tgβ. (b) θ e β em radianos. 8. Dado um triângulo ABC, se Ĉ = π/ e  = B, encontre  em radianos e calcule cos Â, sen  e tg Â. (Dica: Aqui  representa o ângulo no vértice A, B o ângulo no vértice B, e Ĉ representa o ângulo no vértice C. Faça um desenho.) 9. Calcule os seguintes valores das funções em cada ângulo. (Dica: Use identidades trigonométricas.) (a) sen( π 3 + π 4 ) (b) cos( π 3 + π 4 ) (c) cos( π + π) (d) sen(3π) + cos(3π) (e) sen( π ) 0. Em t = 0 dois carros se encontram na intersecção de duas estradas retas, com velocidades v e v. As duas estradas se cruzam formando um ângulo θ. (a) Qual é a distância entre os carros t horas depois deles passarem pelo cruzamento? (b) Calcule a distância entre os carros hora após passarem pelo cruzamento se: (a) v = v e θ = π 3 (b) v = v e θ = π 4 (c) v = v e θ = 0 (d) v = v e θ = π 3. Dadas as funções f e g a seguir, obtenha f g e g f e seus respectivos domínios de definição: (a) f (x) = 9 9x e g (x) = cotg x. (b) f (x) = cos x e g (x) = 4x 4

5 . Encontre funções f e g de modo que a função h possa ser escrita como h = f g. Nem f nem g devem ser a função identidade. (a) h(x) = senx (b) h(x) = sen x (c) h(x) = sen x (d) h(x) = sen(cos x) (e) h(x) = sen 3x (f) h(x) = sen x (g) h(x) = cos x (h) h(x) = tan(x + ) (i) h(x) = sen x (j) h(x) = cossec x (k) h(x) = 3sen x + sen x + (l) h(x) = sen(cos x) 3. Dizer como as funções f (x) = x, g (x) = 4 x e h(x) = tg x devem ser compostas para que se obtenha a função h(x) = 4 tg x. 4. Escavações arqueológicas encontraram um antigo aparelho que, ao que tudo indica, era utilizado para tocar LP s. As marcações de velocidade do aparelho eram 33, 45 e 78 rotações por minuto. Em cada caso, qual é o período do movimento? 5. Calcular o período das funções (a) tg4x (b) sen(x ) (c) tg( π 4 x). (d) cos( 3 x ) (e) cossec( π 7 x) (f) cotg(7b x) (onde B > 0). 6. Esboce o gráfico das seguintes funções, identificando cuidadosamente as amplitudes e períodos. Não use calculadora gráfica ou computador. (a) y = 3sen x (b) y = 3senx (c) y = 3senθ. (d) y = 4cosx (e) y = 4cos( 4 t) (f) y = 5 sent 7. Relacione as funções abaixo com os gráficos da figura, explicando os por quês. (a) y = cos(t π ) (b) y = cos t (c) y = cos(t + π ). 5

6 8. Nos itens a seguir, encontre uma possível fórmula para cada gráfico 9. A profundidade de um tanque oscila, conforme uma senóide, uma vez a cada 6 horas, em torno de uma profundidade média de 7 metros. Se a profundidade mínima é de 5,5 metros e a máxima é de 8,5 metros, encontre uma fórmula para a profundidade em função do tempo, medido em horas. 30. Uma população de animais varia de forma senoidal entre um mínimo de 700 em o de janeiro e um máximo de 900, em o de julho. (a) Esboce o gráfico da população versus tempo. (b) Encontre uma fórmula para a população em função do tempo t, medido em meses desde o início do ano. 3. A voltagem V, de um ponto de luz residencial é dada em função do tempo t (em segundos), por V = V 0 cos(0πt). (a) Qual é o período da oscilação? (b) O que V 0 representa? (c) Esboce o gráfico de V versus t, identificando os eixos. 6

7 3. É dado que duas funções trigonométricas têm período π e que seus gráficos cortam-se em x = 3,64, mas não é dado nada mais. (a) Você sabe dizer se os gráficos dessas funções se cortam em algum outro valor de x, positivo e menor? Se for o caso, qual é esse valor? (b) Encontre um valor de x, maior que 3,64, para o qual os gráficos se cortam. (c) Encontre um valor negativo de x para o qual os gráficos se cortam. 33. (a) Usando uma calculadora gráfica, ou um computador, encontre o período de sen3t + 3cos t. (b) Qual é o período de sen3t? E de cos t? (c) Use a resposta da parte (b) para justificar sua resposta da parte (a). 34. (a) Usando uma calculadora gráfica, ou um computador, encontre o período de sen4x + 3cosx. (b) Dê a resposta exata ao item anterior (como um múltiplo de π). (c) Determine o período de sen4x e de cosx e use esses valores para explicar sua resposta na parte (a). 35. Se m e n são dois números naturais, obtenha o período da função cos(mx) + sen(nx). 36. Defina e trace o gráfico das inversas das seguintes restrições principais de funções trigonométricas (não dê resultados aproximados): (a) cos : [0,π] [,] (b) cotg :]0,π[ R (c) sec : [0, π [ ] π,π] [,+ [ ], ] (d) cossec : [ π,0[ ]0, π ] ],] ], [ 37. Calcule: (a) arcsen (b) arccos (c) arctg (d) arctg 3 (e) arcsen (f) arccos 3 (g) arctg0 (h) arcsen (i) arcsen0 (j) arccos (k) arccos0 (l) arccotg( ) (m) arctg( ) (n) arccotg 3 (o) arcsen( ) (p) arccos 7

8 38. Prove que sen : [ π, π ] R é estritamente crescente. 39. Prove que tg x é estritamente crescente em ] π, π [. 40. Para simplificar a expressão cos(arcsen x), começamos colocando θ = arcsen x, com as restrições π θ π e x. Como senθ = x, pela definição de arcsen, podemos construir um triângulo retângulo e calcular o terceiro lado pelo Teorema de Pitágoras: Observe que cos(arcsen x) é cosθ. Desta forma, o desenho nos mostra que: cos(arcsen x) = x Usando uma idéia semelhante a essa, simplifique e calcule: (a) cos(arcsen x) (b) sen(arccos x) (c) cos(arctg x) (d) cos(arcsec x) (e) tg(arccos x) (f) sen(arccos ) (g) cos(arcsen ) (h) tg(arccos0) Módulo - Funções Quadráticas 4. Fatore as seguintes expressões quadráticas (a) x 3x e x + x (b) πx + 3π e 7x + 5x (c) x + x e πx π (d) x 9 e x 49 (e) x 3 e x (f) x e x π (g) x + x + 4 e x + x + 6 (h) x + x + 4 e x x 6 (i) x x + 3 e x 3x 40 (j) 3x 5x e 8x + x (k) x 5bx 3b e x 4x (l) x 4 x + e x 6 4x 3 8

9 4. Utilizando uma calculadora gráfica, ou um computador, estude o comportamento do gráfico de p(x) = ax + bx + c nas seguintes situações: (a) Dê valores fixos para b e c (por exemplo, b = e c = ) e varie a. Fazendo isso, o que acontece com o gráfico de p(x)? (b) Dê valores fixos para a e b (por exemplo, b = 3 e b = 5) e varie c. Descreva o que acontece com o gráfico de p(x). (c) Dê valores fixos para a e c (por exemplo, a = e c = 3) e varie b. Descreva o que acontece com o gráfico de p(x). 43. Observe como fazemos para completar os quadrados das funções p(x) = x + x + 0 e q(x) = x x. p(x) = x + x + 0 p(x) = x + x p(x) = (x + ) + 9 p(x) = x x p(x) = x ( ( ) x + ( ) p(x) = x x p(x) = ( x ) 4 ) Utilize essa idéia para completar os quadrados das funções: (a) p(x) = x + 5x + (b) p(x) = x + 3x + (c) p(t) = 3t 5t + (d) p(t) = t t (e) p(x) = x + 3x (f) p(x) = x + 4x 3 (g) p(x) = 4x + x + 0 (h) p(x) = 6x + 6x (i) p(x) = x + 4b + c (j) p(x) = ax + ax + b (k) p(x) = π(x x) (l) p(x) = 4( x 3x + ) 44. Resolva as seguintes equações completando os quadrados: (a) 3x + 6x = 0 (b) 3x(3x ) = 6x 5 (c) y 5y 4 = 0 (d) 6u + 7u 3 = 0 (e) x x + 9 = 0 (f) 4z 4z = 0 (g) p(p 4) = 5 (h) (x ) + 3x 5 = 0 (i) (3x ) + (x + ) = 0 (j) 5y 5y + 9 = Deduza a fórmula para a solução da equação quadrática ax + bx + c = 0. 9

10 46. Use a fórmula para a solução da equação quadrática para resolver as seguintes equações: (a) 5x + 6x = 0 (b) x = 8x + 5 (c) x(x 3) = x 6 (d) 6x 7x + = 0 (e) x = 3(x ) + 3 (f) x 6x = 0 (g) 00y = 0y + (h) x + bx c = 0 (i) x 6ax + 3a = 0 (j) πu + (π )u π = 0 (k) x(x + 4) = 4(x + ) (l) 3x = 5(x ) 47. Determine o valor de b em B = {y R y b} de modo que a função f : R B definida por f (x) = x 4x + 6 seja sobrejetora. 48. Determine o maior valor de a em A = {x R x a} de modo que a função f : A R definida por f (x) = x 3x + 4 seja injetora. 49. Dada a função quadrática p(x) = ax +bx+c, prove que as coordenadas (x v, y v ) do vértice da parábola são dadas por x v = b a e y v = 4a, onde = b 4ac é o discriminante de p(x) = Determinar os vértices e a imagem das parábolas (a) y = 4x 4 (b) y = x + 3x (c) y = x 5x + (d) y = x + x + 3 (e) y = x + x 9 (f) y = x 7 3 x 5. Qual deve ser o valor de c para que o vértice da parábola y = x 8x + c esteja sobre o eixo dos x? 5. Qual deve ser o valor de k para que y = x kx + 8 tenha duas raízes reais e iguais? 53. Dentre todos os números reais x e z tais que x+z = 8 determine aqueles cujo produto é máximo. 0

11 54. Dentre todos os números de soma 6, determine aqueles cuja soma dos quadrados é mínima. 55. Determine o retângulo de área máxima localizado no primeiro quadrante, com dois lados nos eixos cartesianos e um vértice sobre a reta y = 4x Um arame de comprimento l deve ser cortado em dois pedaços. Um pedaço será usado para formar um círculo, e outro, um quadrado. Onde se deve cortar o arame, para que as áreas das figuras sejam as maiores possíveis? 57. Em uma reação química, um catalisador é uma substância que acelera a reação mas que, ela mesma, não sofre transformação. Se o produto de uma reação é um catalisador, a reação é chamada de autocatalítica. Suponha que a taxa, r, de uma dada reação autocatalítca é proporcional à quantidade da substância original que ainda permanece vezes a quantidade de produto, p, produzido. Se a quantidade inicial da substância original é A e a quantidade que ainda permanece é A p: (a) Exprima r em função de p. (b) Qual é o valor de p quando a reação está ocorrendo de forma mais rápida? 58. Para as seguintes funções f, encontre o discriminante de f (x) = 0 e determine se as raízes são reais e diferentes, reais e iguais, ou não existem. Esboce o gráfico de f (x) sem desenhar mais de quatro pontos. (a) f (x) = 4x 4x + (b) f (x) = z + z + (c) f (x) = 4x x 5 (d) f (x) = 7x 5x (e) f (x) = x x + 4 (f) f (x) = x ax (g) f (x) = 3x + πx + 4 (h) f (x) = x ax + a (i) f (x) = 3x x 3 (j) f (x) = 9x x Determine os valores de K para os quais as equações tem raízes reais e iguais. (a) 5x 4x (5 + K ) = 0 (b) (K + )x + 3x + (K + 3) = 0 (c) x + 3 K (x ) = 0 (d) (K + )x + 5K x = 0 (e) x x( + 3K ) + 7 = 0 (f) (K )x + x + (K + ) = 0

12 60. Determinar os valores de m para que a função quadrática f (x) = (m )x + (m + 3)x + m tenha dois zeros reais e distintos. 6. Determinar os valores de m para que a equação do segundo grau (m + )x + (3 m)x + (m ) = 0 tenha raizes reais. 6. Determinar os valores de m para que a função f (x) = mx +(m +)x +(m +) tenha um zero real duplo. 63. Determinar os valores de m para que a equação mx + (m )x + (m ) = 0 não tenha raizes reais. 64. Prove as relações de Girard para equações do segundo grau: se ax +bx +c = 0 possui raízes x e x, então x + x = b a e x x = c a. 65. Mostre que uma equação do segundo grau que tem x e x como raízes é a equação x Sx + P = 0, onde S = x + x e P = x x. 66. Obtenha uma equação do segundo grau que possua as raízes: (a) e 3 (b) e 3 (c) 0,4 e 5 (d) e (e) + 3 e Determine m na função f (x) = 3x 4x + m de modo que se tenha Im(f ) = [,+ [. 68. Cada uma das expressões a seguir pode ser escrita na forma a c ± (d x + b), sendo que c é uma fração. Observe como fazemos isso para 4x + x. Cha-

13 mando q(x) = 4x + x temos: q(x) = 4(x x 4 ) q(x) = ( 4 x ( ( 8) x + ( 8) ) ) 8 q(x) = 4 ( (x 8 ) ) 64 q(x) = 4 ( 64 (x 8 )) já que 4 = ( ) 4 q(x) = 64 (x 8 ) q(x) = 64(x 8 ) 64 q(x) = 64(x 4 8 ) q(x) = 4 ( 8(x 8 )) q(x) = 4 (8x ) Utilize essa idéia nos itens a seguir: (a) x + 3x + (b) 3t + 5t + (c) x + 3x (d) 6x + 6x. (e) x + x + (f) x + x 4 (g) 6x 4x (h) 4x x (i) 6 + x x (j) x x + 8 (k) 9x 4x 69. Dada a função quadrática p(x) = ax + bx + c = 0, prove que: (a) Se b > 0 o gráfico de p(x) corta o eixo dos y com a parte crescente. (b) Se b < 0 o gráfico de p(x) corta o eixo dos y com a parte decrescente. 70. Considere o Polinômio f (n) = n + n + 4. Observe que f () = 43 é primo, f () = 47 é primo, f (3) = 53 é primo. Será que para todos os números n N, f (n) será um número primo? Prove ou desprove esta afirmação. 7. Prove que somando-se ao produto de quatro números naturais consecutivos o resultado será sempre um quadrado perfeito. 3

14 7. Suponha que a, b e c sejam constantes com a > 0. Seja f a função definida por f (x) = ax + bx + c com x b. Mostre que a função inversa é dada por a f (x) = b + b 4ac + 4ax 4ac b para x. a 4a 73. À medida que a altura referente ao nível do mar aumenta, o peso de um astronauta diminui até atingir a imponderabilidade. Se o peso w do astronauta a ( ) 6400 altura x km acima do nível do é dado pela expressão w = p, onde x p é o peso do astronauta ao nível do mar, a que altitude seu peso é inferior a 0,p? 74. Se a distância de frenagem d (em metros) de um carro a velocidade de c km/h é dada, aproximadamente, por d = v + v, para quais velocidades o espaço de 0 frenagem é inferior a 0 m? 75. Para que um medicamento faça o efeito desejado a sua concentração na corrente sanguínia deve ser acima do nível terapêutico mínimo. Se a concentração c desse medicamento t horas após ser ingerido é dada por c = 0t t + 4 mg/l e o seu nível terapeêutico mínimo é 40 mg/l, determine a partir de que instante esse nível é excedido. 76. Considerando que a resistência elétrica R (em Ohms) para um fio de metal puro está relacionado com a temperatura T (em ºC) pela fórmula R = R 0 ( + αt ) onde α, R 0 são constantes positivas. Pede-se: (a) Para que temperatura tem-se que R = R 0 (b) Se a resistência é considerada 0 para T = 73 C, determine o valor de α (c) Se a prata tem resistência,5 ohms a 0 C a que temperatura sua resistência atinge,0 ohms? 77. As dosagens para adultos e para crianças devem ser especificadas nos produtos farmacêuticos. Duas das fórmulas para se especificar as dosagens para crianças a partir das dosagens para adultos são a de Cowling, dada por y= 4 (t + )α e a de Friend, dada por y = tα onde α representa a dosagem para 5 adulto, em mg, e t representa a idade da criança, em anos. 4

15 (a) Se α = 00 mg, represente graficamente as expressões das dosagens infantis usando as fórmulas de Cowling e de Friend. (b) Para que idade as duas fórmulas especificam a mesma dosagem? 78. O IMC (índice de Massa Corporal) é definido como: φ = massa (altura) Uma pessoa é considerada obesa quando o índice é maior que 30. Segundo dados publicados na revista Veja de /0/004, dos obesos brasileiros 3% são mulheres, 7% homens e 5% são crianças. Pelo critério anterior você se considera obeso? A partir de que peso você passaria a ser considerado obeso? A partir de que altura uma pessoa de 00 kg deixa de ser considerada obesa? Uma pessoa de,75 m passa a ser considerada obesa a partir de quantos quilos? 79. Expresse o volume C do tronco de um cone reto de altura h e raio base r em termos de h e r. 80. Expresse o volume C de um cilindro reto de altura x inscrito no cone reto de altura h e raio da base r. Módulo 3 - Polinômîos e Funções Racionais 8. Se f (x) = x, g (x) = x +x 4 e h(x) = x +x 4 +x 6 e k(x) = 3x 6 6x 4 +x encontre números reais a, b e c tais que k = a f + bg + ch. 8. Obtenha α R de modo que os polinômios f (x) = x 4 +0x 3 4αx +4 e g (x) = x + x + verifiquem a condição f = g. 83. Em cada caso, determine um polinômio do segundo grau f (x) de modo que: (a) f (0) =, f () = 4 e f ( ) = 0. (b) f () = 0 e f (x) = f (x ) para todo x 84. (a) Se f (x) e g (x) são dois polinômios, prove que existem polinômios q(x) e r (x) tais que f (x) = g (x) q(x) + r (x), onde o grau de r (x) é menor que o grau de g (x). Explique o que isso significa em termos de divisão de polinômios. 5

16 (b) Mostre que se a é uma raiz de um polinômio f (x), isto é, f (a) = 0, então f (x) = (x a)q(x), Onde q(x) é um polinômio com grau um a menos que f (x). 85. Nos itens a seguir, fatore o polinômio o máximo possível. (a) p(x) = x 3 + 3x + 4x 3 (b) p(y) = y 3 + 3y 8y + 3 (c) p(x) = x 3 + 3x 6x + (d) p(x) = x 4 5x 0x 6. (e) p(x) = x 3 7x + 8x + (f) p(x) = x 3 7 (g) p(x) = x 4 (i) p(x) = x 4 x 3 4x 8x (h) p(y) = x3 3 x x + 3 (j) p(x) = x 4 + 3x 3 x 3x (k) p(x) = x 4 + 7x 3 (l) p(x) = x 4 (m) p(x) = x Cada um dos itens a seguir pode ser escrito na forma p(x), onde p e q são q(x) ( polinômios. Veja como fazemos isso para a expressão y x x ) : y ( y x x ) = ( ) y x = y y x x y x y x y (a) x y ( (c) x + (e) x 3x x 3 (g) x + x x (i) ) ( + y + ) 3 ( (b) 4x y x + y ) 4 (d) x y 3. + ( + t) (f) + t ( + t ) (h) x + 4x + x (x + ) 36 (3x 3 ) + (j) x 4 (x3 ) + x 3 ( (k) + x ) ( 4x (l) x + ) x x (m) x + (n) x + x y x 6

17 87. Em cada item efetue as divisões de polinômios indicadas, conforme ilustra o exemplo a seguir: x + 3x + = x x (x ) (x ) (a) x (d) (b) 4x + 4x + x x x (e) 3x x + 3 (g) x + x x 3 3 (j) x(x 9) (m) x + x Nos itens a seguir: (h) (c) 5 + t 5 t (f) 4x + 3x x + x (i) x3 x + 3 (k) x3 3x + x + 3 (n) x3 x (l) x5 + x + Encontre todos os valores de x para os quais a função não está definida. Expresse a função f (x) na forma p(x), onde p e q são polinômios. Então q(x) fatore e simplifique onde for possível. Determine para quais valores de x se tem f (x) = 0. Determine para quais valores de x se tem f (x) > 0, e para quais se tem f (x) < 0. (a) x x (b) 4x x (c) 0 5 t (d) x (e) 3 3 x + 3 (g) + x (f) (3x ) (h) + x + (i) x3 x 3 3 (j) x + 3 x(x 9) 7 (k) x + 3 x + 3x 9 (l) 9x 3 x 3 9x + (m) x 3x x + 3 7

18 89. Dividindo o polinômio f (x) por x 3x + 5 obtemos quociente x + e resto 3x 5. Determine f (x). (Há várias possibilidades.) 90. Determine os números a e b de modo que o polinômio f (x) = x 4 3ax 3 + +(a b)x + bx + (a + 3b) seja divisível por g (x) = x 3x Determinar p e q de modo que x 4 + seja divisível por x + px + q. 9. Se x 3 + px + q é divisível por x + ax + b e por x + r x + s prove que b = r (a + r ). 93. Determinar a de modo que a divisão de x 4 ax 3 +(a +)x +3a + por x tenha resto Determinar um polinômio do terceiro grau que se anula em x = e que dividido por x +, x + e x tenha resto Qual deve ser o valor do coeficiente c para que os restos da divisão de x 0 + ax 4 + bx + cx + d por x + e x sejam iguais? 96. As divisões de um polinômio f (x) por x, x e x 3 são exatas. O que se pode dizer do grau de f? 97. O resto da divisão de um poliômio f (x) por x + e x + 4 produz restos 0 e, respectivamente. Qual o resto da divisão de f (x) por (x + )(x + 4)? 98. O gráfico de cada uma das figuras abaixo representa um polinômio. Para cada um deles determine: (a) qual o menor grau possível do polinômio. (b) O coeficiente líder do polinômio é positivo ou negativo? (O coefciente líder é o coeficiente da potência mais alta de x.) 8

19 99. Esboce o gráfico dos seguintes polinômios: (a) f (x) = (x + )(x )(x 3) (b) f (x) = 5(x 4)(x 5) (c) f (x) = 5(x 4)(5 x ) (d) f (x) = 5(x 4) (x 5) 00. Para que inteiros positivos n, o polinômio f (x) = x n é uma função (a) par (b) ímpar 0. Que polinômios são pares? E ímpares? Existem polinômios que não são nem pares nem ímpares? 0. Se f (x) = ax + bx + c, o que você pode dizer de a, b e c se: (a) (,) está no gráfico de f (x)? (b) (,) é o vértice do gráfico de f (x)? (c) A intersecção do gráfico com o eixo dos y é (0,6)? (d) Encontre uma função quadrática que satisfaça todas as três condições anteriores. 03. Encontre um polinômio cujas raízes sejam -, -, e 4, todas com multiplicidade. 04. Em cada caso, encontre um polinômio com coeficientes inteiros cujas raízes sejam: (a) + e (b) 3 + e 3 9

20 (c) 6, 5 e Para cada um dos itens a seguir: encontre uma possível fórmula para o gráfico; obtenha os intervalos aproximados onde a função é crescente e onde é decrescente. 06. Encontre os polinômios cúbicos que representam o gráfico de: 07. Transladando o gráfico de x 3 encontre o polinômio cúbico com gráfico semelhante ao da figura 0

21 08. Encontre todas as raízes racionais dos seguintes poinômios (a) f (x) = x 3 x x (b) f (x) = x (c) f (x) = x 3 + x 6 x (d) f (x) = 3x 4 7x Quais as possíveis raízes inteiras da equação x 3 + 4x + x 4 = 0? 0. Resolva a equação x 3 x x + = 0.. O gráfico de uma função racional é dado pela figra abaixo: Se f (x) = g (x)/h(x) com g (x) e h(x) ambas funções quadráticas, obtenha as fórmulas para g (x) e h(x). (Há várias possibilidades.). Determine uma condição necessária e suficiente para que f (x) = a 0 + a x + a x b 0 + b x + b x seja uma função constante, onde a 0,b 0, a,b, a,b são não nulos. 3. (a) Calcule as assíntotas (verticais e horizontais) e esboçe o gráfico de f (x) = x x. (b) Mostre que f é uma função injetora em seu domínio e que f (x) = f (x). 4. Encontre as assíntotas e esboce o gráfico de: (a) f (x) = (x ) (b) f (x) = x (c) f (x) = x (d) f (x) = x3 x x (e) f (x) = 3x x + Atenção: Nos itens (d) e (e) há assíntotas inclinadas. Nesses casos faça primeiro a divisão do polinômio para depois traçar o gráfico. Confira seus esboços com um programa de computador.

22 5. Encontre as assíntotas e esboce o gráfico de f (x) = x3 x x + x Um terreno é delimitado na forma de um retângulo com área 44 m. (a) Escreva uma expressão para o merímetro P como uma função do comprimeto x. (b) Esboce um gráfico da função perímetro e determine, aproximadamente, a partir do gráfico, as dimensões nas quais o perímetro é mínimo. 7. A figura a seguir ilustra o gráfico de h(x). Com base nele faça o que se pede e responda à pergunta: (a) Esboçe o gráfico de y = h (x), e de y = h(x). (b) O que acontece com a assíntota quando você esboça o gráfico da inversa? 8. Construa o gráfico de f (x) = x 3 + x e, a partir dele, obtenha o número de raízes reais de f (x) = Quantas são as raízes da equação x 3 0x + 5x = 0 no intervalo [0,3[? 0. Determine α de modo que f (x) = x 3 + x + 5x + α tenha pelo menos uma raiz no intervalo ],0[.. Dizemos que um número é algébrico se ele é a raiz de um polinômio com coeficientes inteiros. Prove que os seguintes números são algébricos: (a) (b) 3 (c) 3 + (d) 3 + (e) 3 +

23 . Mostre que o número α = é inteiro. (Dica: construa 9 9 um polinômio tendo α como raiz, e mostre que todas suas raízes são inteiras.) 3. Desafio. Indicamos por Q[x] o conjunto dos polinômios de todos os graus na variável x, com coeficientes racionais. Chamamos um subconjunto I Q[x] de ideal se: para todos os p(x), q(x) I tem-se p(x) + q(x) I. para todos os f (x) Q[x] e p(x) I tem-se f (x)p(x) I Prove que se I é um ideal de Q[x] existe um polinômio h(x) de modo que todo elemento de I pode ser obtido multipicando h(x) por algum polinômio de Q[x]. Módulo 4 - Ligações entre Ramanujam e os Radicais na Índia - Somente Para os Corajosos. 4. Prove diretamente que: (a) = + 5 (b) = 5 (c) = + (d) = 5. Utilizando polinômios, mostre que = 6. Para quais números positivos b o número 3 + b + 3 b é um inteiro? 7. A seguinte identidade foi estabelecida nos trabalhos em teoria de números do matemático indiano Srinivasa Ramanujan, em 94: ( ) 3 3 / ( = ) 3 Para prová-la siga os passos: (a) Prove que para valores adequados de a se tem ( (a + 4) 3 a + ( a) 3 ) / a 3 a = 3 3 3

24 (b) Substitua a = 5 e obtenha a expressão de Ramanujan, apresentada no início. (c) Substituindo um valor adequado para a, obtenha também a identidade ( ) / ( = ) 3 8. (a) Para valores adequados de a, prove que ( (a + ) 3 ) / 4a + ( 4a) = 9 3 a 3 4a 3 (b) Utilize essa fórmula para provar a seguinte identidade de Ramanujan: ( 3 3 ) / ( 00 = ) Para todo número real a, prove que { (3a + ) + (3 a) 5 a 5 5 a 3 } /3 = + 5 a 5 a Utilize isso para mostrar que ( ) / = Para todo número real a, prove que ( (a 7a + ) + (6a 3) 3 a + (6 3a) 3 a ) /3 = 3 a 3 a + Utilize isso para mostrar que ( ) 3 /3 3 4 = Se g 5 = mostre que 5 + g + g 3 = 0 + g Desafio: Em homenagem ao aniversário do nascimento de Ramanujan, um artigo foi publicado, onde aparecia a inscrição: À memória de Ramanujan nos ( 3 ( ) ( ) ( ( ) ( ) ) ) / anos de seu nascimento. Que número é esse? Prove que ele é inteiro. 4

Funções - Terceira Lista de Exercícios

Funções - Terceira Lista de Exercícios Funções - Terceira Lista de Exercícios Módulo 1 - Trigonometria e Funções Trigonométricas 1. Converta de graus para radianos: a) 0 b) 10 c) 45 d) 15 e) 170 f) 70 g) 15 h) 700 i) 1080 j) 6. Converta de

Leia mais

Funções - Quarta Lista de Exercícios

Funções - Quarta Lista de Exercícios Funções - Quarta Lista de Exercícios Módulo 1 - Funções Trigonométricas 1. Converta de graus para radianos: (a) 30 (b) 10 (c) 45 (d) 135 (e) 170 (f) 70 (g) 15 (h) 700 (i) 1080 (j) 36. Converta de radianos

Leia mais

Funções - Terceira Lista de Exercícios

Funções - Terceira Lista de Exercícios Funções - Terceira Lista de Exercícios Módulo 1 - Trigonometria e Funções Trigonométricas 1. Converta de graus para radianos: (a) 0 (b) 10 (c) 45 (d) 15 (e) 170 (f) 70 (g) 15 (h) 700 (i) 1080 (j) 6. Converta

Leia mais

Lista Dentre os conjuntos a seguir, distingua quais são intervalos, representando-os com as notações adotadas.

Lista Dentre os conjuntos a seguir, distingua quais são intervalos, representando-os com as notações adotadas. UFPR - Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Matemática MA - Números e Funções Reais - PROFMAT Prof. Zeca Eidam Lista Equações e inequações. Prove que: a) x 0 b) x = 0

Leia mais

Processo Seletivo Estendido 2017

Processo Seletivo Estendido 2017 Processo Seletivo Estendido 07 Professor: Fernando de Ávila Silva Departamento de Matemática - UFPR. Converta de graus para radianos: a 0 b 0 c 5 d 5 e 70 f 70 g 5 h 700 i 080 j. Converta de radianos para

Leia mais

Processo Seletivo Estendido 2016 LISTA FUNÇ~OES - 6

Processo Seletivo Estendido 2016 LISTA FUNÇ~OES - 6 Processo Seletivo Estendido 0 LISTA FUNÇ~OES - Professor: Fernando de Ávila Silva Departamento de Matemática - UFPR Esta lista foi inicialmente elaborada pelo professor Aleandre Trovon UFPR. A presente

Leia mais

Processo Seletivo Estendido 2016 LISTA FUNÇÕES - 2

Processo Seletivo Estendido 2016 LISTA FUNÇÕES - 2 Processo Seletivo Estendido 06 LISTA FUNÇÕES - Professor: Fernando de Ávila Silva Departamento de Matemática - UFPR Esta lista foi inicialmente elaborada pelo professor Alexandre Trovon UFPR) A presente

Leia mais

Funções - Segunda Lista de Exercícios

Funções - Segunda Lista de Exercícios Funções - Segunda Lista de Exercícios Módulo - Exponenciais e Potências. Nos itens a seguir escreva a expressão dada na forma p/q, onde p e q são números inteiros. Por exemplo: 4 + 4 = 4 + a) 3 3 b) c)

Leia mais

Funções - Segunda Lista de Exercícios

Funções - Segunda Lista de Exercícios Funções - Segunda Lista de Exercícios Recomendações Nesta lista de exercícios há problemas algébricos e também de modelagem matemática. Em ambas as situações o objetivo é recordar e aprofundar o que foi

Leia mais

(d) Quais das sentenças abaixo são verdadeiras? Explique sua resposta. (a) 3 IR (b) IN IR (c) Z IR. IR Q (i) 3 2

(d) Quais das sentenças abaixo são verdadeiras? Explique sua resposta. (a) 3 IR (b) IN IR (c) Z IR. IR Q (i) 3 2 LISTA - 1 1 Números Reais 1. Expresse cada número como decimal: (a) 7 10 (b) 2 5 (c) 9 15 (d) 7 8 (e) 17 20 (f) 4 11 (g) 8 7 (h) 56 14 2. Expresse cada número decimal como uma fração na forma mais reduzida

Leia mais

Índice. AULA 6 Integrais trigonométricas 3. AULA 7 Substituição trigonométrica 6. AULA 8 Frações parciais 8. AULA 9 Área entre curvas 11

Índice. AULA 6 Integrais trigonométricas 3. AULA 7 Substituição trigonométrica 6. AULA 8 Frações parciais 8. AULA 9 Área entre curvas 11 www.matematicaemexercicios.com Integrais (volume ) Índice AULA 6 Integrais trigonométricas 3 AULA 7 Substituição trigonométrica 6 AULA 8 Frações parciais 8 AULA 9 Área entre curvas AULA Volumes 3 www.matematicaemexercicios.com

Leia mais

Pre-calculo 2013/2014

Pre-calculo 2013/2014 . Números reais, regras básicas de cálculo com fracções, expoentes e radicais Sumário: Número reais, regras básicas de cálculo com fracções, expoentes e radicais. Ler secções. e. do livro adoptado.. Pre-calculo

Leia mais

Extensão da tangente, cossecante, cotangente e secante

Extensão da tangente, cossecante, cotangente e secante Extensão da tangente, cossecante, cotangente e secante Definimos as funções trigonométricas tgθ = senθ cosθ para θ (k+1)π, onde k é inteiro. Note que os ângulos do tipo θ = (k+1)π secθ = 1 cosθ, são os

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Trigonometria. Iris Lima - Engenharia da produção

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Trigonometria. Iris Lima - Engenharia da produção CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 018. Trigonometria Iris Lima - Engenharia da produção Definição Relação entre ângulos e distâncias; Origem na resolução de problemas práticos relacionados

Leia mais

MATEMÁTICA. Questões de 01 a 04

MATEMÁTICA. Questões de 01 a 04 GRUPO 1 TIPO A MAT. 5 MATEMÁTICA Questões de 01 a 04 01. Considere duas circunferências concêntricas em C, conforme figura, em que a externa representa o círculo trigonométrico e a interna, o velocímetro,

Leia mais

Simulado ITA. 3. O número complexo. (x + 4) (1 5x) 3x 2 x + 5

Simulado ITA. 3. O número complexo. (x + 4) (1 5x) 3x 2 x + 5 Simulado ITA 1. E m relação à teoria dos conjuntos, considere as seguintes afirmativas relacionadas aos conjuntos A, B e C: I. Se A B e B C então A C. II. Se A B e B C então A C. III. Se A B e B C então

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Trigonometria 1. Danielly Guabiraba- Engenharia Civil

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Trigonometria 1. Danielly Guabiraba- Engenharia Civil CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 018.1 Trigonometria 1 Danielly Guabiraba- Engenharia Civil Definição A palavra trigonometria é de origem grega, onde: Trigonos = Triangulo e Metrein = Mensuração

Leia mais

Funções Primeira Lista de Exercícios

Funções Primeira Lista de Exercícios Recomendações Funções 0 - Primeira Lista de Exercícios Nesta lista de exercícios há problemas algébricos e também de modelagem matemática. Em ambas as situações o objetivo é recordar e aprofundar o que

Leia mais

Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática. MTM Pré-cálculo

Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática. MTM Pré-cálculo Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática MTM3100 - Pré-cálculo 14 a lista de exercícios (0/11/017 a 01/1/017) 1 Resolva as equações abaixo

Leia mais

Modelos Matemáticos: Uma Lista de Funções Essenciais

Modelos Matemáticos: Uma Lista de Funções Essenciais Modelos Matemáticos: Uma Lista de Funções Essenciais Campus Francisco Beltrão Disciplina: Professor: Jonas Joacir Radtke Um modelo matemático é a descrição matemática de um fenômeno do mundo real, como

Leia mais

MAT111 - Cálculo I - IF TRIGONOMETRIA. As Funçoes trigonométricas no triângulo retângulo

MAT111 - Cálculo I - IF TRIGONOMETRIA. As Funçoes trigonométricas no triângulo retângulo MAT111 - Cálculo I - IF - 010 TRIGONOMETRIA As Funçoes trigonométricas no triângulo retângulo Analisando a figura a seguir, temos que os triângulos retângulos OA 1 B 1 e OA B, são semelhantes, pois possuem

Leia mais

Acadêmico(a) Turma: Capítulo 5: Trigonometria. Definição: Todo triângulo que tenha um ângulo de 90º (ângulo reto)

Acadêmico(a) Turma: Capítulo 5: Trigonometria. Definição: Todo triângulo que tenha um ângulo de 90º (ângulo reto) 1 Acadêmico(a) Turma: 5.1. Triangulo Retângulo Capítulo 5: Trigonometria Definição: Todo triângulo que tenha um ângulo de 90º (ângulo reto) Figura 1: Ângulos e catetos de um triangulo retângulo. Os catetos

Leia mais

LISTA DE EXERCICIOS TRIÂNGULOS QUAISQUER. 1) Na figura ao abaixo calcule o valor da medida x. 2) No triângulo abaixo, determine as medidas x e y.

LISTA DE EXERCICIOS TRIÂNGULOS QUAISQUER. 1) Na figura ao abaixo calcule o valor da medida x. 2) No triângulo abaixo, determine as medidas x e y. LISTA DE EXERCICIOS TRIÂNGULO RETÂNGULO 1) Um caminhão sobe uma rampa inclinada de 10º em relação ao plano horizontal. Se a rampa tem 30 m de comprimento, a quantos metros o caminhão se eleva, verticalmente

Leia mais

Fig.6.1: Representação de um ângulo α.

Fig.6.1: Representação de um ângulo α. 6. Trigonometria 6.1. Conceitos Iniciais A palavra trigonometria vem do grego [trigōnon = "triângulo", metron "medida"], ou seja, está relacionada com as medidas de um triângulo, sendo estas medidas de

Leia mais

Aula 5 - Soluções dos Exercícios Propostos

Aula 5 - Soluções dos Exercícios Propostos Aula 5 - Soluções dos Exercícios Propostos Trigonometria I Solução. : (a A cada um minuto completado, o ponteiro dos segundos percorre uma volta completa de π radianos. Isso se o ponteiro dos segundos

Leia mais

Exercícios de Coordenadas Polares Aula 41

Exercícios de Coordenadas Polares Aula 41 Revisão - Métodos de Integração e Exercícios de Coordenadas Polares Aula 41 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 24 de Junho de 2014 Primeiro Semestre de 2014 Turma

Leia mais

LISTA DE EXERCÍCIOS. Trigonometria no Triângulo Retângulo e Funções Trigonométricas

LISTA DE EXERCÍCIOS. Trigonometria no Triângulo Retângulo e Funções Trigonométricas LISTA DE EXERCÍCIOS Pré-Cálculo UFF GMA 09 Trigonometria no Triângulo Retângulo e Funções Trigonométricas [0] (* Em sala de aula vimos como usar um quadrado e um triângulo equilátero para obter os valores

Leia mais

CM Funções 2013 Primeira Lista de Exercícios

CM Funções 2013 Primeira Lista de Exercícios CM 8 - Funções 03 Primeira Lista de Exercícios Recomendações Nesta lista de exercícios há problemas algébricos e também de modelagem matemática. Em ambas as situações o objetivo é recordar e aprofundar

Leia mais

Ana Carolina Boero. Página: Sala Bloco A - Campus Santo André

Ana Carolina Boero.   Página:  Sala Bloco A - Campus Santo André Funções de uma variável real a valores reais E-mail: ana.boero@ufabc.edu.br Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Funções de uma variável real a valores

Leia mais

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A - 009. A LISTA DE EXERCÍCIOS a Questão:. Para cada uma das funções seguintes, determine as derivadas indicadas: a) f(u) = u, u() =,

Leia mais

1. O raio de uma esfera está aumentando a uma taxa de 4 mm/s. Quão rápido o volume da esfera está aumentando quando o diâmetro for 80 mm?

1. O raio de uma esfera está aumentando a uma taxa de 4 mm/s. Quão rápido o volume da esfera está aumentando quando o diâmetro for 80 mm? MAT 001 1 ō Sem. 016 IMC UNIFEI Lista 4: Aplicações da Derivação 1. O raio de uma esfera está aumentando a uma taxa de 4 mm/s. Quão rápido o volume da esfera está aumentando quando o diâmetro for 80 mm?.

Leia mais

Exercícios sobre Trigonometria

Exercícios sobre Trigonometria Universidade Federal Fluminense Campus do Valonguinho Instituto de Matemática e Estatística Departamento de Matemática Aplicada - GMA Prof Saponga uff Rua Mário Santos Braga s/n 400-40 Niterói, RJ Tels:

Leia mais

Lista 8 - Bases Matemáticas

Lista 8 - Bases Matemáticas Lista 8 - Bases Matemáticas Funções - Parte Funções Quadráticas, Exponenciais, Logarítmicas e Trigonométricas Funções Quadráticas 1 Esboce o gráfico das seguintes funções, indicando em quais intervalos

Leia mais

1. Polinómios e funções racionais

1. Polinómios e funções racionais Um catálogo de funções. Polinómios e funções racionais Polinómios e funções racionais são funções que se podem construir usando apenas as operações algébricas elementares. Recordemos a definição: Definição

Leia mais

UNIVERSIDADE GAMA FILHO

UNIVERSIDADE GAMA FILHO UNIVERSIDADE GAMA FILHO Pró-Reitoria de Ciências Exatas e Tecnologia CÁLCULO BÁSICO Notas de Aula Simone Dutra Ramos Resumo Estas notas de aula têm por finalidade apresentar de forma clara e didática todo

Leia mais

CÁLCULO I. Reconhecer, através do gráco, a função que ele representa; (f + g)(x) = f(x) + g(x). (fg)(x) = f(x) g(x). f g

CÁLCULO I. Reconhecer, através do gráco, a função que ele representa; (f + g)(x) = f(x) + g(x). (fg)(x) = f(x) g(x). f g CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 03: Operações com funções. Funções Polinominais, Racionais e Trigonométricas Objetivos da Aula Denir operações com funções; Apresentar algumas

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema I Geometria no Plano e no Espaço II

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema I Geometria no Plano e no Espaço II ESCOLA SECUNDÁRIA COM º CICLO D DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema I Geometria no Plano e no Espaço II Ficha de trabalho nº 4 1 Resolva o exercício 11 da página 80 do seu manual Considere

Leia mais

1. Arcos de mais de uma volta. Vamos generalizar o conceito de arco, admitindo que este possa dar mais de uma volta completa na circunferência.

1. Arcos de mais de uma volta. Vamos generalizar o conceito de arco, admitindo que este possa dar mais de uma volta completa na circunferência. UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Trigonometria II Prof.: Rogério

Leia mais

Questão 1 (UFMG) Sendo A = 88 o 20', B = 31 o 40' e C = radianos, a expressão A + B - C é igual a: a) radianos b) 116 o 40' ;

Questão 1 (UFMG) Sendo A = 88 o 20', B = 31 o 40' e C = radianos, a expressão A + B - C é igual a: a) radianos b) 116 o 40' ; APOSTILAS (ENEM) VOLUME COMPLETO Exame Nacional de Ensino Médio (ENEM) 4 VOLUMES APOSTILAS IMPRESSAS E DIGITAIS Questão 1 (UFMG) Sendo A = 88 o 20', B = 31 o 40' e C = radianos, a expressão A + B - C é

Leia mais

1.1. Expressão geral de arcos com uma mesma extremidade Expressão geral de arcos com uma mesma extremidade

1.1. Expressão geral de arcos com uma mesma extremidade Expressão geral de arcos com uma mesma extremidade UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA 1.1. Expressão geral de arcos

Leia mais

CICLO TRIGONOMÉTRICO

CICLO TRIGONOMÉTRICO TRIGONOMETRIA CICLO TRIGONOMÉTRICO DEFINIÇÃO O Círculo Trigonométrico ou ciclo Trigonométrico é um recurso criado para facilitar a visualização das proporções entre os lados dos triângulos retângulos.

Leia mais

CUFSA - FAFIL Graduação em Matemática TRIGONOMETRIA (Resumo Teórico)

CUFSA - FAFIL Graduação em Matemática TRIGONOMETRIA (Resumo Teórico) 1 INTRODUÇÃO CUFSA - FAFIL Graduação em Matemática TRIGONOMETRIA (Resumo Teórico) ARCOS: Dados dois pontos A e B de uma circunferência, definimos Arco AB a qualquer uma das partes desta circunferência

Leia mais

1 35. b) c) d) 8. 2x 1 8x 4. 3x 3 8x 8. 4 tgα ˆ MAN é igual a 4. . e) Sendo x a medida do segmento CN, temos a seguinte figura:

1 35. b) c) d) 8. 2x 1 8x 4. 3x 3 8x 8. 4 tgα ˆ MAN é igual a 4. . e) Sendo x a medida do segmento CN, temos a seguinte figura: 7. Considere um retângulo ABCD em que o comprimento do lado AB é o dobro do comprimento do lado BC. Sejam M o ponto médio de BC e N o ponto médio de CM. A tangente do ângulo MAN ˆ é igual a a) 5. b) 5.

Leia mais

1. A imagem da função real f definida por f(x) = é a) R {1} b) R {2} c) R {-1} d) R {-2}

1. A imagem da função real f definida por f(x) = é a) R {1} b) R {2} c) R {-1} d) R {-2} 1. A imagem da função real f definida por f(x) = é R {1} R {2} R {-1} R {-2} 2. Dadas f e g, duas funções reais definidas por f(x) = x 3 x e g(x) = sen x, pode-se afirmar que a expressão de (f o g)(x)

Leia mais

PROFORM Programa de Formação Diferenciada Curso Introdutório de Matemática para Engenharia CIME

PROFORM Programa de Formação Diferenciada Curso Introdutório de Matemática para Engenharia CIME PROFORM Programa de Formação Diferenciada Curso Introdutório de Matemática para Engenharia CIME 2012.2 Parte II Kerolaynh Santos e Tássio Magassy Engenharia Civil Identidades Trigonométricas Definição:

Leia mais

Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática. MTM Pré-cálculo

Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática. MTM Pré-cálculo Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática MTM3100 - Pré-cálculo 14 a lista complementar de exercícios (0/11/017 a 01/1/017 1 Seja x [ 1,

Leia mais

Funções Trigonométricas8

Funções Trigonométricas8 Licenciatura em Ciências USP/Univesp FUNÇÕES TRIGONOMÉTRICAS 8 137 TÓPICO Gil da Costa Marques 8.1 Trigonometria nos Primórdios 8. Relações Trigonométricas num Triângulo Retângulo 8..1 Propriedades dos

Leia mais

UNIVERSIDADE ESTADUAL VALE DO ACARAÚ. 2 a Lista de Exercícios - Matemática Básica II Professor Márcio Nascimento

UNIVERSIDADE ESTADUAL VALE DO ACARAÚ. 2 a Lista de Exercícios - Matemática Básica II Professor Márcio Nascimento UNIVERSIDADE ESTADUAL VALE DO ACARAÚ Coordenação de Matemática a Lista de Exercícios - Matemática Básica II - 015.1 Professor Márcio Nascimento 1. Encontre a medida em radianos do ângulo θ, sendo θ o ângulo

Leia mais

EXERCÍCIOS ADICIONAIS

EXERCÍCIOS ADICIONAIS EXERCÍCIOS ADICIONAIS Capítulo Conjuntos numéricos e os números reais (x ) y Simplifique a expressão (assumindo que o denominador não é zero): 4 x y 6x A y 8x B y 8x C 4 y 6x D y Use a notação de intervalo

Leia mais

MATEMÁTICA. Questões de 01 a 12

MATEMÁTICA. Questões de 01 a 12 GRUPO 5 TIPO A MAT. 1 MATEMÁTICA Questões de 01 a 12 01. Um circo com a forma de um cone circular reto sobre um cilindro circular reto de mesmo raio está com a lona toda furada. O dono do circo, tendo

Leia mais

Objetivos. Expressar o vértice da parábola em termos do discriminante e dos

Objetivos. Expressar o vértice da parábola em termos do discriminante e dos MÓDULO 1 - AULA 17 Aula 17 Parábola - aplicações Objetivos Expressar o vértice da parábola em termos do discriminante e dos coeficientes da equação quadrática Expressar as raízes das equações quadráticas

Leia mais

2a. Lista de Exercícios

2a. Lista de Exercícios UFPR - Universidade Federal do Paraná Departamento de Matemática Prof. José Carlos Eidam CM04 - Cálculo I - Turma C - 0/ a. Lista de Eercícios Teoremas do valor intermediário e do valor médio. Seja h()

Leia mais

1. Trigonometria no triângulo retângulo

1. Trigonometria no triângulo retângulo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Trigonometria I Prof.: Rogério

Leia mais

TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS

TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS 1 TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS Aula 8 Funções Trigonométricas Professor Luciano Nóbrega 2º Bimestre GABARITO: 1) 20 m TESTANDO OS CONHECIMENTOS 1 (UFRN) Observe a figura a seguir e determine a

Leia mais

A Matemática no Vestibular do ITA. Material Complementar: Coletânea de Questões Isoladas ITA 1970

A Matemática no Vestibular do ITA. Material Complementar: Coletânea de Questões Isoladas ITA 1970 A Matemática no Vestibular do ITA Material Complementar: Coletânea de Questões Isoladas ITA 1970 Essas 24 questões foram coletadas isoladamente em diversas fontes bibliográficas. Seguindo sugestão de uma

Leia mais

Profs. Alexandre Lima e Moraes Junior 1

Profs. Alexandre Lima e Moraes Junior  1 Raciocínio Lógico-Quantitativo para Traumatizados Aula 08 Trigonometria. 8. Trigonometria... 8.. Introdução... 8.. Razões Trigonométricas em um Triângulo Retângulo...8 8... Seno, Cosseno, Tangente e Cotangente...8

Leia mais

Prova 3 Matemática. N ọ DE INSCRIÇÃO:

Prova 3 Matemática. N ọ DE INSCRIÇÃO: Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta

Leia mais

MÓDULO 45 TRIGONOMETRIA II. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. 1. Considere a equação. (3 2 cos 2 x) 1 + tg 2. 6 tg = 0.

MÓDULO 45 TRIGONOMETRIA II. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. 1. Considere a equação. (3 2 cos 2 x) 1 + tg 2. 6 tg = 0. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. Considere a equação TRIGONOMETRIA II ( cos ) + tg MÓDULO 5 tg = 0. a) Determine todas as soluções no intervalo [0, [. b) Para as soluções

Leia mais

Prova 3 Matemática. N ọ DE INSCRIÇÃO:

Prova 3 Matemática. N ọ DE INSCRIÇÃO: Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta

Leia mais

Prova 3 Matemática. N ọ DE INSCRIÇÃO:

Prova 3 Matemática. N ọ DE INSCRIÇÃO: Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta

Leia mais

E-books PCNA. Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 6 TRIGONOMETRIA

E-books PCNA. Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 6 TRIGONOMETRIA E-books PCNA Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 6 TRIGONOMETRIA 1 MATEMÁTICA ELEMENTAR CAPÍTULO 6 SUMÁRIO APRESENTAÇÃO -------------------------------------------- 3 6. Trigonometria---------------------------------------------4

Leia mais

NOTAÇÕES. : inversa da matriz M : produto das matrizes M e N : segmento de reta de extremidades nos pontos A e B

NOTAÇÕES. : inversa da matriz M : produto das matrizes M e N : segmento de reta de extremidades nos pontos A e B NOTAÇÕES R C : conjunto dos números reais : conjunto dos números complexos i : unidade imaginária i = 1 det M : determinante da matriz M M 1 MN AB : inversa da matriz M : produto das matrizes M e N : segmento

Leia mais

Nome do aluno: N.º: Para responder aos itens de escolha múltipla, não apresente cálculos nem justificações e escreva, na folha de respostas:

Nome do aluno: N.º: Para responder aos itens de escolha múltipla, não apresente cálculos nem justificações e escreva, na folha de respostas: Teste de Matemática A 018 / 019 Teste N.º 1 Matemática A Duração do Teste (Caderno 1+ Caderno ): 90 minutos 11.º Ano de Escolaridade Nome do aluno: N.º: Turma: Este teste é constituído por dois cadernos:

Leia mais

a a a a a a c c c Trigonometria I Trigonometria I E dessa semelhança podemos deduzir que:

a a a a a a c c c Trigonometria I Trigonometria I E dessa semelhança podemos deduzir que: UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA. Trigonometria no triângulo

Leia mais

Relembrando: Ângulos, Triângulos e Trigonometria...

Relembrando: Ângulos, Triângulos e Trigonometria... Relembrando: Ângulos, Triângulos e Trigonometria... Este texto é apenas um resumo. Procure estudar esses assuntos em um livro apropriado. Ângulo é a região de um plano delimitada pelo encontro de duas

Leia mais

Resolvendo inequações: expressões com desigualdades (encontrar os valores que satisfazem a expressão)

Resolvendo inequações: expressões com desigualdades (encontrar os valores que satisfazem a expressão) R é ordenado: Se a, b, c R i) a < b se e somente se b a > 0 (a diferença do maior com o menor será positiva) ii) se a > 0 e b > 0 então a + b > 0 (a soma de dois números positivos é positiva) iii) se a

Leia mais

TRIGONOMETRIA. AO VIVO MATEMÁTICA Professor Haroldo Filho 02 de fevereiro, AS FUNÇÕES TRIGONOMÉTRICAS DO ÂNGULO AGUDO OA OA OA OA OA OA

TRIGONOMETRIA. AO VIVO MATEMÁTICA Professor Haroldo Filho 02 de fevereiro, AS FUNÇÕES TRIGONOMÉTRICAS DO ÂNGULO AGUDO OA OA OA OA OA OA TRIGONOMETRIA 1. AS FUNÇÕES TRIGONOMÉTRICAS DO ÂNGULO AGUDO Considere um ângulo agudo = AÔB, e tracemos a partir dos pontos A, A 1, A etc. da semirreta AO, perpendiculares à semirreta OB. AB A1B1 AB OAB

Leia mais

Professor Dacar Lista de Exercícios - Revisão Trigonometria

Professor Dacar Lista de Exercícios - Revisão Trigonometria 1. Obtenha a medida, em graus, de um arco AB de comprimento π metros, sabendo que ele está contido em uma circunferência de diâmetro igual a metros. Resposta:. (UFPR) Em uma circunferência de 1 dm de comprimento,

Leia mais

Proposta de correcção

Proposta de correcção Ficha de Trabalho Matemática A - ºano Temas: Trigonometria (Triângulo rectângulo e círculo trigonométrico) Proposta de correcção. Relembrar que um radiano é, em qualquer circunferência, a amplitude do

Leia mais

NOTAÇÕES. R : conjunto dos números reais C : conjunto dos números complexos

NOTAÇÕES. R : conjunto dos números reais C : conjunto dos números complexos NOTAÇÕES R : conjunto dos números reais C : conjunto dos números complexos i : unidade imaginária: i = 1 z : módulo do número z C Re(z) : parte real do número z C Im(z) : parte imaginária do número z C

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução MATEMÁTICA A - 1o Ano N o s Complexos - Equações e problemas Propostas de resolução Exercícios de exames e testes intermédios 1. Simplificando as expressões de z 1 e z, temos que: Como i 19 i + i i, vem

Leia mais

MA51A - Cálculo Aplicado Prof a Diane Rizzotto Rossetto. LISTA 1 - Revisão

MA51A - Cálculo Aplicado Prof a Diane Rizzotto Rossetto. LISTA 1 - Revisão Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Curitiba - DAMAT MA51A - Cálculo Aplicado Prof a Diane Rizzotto Rossetto LISTA 1 - Revisão Questão 1: Se 2 x = 256, o valor de x

Leia mais

Prova 3 Matemática. N ọ DE INSCRIÇÃO:

Prova 3 Matemática. N ọ DE INSCRIÇÃO: Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta

Leia mais

Prova 3 Matemática. N ọ DE INSCRIÇÃO:

Prova 3 Matemática. N ọ DE INSCRIÇÃO: Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta

Leia mais

Prova 3 Matemática. N ọ DE INSCRIÇÃO:

Prova 3 Matemática. N ọ DE INSCRIÇÃO: Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta

Leia mais

Prova 3 Matemática. N ọ DE INSCRIÇÃO:

Prova 3 Matemática. N ọ DE INSCRIÇÃO: Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta

Leia mais

P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o

P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o 206-207 DISCIPLINA / ANO: Matemática A - ºano MANUAL ADOTADO: NOVO ESPAÇO - Matemática A º ano GESTÃO DO TEMPO Nº de Nº de Nº de tempos tempos tempos

Leia mais

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito. a(x x 0) = b(y 0 y).

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito. a(x x 0) = b(y 0 y). MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 016.1 Gabarito Questão 01 [ 1,00 ::: (a)=0,50; (b)=0,50 ] (a) Seja x 0, y 0 uma solução da equação diofantina ax + by = c, onde a, b são inteiros

Leia mais

Prova Vestibular ITA 2000

Prova Vestibular ITA 2000 Prova Vestibular ITA Versão. ITA - (ITA ) Sejam f, g : R R definidas por f ( ) = e g cos 5 ( ) =. Podemos afirmar que: f é injetora e par e g é ímpar. g é sobrejetora e f é bijetora e g é par e f é ímpar

Leia mais

(a) Obtenha o valor de f( 1). (b) Estime o valor de f(2). (c) f(x) = 2 para quais valores de x? (d) Estime os valores de x para os quais f(x) = 0.

(a) Obtenha o valor de f( 1). (b) Estime o valor de f(2). (c) f(x) = 2 para quais valores de x? (d) Estime os valores de x para os quais f(x) = 0. Lista de Exercícios de Cálculo I para os cursos de Engenharia - Funções 1. Dado o gráfico de uma função: (a) Obtenha o valor de f( 1). (b) Estime o valor de f(). (c) f(x) = para quais valores de x? (d)

Leia mais

Funções Trigonométricas

Funções Trigonométricas UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Funções Trigonométricas

Leia mais

QUESTÃO 03. QUESTÃO 02. QUESTÃO 04. Questões de Física: QUESTÃO 01.

QUESTÃO 03. QUESTÃO 02. QUESTÃO 04. Questões de Física: QUESTÃO 01. QUESTÃO 03. Analise o circuito elétrico e as afirmações que seguem. Leia as questões deste Simulado e, em seguida, responda-as preenchendo os parênteses com V (verdadeiro), F (falso) ou B (branco). Questões

Leia mais

MATEMÁTICA SARGENTO DA FAB

MATEMÁTICA SARGENTO DA FAB MATEMÁTICA BRUNA PAULA 1 COLETÂNEA DE QUESTÕES DE MATEMÁTICA DA EEAr (QUESTÕES RESOLVIDAS) QUESTÃO 1 (EEAr 2013) Se x é um arco do 1º quadrante, com sen x a e cosx b, então é RESPOSTA: d QUESTÃO 2 (EEAr

Leia mais

Notas de aula: Cálculo e Matemática Aplicados à Notas de aula: Gestão Ambiental

Notas de aula: Cálculo e Matemática Aplicados à Notas de aula: Gestão Ambiental Notas de aula: Cálculo e Matemática Aplicados à Notas de aula: Gestão Ambiental 1 Funções Definição: Sejam A e B, dois conjuntos, A /0, B /0. Uma função definida em A com valores em B é uma lei que associa

Leia mais

MATEMÁTICA. Questões de 05 a 12

MATEMÁTICA. Questões de 05 a 12 GRUPO 1 TIPO A MAT. 5 MATEMÁTICA Questões de 05 a 12 05. Um dos vértices de um triângulo equilátero é o ponto P (0,1) do plano cartesiano e os outros dois estão sobre a reta r : x + y + 1 = 0. Faça o que

Leia mais

Jorge M. V. Capela, Marisa V. Capela. Araraquara, SP

Jorge M. V. Capela, Marisa V. Capela. Araraquara, SP Cônicas e Equações Quadráticas Jorge M. V. Capela, Marisa V. Capela Instituto de Química - UNESP Araraquara, SP capela@iq.unesp.br Araraquara, SP - 2017 1 Parábolas 2 3 4 5 Introdução Parábolas Parábolas

Leia mais

Prova 3 Matemática. N ọ DE INSCRIÇÃO:

Prova 3 Matemática. N ọ DE INSCRIÇÃO: Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta

Leia mais

REVISÃO MATEMÁTICA. 1. Unidades de medida Medida de comprimento - metro (m)

REVISÃO MATEMÁTICA. 1. Unidades de medida Medida de comprimento - metro (m) REVISÃO MATEMÁTICA 1. Unidades de medida 1.1. Medida de comprimento - metro (m) O metro é uma unidade básica para a representação de medidas de comprimento no sistema internacional de unidades (SI). Sheila

Leia mais

= ; a = -1, b = 3. 1 x ; a = -1, b = 0. M > 0 é um número real fixo. Prove que quaisquer que sejam x, y em I temos f ( x) < x.

= ; a = -1, b = 3. 1 x ; a = -1, b = 0. M > 0 é um número real fixo. Prove que quaisquer que sejam x, y em I temos f ( x) < x. INSTITUTO DE MATEMÁTICA -UFBA DEPARTAMENTO DE MATEMÁTICA LIMITES E DERIVADAS MAT B a LISTA DE EXERCÍCIOS - 008. - Prof a Graça Luzia Dominguez Santos. Prove que entre duas raízes consecutivas de uma função

Leia mais

Funções - Terceira Lista de Exercícios

Funções - Terceira Lista de Exercícios Funções - Terceira Lista de Exercícios Módulo - Números Reais. Expresse cada número como decimal: a) 7 b) c) 9 0 5 5 e) 3 7 0 f) 4 g) 8 7 d) 7 8 h) 56 4. Expresse cada número decimal como uma fração na

Leia mais

UNIVERSIDADE FEDERAL DO PARÁ CURSO DE LICENCIATURA EM MATEMÁTICA DO PARFOR LISTA DE EXERCÍCIOS DE TRIGONOMETRIA E NÚMEROS COMPLEXOS

UNIVERSIDADE FEDERAL DO PARÁ CURSO DE LICENCIATURA EM MATEMÁTICA DO PARFOR LISTA DE EXERCÍCIOS DE TRIGONOMETRIA E NÚMEROS COMPLEXOS UNIVERSIDADE FEDERAL DO PARÁ CURSO DE LICENCIATURA EM MATEMÁTICA DO PARFOR LISTA DE EXERCÍCIOS DE TRIGONOMETRIA E NÚMEROS COMPLEXOS 1. Do alto de uma torre de 50 m de altura,localizada numa ilha, avista-se

Leia mais

3 x + y y 17) V cilindro = πr 2 h

3 x + y y 17) V cilindro = πr 2 h MATEMÁTICA FORMULÁRIO 0 o 45 o 60 o cosec x =, sen x 0 sen x sen sec x =, cos x 0 cos x cos sen x tg x =, cos x 0 cos x tg cos x cotg x =, sen x 0 sen x ) a n = a + (n ). r 0) A = onde b h D = sen x +

Leia mais

Escola Naval 2010 ( ) ( ) 8 ( ) 4 ( ) 4 (

Escola Naval 2010 ( ) ( ) 8 ( ) 4 ( ) 4 ( Escola Naval 0 1. (EN 0) Os gráficos das funções reais f e g de variável real, definidas por f(x) = x e g(x) = 5 x interceptam-se nos pontos A = (a,f(a)) e B = (b,f(b)), a b. Considere os polígonos CAPBD

Leia mais

Dados dois conjuntos A, B é dito produto cartesiano de A com B o conjunto

Dados dois conjuntos A, B é dito produto cartesiano de A com B o conjunto 1 Algumas definições sobre funções Dados dois conjuntos A, B é dito produto cartesiano de A com B o conjunto A B = {(a, b) : a A, b B}. Dados dois conjuntos A, B, uma função de A em B é uma lei que associa

Leia mais

Esta é só uma amostra do livro do Prof César Ribeiro.

Esta é só uma amostra do livro do Prof César Ribeiro. Esta é só uma amostra do livro do Prof César Ribeiro Para adquirir este (e outros livros do autor) vá ao site: http://wwwescolademestrescom/dicasemacetes Conheça também nosso Blog: http://blogescolademestrescom

Leia mais

Trigonometria - Segunda Parte

Trigonometria - Segunda Parte Capítulo 8 Trigonometria - Segunda Parte 81 Conceitos Preliminares número Dada uma circunferência de raio r, diâmetro d = r, o número é denido como a razão do comprimento C da circunfeência pelo seu diâmetro

Leia mais

UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE

UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE www.elitecampinas.com.br Fone: (19) -71 O ELITE RESOLVE IME 004 PORTUGUÊS/INGLÊS Você na elite das universidades! UNICAMP 004 SEGUNDA FASE MATEMÁTICA www.elitecampinas.com.br Fone: (19) 51-101 O ELITE

Leia mais

Extensão da tangente, secante, cotangente e cossecante, à reta.

Extensão da tangente, secante, cotangente e cossecante, à reta. UFF/GMA Notas de aula de MB-I Maria Lúcia/Marlene 05- Trigonometria - Parte - Tan-Cot_Sec-Csc PARTE II TANGENTE COTANGENTE SECANTE COSSECANTE Agora estudaremos as funções tangente, cotangente, secante

Leia mais