A função raiz quadrada

Tamanho: px
Começar a partir da página:

Download "A função raiz quadrada"

Transcrição

1 Matemática Básica Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense A função raiz quadrada Parte 6 Parte 6 Matemática Básica 1 Parte 6 Matemática Básica 2 A função raiz quadrada f : [0, + ) [0, + ) x y = f (x) =x 2 Já demonstramos que f : [0, + ) [0, + ) é injetiva Já mencionamos que f : [0, + ) [0, + ) é sobrejetiva (a prova deste fato requer ferramentas de análise) Logo f : [0, + ) [0, + ) é bijetiva e, portanto, inversível A função inversa f 1 de f é denominada função raiz quadrada Usaremos a notação x Explicando Se a 0, então a éoúnico número real 0 que, elevado ao quadrado, dá o número real a f : [0, + ) [0, + ) x y = f (x) =x 2 f 1 : [0, + ) [0, + ) x y = f 1 (x) = x a 0, pois como vamos calcular a = f 1 (a), a deve estar no domínio de f 1, que é igual ao contradomínio de f, o qual, por sua vez, é igual ao intervalo [0, + ) a é único, pois se não fosse único, f 1 não seria uma função a 0, pois a = f 1 (a) pertence ao contradomínio de f 1, que é igual ao domínio de f, o qual, por sua vez, é igual ao intervalo [0, + ) para representar f 1 (x) a elevado ao quadrado é igual ao número real a, pois ( a) 2 =(f 1 (a)) 2 = f (f 1 (a)) = (f f 1 )(a) =a Note então que, se a 0, então a éoúnico número real 0 que, elevado ao quadrado, dá o número real a Parte 6 Matemática Básica 3 Parte 6 Matemática Básica 4

2 A função raiz quadrada Propriedades a R, a 2 = a a, b 0, a b = a b e a, b 0, a b = a b a 0, b > 0, a a a a b = e a 0, b < 0, b b = b A função raiz quadrada é crescente: a, b 0, a < b a < b (Ir para o GeoGebra) a, b 0, a + b a + b Parte 6 Matemática Básica 5 Parte 6 Matemática Básica 6 Propriedade: demonstração a R, a 2 = a Propriedade: demonstração a, b 0, a b = a b e a, b 0, a b = a b Demonstração Considere o número p = a Como vimos, p = a 0 Vale também que p 2 = a 2 = a 2 De fato: se a 0, então a 2 = a a = a a = a 2 e, se a < 0, então a 2 = a a =( a) ( a) =a 2 Como a 2 éoúnico número real 0 que elevado ao quadrado é igual a a 2, segue-se que a 2 = p = a Demonstração Considere o número p = a b Note que p = a b 0 como produto de dois números 0 Vale também que p 2 =( a b) 2 = a b De fato: p 2 =( a b) 2 =( a) 2 ( b) 2 = a b Como a b éoúnico número real 0 que elevado ao quadrado é igual a a b, seguese que a b = p = a b A demonstração de que a, b 0, a b = a b fica como exercício Parte 6 Matemática Básica 7 Parte 6 Matemática Básica 8

3 Propriedade: demonstração a 0, b > 0, a b = a b e a 0, b < 0, a a b = b Propriedade: demonstração A função raiz quadrada é crescente: a, b 0, a < b a < b Demonstração Considere o número p = a/ b Note que p = a/ b 0 como divisão de um número 0 por um número > 0 Vale também que p 2 =( a/ b) 2 = a/b De fato: ( ) 2 a p 2 = = ( a) 2 b ( b) = a 2 b Como a/b éoúnico número real 0 que elevado ao quadrado é igual a a/b, seguese que a/b = p = a/ b a 0, b < 0, a/b = a/ b fica como exercício Demonstração Sejam a, b 0 com a < b Note que b > 0, b > 0, b a > 0e b + a > 0 Uma vez que podemos escrever que (b a) =( b a) ( b + a), b a = b a b + a Assim, b a > 0 como divisão de dois números > 0 Em particular, a < b Naturalmente, vale também que se 0 a b, então a b Parte 6 Matemática Básica 9 Parte 6 Matemática Básica 10 Propriedade: demonstração a, b 0, a + b a + b Propriedade: demonstração a, b 0, a + b a + b Demonstração Sejam a, b 0 Inicialmente, observe que a + b 0e a + b 0 como soma de dois números 0 Note também que a b 0 como produto de dois números 0 Agora 0 a b 0 2 a b a + b a + 2 a b + b a + b ( a + b) 2 Como 0 a + b ( a + b) 2, usando a propriedade anterior, concluímos que a + b ( a + b) 2 Observação Note que, na expressão acima, nem sempre vale a igualdade! Tome, por exemplo, a = 9eb = 16: a + b = 5 < 7 = 3+4 = a+ b Quando vale a igualdade? Resposta: a, b 0e a + b = a + b a = 0oub = 0 Mas, pela primeira propriedade, ( a + b) 2 = a + b = a + b Portanto, vale que a + b a + b Parte 6 Matemática Básica 11 Parte 6 Matemática Básica 12

4 Exercício As funções f (x) = x 1 x 1 x 2 e g(x) = são iguais? x 2 Resposta As funções não são iguais, pois possuem domínios diferentes Note, por exemplo, que 0 pertence ao domínio de f, mas 0 não pertence ao domínio de g Os domínios naturais (efetivos) das funções f e g são dadas, respectivamente, por: D f =(, 1] (2, + ) e D g =(2, + ) Note, contudo, que restritas ao conjunto A = D f D g =(2, + ), as duas funções são iguais: f = g (2,+ ) (2,+ ) A distância euclidiana entre dois pontos no plano Parte 6 Matemática Básica 13 Parte 6 Matemática Básica 14 A distância euclidiana entre dois pontos no plano A equação do círculo no plano (Ir para o GeoGebra) Parte 6 Matemática Básica 15 Parte 6 Matemática Básica 16

5 A equação do círculo no plano O círculo de centro em (4, 3) e raio 1 é o conjunto de todos os pontos (x, y) no plano cuja distância até o centro (4, 3) é igual ao raio 1 A equação do círculo no plano O círculo de centro em (4, 3) e raio 1 é o conjunto de todos os pontos (x, y) no plano cuja distância até o centro (4, 3) é igual ao raio 1 5 y d((x, y), (4, 3)) = 1 (x 4) 2 +(y 3) 2 = 1 ( (x 4) 2 +(y 3) 2 ) 2 = (x, y) (4, 3) (x 4) 2 +(y 3) 2 = x Parte 6 Matemática Básica 17 Parte 6 Matemática Básica 18 Funções reais cujos gráficos são semicírculos Funções reais cujos gráficos são semicírculos Moral: o gráfico de y = f (x) = a 2 x 2 é o semicírculo superior de centro na origem e raio a Parte 6 Matemática Básica 19 Parte 6 Matemática Básica 20

6 Funções reais cujos gráficos são semicírculos Funções reais cujos gráficos são semicírculos Moral: o gráfico de y = f (x) = a 2 x 2 é o semicírculo superior de centro na origem e raio a Moral: o gráfico de y = f (x) = a 2 x 2 é o semicírculo superior de centro na origem e raio a Parte 6 Matemática Básica 21 Parte 6 Matemática Básica 22 Funções reais cujos gráficos são semicírculos Funções reais cujos gráficos são semicírculos Moral: o gráfico de y = f (x) = a 2 x 2 é o semicírculo superior de centro na origem e raio a Moral: o gráfico de y = f (x) = a 2 x 2 é o semicírculo superior de centro na origem e raio a Parte 6 Matemática Básica 23 Parte 6 Matemática Básica 24

7 Funções reais cujos gráficos são semicírculos Funções da forma f (x) =x n, com n N Moral: o gráfico de y = f (x) = a 2 x 2 é o semicírculo superior de centro na origem e raio a Parte 6 Matemática Básica 25 Parte 6 Matemática Básica 26 Funções da forma f (x) =x n, com n N f : R R x y = f (x) =x n Funções da forma f (x) =x n, com n N f : R R x y = f (x) =x n, com n um número par Importante: se n N, x n é uma notação para } x x {{ x} n fatores Propriedades: (1) x R, n, m N, x n x m = x n+m Prova: x n x m = x x x } {{ } n fatores x x x }{{} m fatores (2) x R, n, m N, (x n ) m = x n m Prova: exercício! = x x x }{{} n+m fatores = x n+m (1) A função f é par (2) A função f é crescente em [0, + ) Prova: use a identidade a n b n =(a b)(a n 1 + a n 2 b + + ab n 2 + b n 1 ) (3) A imagem de f é o intervalo [0, + ) Prova: será feita na disciplina de cálculo Parte 6 Matemática Básica 27 Parte 6 Matemática Básica 28

8 Funções da forma f (x) =x n, com n N f : R R x y = f (x) =x n, com n um número ímpar (1) A função f é ímpar (2) A função f é crescente em R =(, + ) Prova: use a identidade a n b n =(a b)(a n 1 + a n 2 b + + ab n 2 + b n 1 ) (3) A imagem de f é R =(, + ) Prova: será feita na disciplina de cálculo Proposição Seja f : R R definida por y = f (x) =x n, com n N (a) Se 0 < x < 1, então x n+1 < x n (b) Se x > 1, então x n+1 > x n Demonstração Se 0 < x < 1, então 0 x < x x < 1 x, isto é, 0 < x 2 < x Agora, se 0 < x 2 < x, então 0 x < x 2 x < x x, isto é, 0 < x 3 < x 2 Prosseguindo com este raciocínio, concluímos que 0 < x n+1 < x n, para todo n N Isto demonstra a parte (a) A parte (b) fica como exercício Parte 6 Matemática Básica 29 Parte 6 Matemática Básica 30 Revisão: funções da forma x elevado a n A função raiz n-ésima Parte 6 Matemática Básica 31 Parte 6 Matemática Básica 32

9 A função raiz n-ésima: caso n par f : [0, + ) [0, + ) x y = f (x) =x n, com n par Já demonstramos que f : [0, + ) [0, + ) é injetiva Já mencionamos que f : [0, + ) [0, + ) é sobrejetiva (a prova deste fato requer ferramentas de análise) Logo f : [0, + ) [0, + ) é bijetiva e, portanto, inversível A função inversa f 1 de f é denominada função raiz n-ésima Usaremos as notações n x e x 1/n A função raiz n-ésima: caso n ímpar f : (, + ) (, + ) x y = f (x) =x n, com n ímpar Já demonstramos que f : (, + ) (, + ) é injetiva Já mencionamos que f : (, + ) (, + ) é sobrejetiva (a prova deste fato requer ferramentas de análise) Logo f : (, + ) (, + ) é bijetiva e, portanto, inversível A função inversa f 1 de f é denominada função raiz n-ésima Usaremos as notações n x e x 1/n para representar f 1 (x) para representar f 1 (x) Note então que, se n é par e a 0, então n a éoúnico número real 0 que, elevado a n, dá o número real a Note então que, se n é ímpar e a R, então n a éoúnico número real que, elevado a n, dá o número real a Parte 6 Matemática Básica 33 Parte 6 Matemática Básica 34 A função raiz n-ésima Cuidado! Se n é par, o domínio de f (x) = n x = x 1/n é [0, + ) Se n é ímpar, o domínio de f (x) = n x = x 1/n é R (Ir para o GeoGebra) Parte 6 Matemática Básica 35 Parte 6 Matemática Básica 36

10 Propriedades da função raiz n-ésima para n par Propriedades da função raiz n-ésima para n ímpar Se n é par, a R, n a n = a Se n é ímpar, a R, n a n = a Se n é par, a, b 0, n a b = n a n b e a, b 0, n a b = n a n b Se n é ímpar, a, b R, n a b = n a n b Se n é par, a 0, b > 0, n a b = n a n b e a 0, b < 0, n a b = n a n b Se n é ímpar, a R, b R {0}, n a b = n a n b A função raiz n-ésima é crescente (n par): a, b 0, a < b n a < n b A função raiz n-ésima é crescente (n ímpar): a, b R, a < b n a < n b Se n é par, a, b 0, n a + b n a + n b Se n é ímpar, a, b 0, n a + b n a + n b Parte 6 Matemática Básica 37 Parte 6 Matemática Básica 38 Observações Mais propriedades As demonstrações destas propriedades seguem basicamente as mesmas técnicas usadas na demonstração das propriedades da função raiz quadrada Elas ficam, portanto, como exercícios Na última propriedade, a fórmula do binômio de Newton pode ser útil: (a + b) n = n i=0 ( ) n a n i b i i Mesmo para n ímpar, devemos colocar como hipótese que a e b sejam maiores do que ou iguais a zero na desigualdade n a + b n a + n b da última propriedade De fato: se a = 1, b = 1 e n = 3, então = 3 2 > 2 = Se n é par e m N, então x 0, Se n é ímpar e m N, então x R, Se m é par ou n é par, então x 0, Se m e n são ímpares, então x R, n x m =( n x) m n x m =( n x) m n m x = nm x n m x = nm x Parte 6 Matemática Básica 39 Parte 6 Matemática Básica 40

11 Funções da forma x elevado a menos n y = f (x) =x n = 1 x n, com n N e x 0 Funções da forma x elevado a menos n (1) f é uma função par se n é um número par e f é uma função ímpar se n é um número ímpar (2) f é uma função decrescente no intervalo (0, + ) (3) Se 0 < x < 1, então 1 x n < 1 x n+1 (4) Se 1 < x, então 1 x n+1 < 1 x n Parte 6 Matemática Básica 41 Parte 6 Matemática Básica 42 Funções da forma x elevado a menos n Funções da forma x elevado a menos n Parte 6 Matemática Básica 43 Parte 6 Matemática Básica 44

12 Funções da forma x elevado a p/q (fração irredutível) y = f (x) =x p/q, com p Z {0}, q N e p/q fração irredutível Funções da forma x elevado a p/q (fração irredutível) (1) Se p > 0, q > 0eq é par, então, por definição, para todo x 0 x p/q = q x p (2) Se p > 0, q > 0eq é ímpar, então, por definição, x p/q = q x p para todo x R Parte 6 Matemática Básica 45 Parte 6 Matemática Básica 46 Funções da forma x elevado a p/q (fração irredutível) Exemplos y = f (x) =x p/q, com p Z {0}, q N e p/q fração irredutível (1) Se p < 0, q > 0eq é par, então, por definição, para todo x > 0 x p/q = 1 x p/q = 1 q x p (2) Se p < 0, q > 0eq é ímpar, então, por definição, x p/q = 1 x p/q = 1 q x p x 5/3 = 3 x 5, x R x 3/8 = 8 x 3, x 0 x 5/4 = 1 x 5/4 = 4 1, x > 0 x 5 x 2/3 = 1 x 2/3 = 3 1, x 0 x 2 para todo x R {0} Parte 6 Matemática Básica 47 Parte 6 Matemática Básica 48

13 Funções da forma x elevado a p/q (fração irredutível) Por que a definição exige que a fração p/q seja irredutível? 3/2 = 6/4 mas E potências irracionais? 2 x 3 está definida para x 0 enquanto que 4 x 6 está definida para x R Parte 6 Matemática Básica 49 Parte 6 Matemática Básica 50 Como calcular f (x) =x 2 para x = 3? Resposta: use aproximações racionais (cada vez melhores) de 2! Aproximação de 2 Aproximação de = = = = = = = = = = Aplicações de Leis de Potência Parte 6 Matemática Básica 51 Parte 6 Matemática Básica 52

14 A Lei de Zipf A Lei de Zipf: Dom Casmurro de Machado de Assis (A) Posição (x) Frequência (y) Palavra que a e de o não Capitu Bentinho zanguei zás zeloso (B) x = log(x) ỹ = log(y) Palavra 0, ,42878 que 0, ,39619 a 0, ,33965 e 0, ,29446 de 0, ,22297 o 0, ,18497 não 1, ,53275 Capitu 2, ,74818 Bentinho 3, ,00000 zanguei 3, ,00000 zás 3, ,00000 zeloso Frequência das palavras em Dom Casmurro de Machado de Assis Parte 6 Matemática Básica 53 Parte 6 Matemática Básica 54 A Lei de Zipf: Dom Casmurro de Machado de Assis ỹ = 3,837 1,005 x ln(y) =3,837 1,005 ln(x) y = 6870,684 x 1,005 A Lei de Zipf: Romeo and Juliet de Shakespeare (A) Posição (x) Frequência (y) Palavra and the I to a of Romeo Juliet yoke yon youngest (B) x = log(x) ỹ = log(y) Palavra 0, ,85003 and 0, ,83758 the 0, ,76789 I 0, ,73239 to 0, ,66651 a 0, ,59769 of 1, ,47129 Romeo 1, ,25042 Juliet 3, ,00000 yoke 3, ,00000 yon 3, ,00000 youngest Frequência das palavras em Romeo and Juliet de William Shakespeare Parte 6 Matemática Básica 55 Parte 6 Matemática Básica 56

15 A Lei de Zipf: Romeo and Juliet de Shakespeare Leis de Potência ỹ = 3,674 1,070 x ln(y) =3,674 1,070 ln(x) y = 4726,348 x 1,070 Parte 6 Matemática Básica 57 Parte 6 Matemática Básica 58 Leis de Potência Voos de Levy Parte 6 Matemática Básica 59 Parte 6 Matemática Básica 60

16 Voos de Levy Voos de Levy Parte 6 Matemática Básica 61 Parte 6 Matemática Básica 62 Leis de Potência Cuidado: alguns fernômenos são, outros não são descritos por uma lei de potência! Clauset, Shalizi and Newman: Power-Law Distributions in Empirical Data SIAM Review, Vol 51, No 4, pp , 2009 Parte 6 Matemática Básica 63

Funções potência da forma f (x) =x n, com n N

Funções potência da forma f (x) =x n, com n N Folha 1 Matemática Básica Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Funções potência da forma f (x) =x n, com n N Parte 08 Parte 8 Matemática Básica 1

Leia mais

Funções exponenciais e logarítmicas

Funções exponenciais e logarítmicas Matemática Básica Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Funções exponenciais e logarítmicas Parte 07 Parte 7 Matemática Básica 1 Parte 7 Matemática

Leia mais

Pré-Cálculo. Humberto José Bortolossi. Aula de maio de Departamento de Matemática Aplicada Universidade Federal Fluminense

Pré-Cálculo. Humberto José Bortolossi. Aula de maio de Departamento de Matemática Aplicada Universidade Federal Fluminense Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 11 28 de maio de 2010 Aula 11 Pré-Cálculo 1 A função raiz quadrada f : [0, + ) [0, + ) x y

Leia mais

Escalas em Gráficos. Pré-Cálculo. Cuidado! Cuidado! Humberto José Bortolossi. Parte 4. Um círculo é desenhado como uma elipse.

Escalas em Gráficos. Pré-Cálculo. Cuidado! Cuidado! Humberto José Bortolossi. Parte 4. Um círculo é desenhado como uma elipse. Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Escalas em Gráficos Parte 4 Parte 4 Pré-Cálculo 1 Parte 4 Pré-Cálculo 2 Cuidado! Cuidado! Um círculo

Leia mais

Funções exponenciais e logarítmicas

Funções exponenciais e logarítmicas Matemática Básica Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Funções exponenciais e logarítmicas Parte 07 Parte 7 Matemática Básica 1 Parte 7 Matemática

Leia mais

Pré-Cálculo. Humberto José Bortolossi. Aula de junho de Departamento de Matemática Aplicada Universidade Federal Fluminense

Pré-Cálculo. Humberto José Bortolossi. Aula de junho de Departamento de Matemática Aplicada Universidade Federal Fluminense Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 14 17 de junho de 2011 Aula 14 Pré-Cálculo 1 Funções da forma x elevado a menos n Aula 14 Pré-Cálculo

Leia mais

Funções monótonas. Pré-Cálculo. Funções decrescentes. Funções crescentes. Humberto José Bortolossi. Parte 3. Definição. Definição

Funções monótonas. Pré-Cálculo. Funções decrescentes. Funções crescentes. Humberto José Bortolossi. Parte 3. Definição. Definição Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Funções monótonas Parte 3 Parte 3 Pré-Cálculo 1 Parte 3 Pré-Cálculo 2 Funções crescentes Funções

Leia mais

Pré-Cálculo. Humberto José Bortolossi. Aula de maio de Departamento de Matemática Aplicada Universidade Federal Fluminense

Pré-Cálculo. Humberto José Bortolossi. Aula de maio de Departamento de Matemática Aplicada Universidade Federal Fluminense Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 10 23 de maio de 2010 Aula 10 Pré-Cálculo 1 Funções injetivas Funções injetivas, sobrejetivas

Leia mais

Funções. Pré-Cálculo. O que é uma função? O que é uma função? Humberto José Bortolossi. Parte 2. Definição

Funções. Pré-Cálculo. O que é uma função? O que é uma função? Humberto José Bortolossi. Parte 2. Definição Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Funções Parte 2 Parte 2 Pré-Cálculo 1 Parte 2 Pré-Cálculo 2 O que é uma função? O que é uma função?

Leia mais

Funções monótonas. Pré-Cálculo. Atividade. Funções crescentes. Parte 3. Definição

Funções monótonas. Pré-Cálculo. Atividade. Funções crescentes. Parte 3. Definição Pré-Cálculo Departamento de Matemática Aplicada Universidade Federal Fluminense Funções monótonas Parte 3 Funções crescentes Pré-Cálculo 1 Atividade Pré-Cálculo 2 Dizemos que uma função f : D C é crescente

Leia mais

Funções. Matemática Básica. O que é uma função? O que é uma função? Folha 1. Humberto José Bortolossi. Parte 07. Definição

Funções. Matemática Básica. O que é uma função? O que é uma função? Folha 1. Humberto José Bortolossi. Parte 07. Definição Folha 1 Matemática Básica Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Funções Parte 07 Aula 9 Matemática Básica 1 Aula 9 Matemática Básica 2 O que é uma

Leia mais

LISTA DE EXERCÍCIOS. Humberto José Bortolossi

LISTA DE EXERCÍCIOS. Humberto José Bortolossi GMA DEPARTAMENTO DE MATEMÁTICA APLICADA LISTA DE EXERCÍCIOS Cálculo I A Humberto José Bortolossi http://wwwprofessoresuffbr/hjbortol/ 03 Operações com funções: soma, diferença, produto, quociente, composição

Leia mais

Funções da forma x elevado a menos n

Funções da forma x elevado a menos n Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Funções da forma x elevado a menos n Parte 5 Parte 5 Pré-Cálculo 1 Parte 5 Pré-Cálculo 2 Funções

Leia mais

Humberto José Bortolossi x 1 < 0 x2 x 12 < 0. x 1 x + 12 (x + 3)(x 4)

Humberto José Bortolossi   x 1 < 0 x2 x 12 < 0. x 1 x + 12 (x + 3)(x 4) SEGUNDA VERIFICAÇÃO DE APRENDIZAGEM Matemática Básica Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ Nome legível: Assinatura: [0] (2.0) Resolva a inequação x 2 < x + 2 no conjunto dos

Leia mais

Humberto José Bortolossi [01] (a) (1.0) Escreva infinitos números racionais que pertençam ao intervalo

Humberto José Bortolossi   [01] (a) (1.0) Escreva infinitos números racionais que pertençam ao intervalo PRIMEIRA VERIFICAÇÃO DE APRENDIZAGEM Pré-Cálculo Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ Nome legível: Assinatura: [0] (a) (.0) Escreva infinitos números racionais que pertençam

Leia mais

Pré-Cálculo. Humberto José Bortolossi. Aula 5 27 de agosto de Departamento de Matemática Aplicada Universidade Federal Fluminense

Pré-Cálculo. Humberto José Bortolossi. Aula 5 27 de agosto de Departamento de Matemática Aplicada Universidade Federal Fluminense Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 5 27 de agosto de 200 Aula 5 Pré-Cálculo Expansões decimais: exemplo Números reais numericamente

Leia mais

Bases Matemáticas. Relembrando: representação geométrica para os reais 2. Aula 8 Números Reais: módulo ou valor absoluto, raízes, intervalos

Bases Matemáticas. Relembrando: representação geométrica para os reais 2. Aula 8 Números Reais: módulo ou valor absoluto, raízes, intervalos 1 Bases Matemáticas Aula 8 Números Reais: módulo ou valor absoluto, raízes, intervalos Rodrigo Hausen 10 de outubro de 2012 v. 2012-10-15 1/34 Relembrando: representação geométrica para os reais 2 Uma

Leia mais

AGRUPAMENTO DE ESCOLAS DE MIRA

AGRUPAMENTO DE ESCOLAS DE MIRA 1º Período DOMÍNIO 1: LÓGICA E TEORIA DOS CONJUNTOS N. de blocos previstos: 8 1.1 Introdução à lógica bivalente. 1. Proposição. Valor lógico de uma proposição 2. Proposições equivalentes 3. Operações lógicas

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano de escolaridade Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano de escolaridade Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A 5.º Teste 0.º Ano de escolaridade Versão Nome: N.º Turma: Professor: José Tinoco 04/05/07 É permitido o uso de calculadora gráfica Apresente o seu raciocínio de forma

Leia mais

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos Unidade I MATEMÁTICA Prof. Celso Ribeiro Campos Números reais Três noções básicas são consideradas primitivas, isto é, são aceitas sem a necessidade de definição. São elas: a) Conjunto. b) Elemento. c)

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano de escolaridade Versão 2

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano de escolaridade Versão 2 FICHA de AVALIAÇÃO de MATEMÁTICA A 5º Teste 0º Ano de escolaridade Versão Nome: Nº Turma: Professor: José Tinoco 04/05/07 É permitido o uso de calculadora gráfica Apresente o seu raciocínio de forma clara,

Leia mais

A = B, isto é, todo elemento de A é também um elemento de B e todo elemento de B é também um elemento de A, ou usando o item anterior, A B e B A.

A = B, isto é, todo elemento de A é também um elemento de B e todo elemento de B é também um elemento de A, ou usando o item anterior, A B e B A. Capítulo 1 Números Reais 1.1 Conjuntos Numéricos Um conjunto é uma coleção de elementos. A relação básica entre um objeto e o conjunto é a relação de pertinência: quando um objeto x é um dos elementos

Leia mais

Função par e função ímpar

Função par e função ímpar Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Função par e função ímpar Parte 4 Parte 4 Pré-Cálculo 1 Parte 4 Pré-Cálculo 2 Função par Definição

Leia mais

Matemática I. 1 Propriedades dos números reais

Matemática I. 1 Propriedades dos números reais Matemática I 1 Propriedades dos números reais O conjunto R dos números reais satisfaz algumas propriedades fundamentais: dados quaisquer x, y R, estão definidos a soma x + y e produto xy e tem-se 1 x +

Leia mais

E essa procura pela abstração da natureza foi fundamental para a evolução, não só, mas também, dos conjuntos numéricos

E essa procura pela abstração da natureza foi fundamental para a evolução, não só, mas também, dos conjuntos numéricos A história nos mostra que desde muito tempo o homem sempre teve a preocupação em contar objetos e ter registros numéricos. Seja através de pedras, ossos, desenhos, dos dedos ou outra forma qualquer, em

Leia mais

MA11 - Unidade 4 Representação Decimal dos Reais Semana 11/04 a 17/04

MA11 - Unidade 4 Representação Decimal dos Reais Semana 11/04 a 17/04 MA11 - Unidade 4 Representação Decimal dos Reais Semana 11/04 a 17/04 Para efetuar cálculos, a forma mais eciente de representar os números reais é por meio de expressões decimais. Vamos falar um pouco

Leia mais

REVISÃO DE ÁLGEBRA. Apareceu historicamente em processos de contagem. Obs.: dependendo da conveniência, o zero pode pertencer aos naturais.

REVISÃO DE ÁLGEBRA. Apareceu historicamente em processos de contagem. Obs.: dependendo da conveniência, o zero pode pertencer aos naturais. REVISÃO DE ÁLGEBRA 1ª. AULA CONJUNTOS BÁSICOS: Conjuntos dos números naturais: * + Apareceu historicamente em processos de contagem. Obs.: dependendo da conveniência, o zero pode pertencer aos naturais.

Leia mais

Informática no Ensino da Matemática

Informática no Ensino da Matemática Informática no Ensino da Matemática Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ Lista de Exercícios 3 ATIVIDADE 1 (a) Sejam u =(a b)/(a + b), v =(b c)/(b + c) ew =(c a)/(c + a). Mostre

Leia mais

LISTA DE EXERCÍCIOS. Humberto José Bortolossi

LISTA DE EXERCÍCIOS. Humberto José Bortolossi GMA DEPARTAMENTO DE MATEMÁTICA APLICADA LISTA DE EXERCÍCIOS Matemática Básica Humberto José Bortolossi http://wwwprofessoresuffbr/hjbortol/ 09 Funções reais (domínio, imagem e gráfico), funções monótonas,

Leia mais

Função polinomial. Pré-Cálculo. Função polinomial. Função polinomial: exemplos. Humberto José Bortolossi. Parte 6. Definição

Função polinomial. Pré-Cálculo. Função polinomial. Função polinomial: exemplos. Humberto José Bortolossi. Parte 6. Definição Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Função polinomial Parte 6 Parte 6 Pré-Cálculo 1 Parte 6 Pré-Cálculo 2 Função polinomial Função polinomial:

Leia mais

Capítulo 1 Números Reais

Capítulo 1 Números Reais Departamento de Matemática Disciplina MAT154 - Cálculo 1 Capítulo 1 Números Reais Conjuntos Numéricos Conjunto dos naturais: N = {1,, 3, 4,... } Conjunto dos inteiros: Z = {..., 3,, 1, 0, 1,, 3,... } {

Leia mais

Informática no Ensino de Matemática Prof. José Carlos de Souza Junior

Informática no Ensino de Matemática Prof. José Carlos de Souza Junior Informática no Ensino de Matemática Prof. José Carlos de Souza Junior http://www.unifal-mg.edu.br/matematica/?q=disc jc Aula 03 ATIVIDADE 01 (a) Sejam u = (a b)/(a + b), v = (b c)/(b + c) e w = (c a)/(c

Leia mais

SEGUNDA VERIFICAÇÃO DE APRENDIZAGEM. Nome legível: Assinatura:

SEGUNDA VERIFICAÇÃO DE APRENDIZAGEM. Nome legível: Assinatura: SEGUNDA VERIFICAÇÃO DE APRENDIZAGEM Matemática Básica Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ Nome legível: Assinatura: [01] (2.0) Resolva a desigualdade 1 x 2 2 x 3 0 usando a

Leia mais

Funções, Seqüências, Cardinalidade

Funções, Seqüências, Cardinalidade Funções, Seqüências, Cardinalidade Prof.: Rossini Monteiro Noções Básicas Definição (Função) Sejam A e B conjuntos. Uma função de A em B é um mapeamento de exatamente um elemento de B para cada elemento

Leia mais

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito. c1 + c 2 = 1 c 1 + 4c 2 = 3. a n = n. c 1 = 1 2c 1 + 2c

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito. c1 + c 2 = 1 c 1 + 4c 2 = 3. a n = n. c 1 = 1 2c 1 + 2c MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 2019.1 Gabarito Questão 01 [ 1,25 ::: (a)=0,50; (b)=0,75 ] Resolva as seguintes recorrências: (a) a n+2 5a n+1 + 4a n = 0, a 0 = 1, a 1 = 3. (b)

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano de escolaridade Versão 3

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano de escolaridade Versão 3 FICHA de AVALIAÇÃO de MATEMÁTICA A 5º Teste 0º Ano de escolaridade Versão 3 Nome: Nº Turma: Professor: José Tinoco 04/05/07 É permitido o uso de calculadora gráfica Apresente o seu raciocínio de forma

Leia mais

LISTA DE EXERCÍCIOS. [01] Determine o domínio natural (efetivo/maximal) de cada uma das funções indicadas abaixo.

LISTA DE EXERCÍCIOS. [01] Determine o domínio natural (efetivo/maximal) de cada uma das funções indicadas abaixo. LISTA DE EXERCÍCIOS Matemática Básica Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ 06 Função raiz quadrada, funções da forma y = f(x) = a 2 x 2, funções potência [01] Determine o domínio

Leia mais

Simulado AFA. 2. Sejam x e y números reais tais que: Então, o número complexo z = x + yi. é tal que z 3 e z valem, respectivamente: (D) i e 1.

Simulado AFA. 2. Sejam x e y números reais tais que: Então, o número complexo z = x + yi. é tal que z 3 e z valem, respectivamente: (D) i e 1. Simulado AFA 1. Uma amostra de estrangeiros, em que 18% são proficientes em inglês, realizou um exame para classificar a sua proficiência nesta língua. Dos estrangeiros que são proficientes em inglês,

Leia mais

DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS DA NATUREZA CRITÉRIOS ESPECÍFICOS DE AVALIAÇÃO

DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS DA NATUREZA CRITÉRIOS ESPECÍFICOS DE AVALIAÇÃO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS DA NATUREZA CRITÉRIOS ESPECÍFICOS DE AVALIAÇÃO (Aprovados em Conselho Pedagógico de 27 de outubro de 2015) AGRUPAMENTO DE CLARA DE RESENDE CÓD. 152 870 No caso específico

Leia mais

Soluções dos Exercícios do Capítulo 2

Soluções dos Exercícios do Capítulo 2 A MATEMÁTICA DO ENSINO MÉDIO Volume 1 Soluções dos Exercícios do Capítulo 2 2.1. Seja X = {n N; a + n Y }. Como a Y, segue-se que a + 1 Y, portanto 1 X. Além disso n X a + n Y (a + n) + 1 Y n + 1 X. Logo

Leia mais

1 Conjuntos, Números e Demonstrações

1 Conjuntos, Números e Demonstrações 1 Conjuntos, Números e Demonstrações Definição 1. Um conjunto é qualquer coleção bem especificada de elementos. Para qualquer conjunto A, escrevemos a A para indicar que a é um elemento de A e a / A para

Leia mais

Polinômios de Legendre

Polinômios de Legendre Seção 5: continuação do método de resolução por séries de potências Na Seção foi exposto informalmente, através de exemplos, o método de resolução de equações diferenciais ordinárias por séries de potências.

Leia mais

MAT 1351 : Cálculo para Funções de Uma Variável Real I. Sylvain Bonnot (IME-USP)

MAT 1351 : Cálculo para Funções de Uma Variável Real I. Sylvain Bonnot (IME-USP) MAT 1351 : Cálculo para Funções de Uma Variável Real I Sylvain Bonnot (IME-USP) 2016 1 Informações gerais Prof.: Sylvain Bonnot Email: sylvain@ime.usp.br Minha sala: IME-USP, 151-A (Bloco A) Site: ver

Leia mais

Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão Lista 1. Números Naturais

Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão Lista 1. Números Naturais Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão 01 Lista 1 Números Naturais 1. Demonstre por indução as seguintes fórmulas: (a) (b) n (j 1) = n (soma dos n primeiros ímpares).

Leia mais

COLÉGIO DE APLICAÇÃO JOÃO XXIII UFJF

COLÉGIO DE APLICAÇÃO JOÃO XXIII UFJF COLÉGIO DE APLICAÇÃO JOÃO XXIII UFJF Conteúdos Prova de Recuperação 1. Conjuntos Numéricos: - a. Identificar e representar números Naturais (IN), Inteiros (Z), Racionais (Q), Irracionais (Ir) e Reais.

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I Prof. Lino Marcos da Silva Atividade 1 - Números Reais Objetivos De um modo geral, o objetivo dessa atividade é fomentar o estudo de conceitos relacionados aos números

Leia mais

LISTA DE EXERCÍCIOS. [01] Determine o domínio natural (efetivo) de cada uma das funções indicadas abaixo.

LISTA DE EXERCÍCIOS. [01] Determine o domínio natural (efetivo) de cada uma das funções indicadas abaixo. LISTA DE EXERCÍCIOS Pré-Cálculo Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ 04 Transformações de gráficos de funções, função raiz quadrada, funções potência [01] Determine o domínio

Leia mais

Gabarito da lista de Exercícios sobre Técnicas de Demonstração

Gabarito da lista de Exercícios sobre Técnicas de Demonstração Universidade Federal Fluminense Curso: Sistemas de Informação Disciplina: Fundamentos Matemáticos para Computação Professora: Raquel Bravo Gabarito da lista de Exercícios sobre Técnicas de Demonstração

Leia mais

Pré-Cálculo. Humberto José Bortolossi. Aula 8 26 de abril de Departamento de Matemática Aplicada Universidade Federal Fluminense

Pré-Cálculo. Humberto José Bortolossi. Aula 8 26 de abril de Departamento de Matemática Aplicada Universidade Federal Fluminense Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 8 26 de abril de 200 Aula 8 Pré-Cálculo O que é uma função? Funções reais Uma função real f

Leia mais

DISTRIBUIÇÃO DOS DOMÍNIOS POR PERÍODO

DISTRIBUIÇÃO DOS DOMÍNIOS POR PERÍODO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS Planificação Anual da Disciplina de Matemática 10.º ano Ano Letivo de 2015/2016 Manual adotado: Máximo 10 Matemática A 10.º ano Maria Augusta Ferreira

Leia mais

1. Polinómios e funções racionais

1. Polinómios e funções racionais Um catálogo de funções. Polinómios e funções racionais Polinómios e funções racionais são funções que se podem construir usando apenas as operações algébricas elementares. Recordemos a definição: Definição

Leia mais

MAT 1351 : Cálculo para Funções de Uma Variável Real I. Sylvain Bonnot (IME-USP)

MAT 1351 : Cálculo para Funções de Uma Variável Real I. Sylvain Bonnot (IME-USP) MAT 1351 : Cálculo para Funções de Uma Variável Real I Sylvain Bonnot (IME-USP) 2016 1 Informações gerais Prof.: Sylvain Bonnot Email: sylvain@ime.usp.br Minha sala: IME-USP, 151-A (Bloco A) Site: ver

Leia mais

Metas/Objetivos/Domínios Conteúdos/Conceitos Número de Aulas

Metas/Objetivos/Domínios Conteúdos/Conceitos Número de Aulas DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: MATEMÁTICA A ANO:10.º Planificação (Conteúdos)... Período Letivo: 1.º Metas/Objetivos/Domínios Conteúdos/Conceitos Número de Aulas Álgebra - Radicais

Leia mais

Matemática Básica Relações / Funções

Matemática Básica Relações / Funções Matemática Básica Relações / Funções 04 1. Relações (a) Produto cartesiano Dados dois conjuntos A e B, não vazios, denomina-se produto cartesiano de A por B ao conjunto A B cujos elementos são todos os

Leia mais

Nome do aluno: N.º: Para responder aos itens de escolha múltipla, não apresente cálculos nem justificações e escreva, na folha de respostas:

Nome do aluno: N.º: Para responder aos itens de escolha múltipla, não apresente cálculos nem justificações e escreva, na folha de respostas: Teste de Matemática A 017 / 018 Teste N.º 5 Matemática A Duração do Teste (Caderno 1+ Caderno ): 90 minutos 10.º Ano de Escolaridade Nome do aluno: N.º: Turma: Este teste é constituído por dois cadernos:

Leia mais

P L A N I F I C A Ç Ã O A N U A L

P L A N I F I C A Ç Ã O A N U A L P L A N I F I C A Ç Ã O A N U A L DEPARTAMENTO: MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS ÁREA DISCIPLINAR: 500 - MATEMÁTICA DISCIPLINA: MATEMÁTICA A NÍVEL DE ENSINO: Secundário CURSO: Ciências e Tecnologias

Leia mais

Hewlett-Packard CONJUNTOS NUMÉRICOS. Aulas 01 a 08. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos

Hewlett-Packard CONJUNTOS NUMÉRICOS. Aulas 01 a 08. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Hewlett-Packard CONJUNTOS NUMÉRICOS Aulas 01 a 08 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Ano: 2019 Sumário CONJUNTOS NUMÉRICOS... 2 Conjunto dos números Naturais... 2 Conjunto dos números

Leia mais

Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Oitavo Ano. Prof. Ulisses Lima Parente

Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Oitavo Ano. Prof. Ulisses Lima Parente Material Teórico - Módulo de Potenciação e Dízimas Periódicas Potenciação Oitavo Ano Prof Ulisses Lima Parente 1 Potência de expoente inteiro positivo Antes de estudar potências, é conveniente relembrar

Leia mais

P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o

P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o 2015-2016 DISCIPLINA / ANO: Matemática A 10ºano de escolaridade MANUAL ADOTADO: NOVO ESPAÇO 10 GESTÃO DO TEMPO Nº de Nº de Nº de tempos tempos tempos

Leia mais

PLANIFICAÇÃO A MÉDIO/LONGO PRAZO

PLANIFICAÇÃO A MÉDIO/LONGO PRAZO 207/208 PLANIFICAÇÃO A MÉDIO/LONGO PRAZO DISCIPLINA: Matemática A ANO: 0.º CURSO: Cientifico Humanísticos de Ciências e Tecnologias de Ciências Socioeconómicas.º Período Total de aulas Previstas: 53+9

Leia mais

Pré-Cálculo. Humberto José Bortolossi. Aula de maio de Departamento de Matemática Aplicada Universidade Federal Fluminense

Pré-Cálculo. Humberto José Bortolossi. Aula de maio de Departamento de Matemática Aplicada Universidade Federal Fluminense Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 12 11 de maio de 2010 Aula 12 Pré-Cálculo 1 A função afim A função afim Uma função f : R R

Leia mais

Minicurso de nivelamento de pré-cálculo:

Minicurso de nivelamento de pré-cálculo: Minicurso de nivelamento de pré-cálculo: 07. Quarta-feira Resolva os eercícios abaio, tomando bastante cuidado na maneira de escrever a resolução dos mesmos. Não use a calculadora, a idéia é que você treine

Leia mais

Funções quadráticas. Definição. Função quadrática é toda a função de R em R que pode ser. (ou seja, é toda a função r.v.r. polinomial de grau 2).

Funções quadráticas. Definição. Função quadrática é toda a função de R em R que pode ser. (ou seja, é toda a função r.v.r. polinomial de grau 2). FUNÇÃO QUADRÁTICA Funções quadráticas Definição Função quadrática é toda a função de R em R que pode ser definida por uma expressão analítica da forma ax 2 + bx + c, com a, b, c R e a 0 (ou seja, é toda

Leia mais

SIMULADO 3 INSTITUTO TECNOLÓGICO DE AERONÁUTICA VESTIBULAR 2018 GABARITO

SIMULADO 3 INSTITUTO TECNOLÓGICO DE AERONÁUTICA VESTIBULAR 2018 GABARITO SIMULADO 3 INSTITUTO TECNOLÓGICO DE AERONÁUTICA VESTIBULAR 018 GABARITO Física Inglês Português Matemática 1 C 1 * 1 D 1 B B B E C 3 B 3 B 3 D 3 D 4 E 4 C 4 A 4 E 5 A 5 B 5 C 5 C 6 C 6 E 6 E 6 A 7 E 7

Leia mais

Portal da OBMEP. Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Oitavo Ano

Portal da OBMEP. Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Oitavo Ano Material Teórico - Módulo de Potenciação e Dízimas Periódicas Potenciação Oitavo Ano Autor: Prof Angelo Papa Neto Revisor: Prof Antonio Caminha M Neto 1 Potência de expoente inteiro positivo Antes de estudar

Leia mais

DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS - Grupo 500. Planificação Anual /Critérios de avaliação

DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS - Grupo 500. Planificação Anual /Critérios de avaliação Disciplina: Matemática A _ 10º ano _ CCH 2015/2016 AGRUPAMENTO DE ESCOLAS ANSELMO DE ANDRADE DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS - Grupo 500 Planificação Anual /Critérios de avaliação Início

Leia mais

Universidade Portucalense Departamento de Inovação, Ciência e Tecnologia Curso Satélite - Módulo I - Matemática

Universidade Portucalense Departamento de Inovação, Ciência e Tecnologia Curso Satélite - Módulo I - Matemática Universidade Portucalense Departamento de Inovação, Ciência e Tecnologia Curso Satélite - Módulo I - Matemática Valor Absoluto: O valor absoluto de a, representa-se por a e é a distância do número a a

Leia mais

DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA:

DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: Matemática A (10º Ano) METAS CURRICULARES/CONTEÚDOS... 1º Período (11 de setembro a 15 de dezembro) Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas

Leia mais

7. O teorema de Hurwitz-Markov

7. O teorema de Hurwitz-Markov 7. O teorema de Hurwitz-Markov 7.1 O enunciado do teorema, tal que. Em particular, existem infinitos ( ) com Por outro lado,, a desigualdade número finito de soluções. Vamos traduzir o teorema da seguinte

Leia mais

Pré-Cálculo. Humberto José Bortolossi. Aula de junho de Departamento de Matemática Aplicada Universidade Federal Fluminense

Pré-Cálculo. Humberto José Bortolossi. Aula de junho de Departamento de Matemática Aplicada Universidade Federal Fluminense Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 12 06 de junho de 2011 Aula 12 Pré-Cálculo 1 A função afim A função afim Uma função f : R R

Leia mais

Números Irracionais e Reais. Oitavo Ano

Números Irracionais e Reais. Oitavo Ano Módulo de Potenciação e Dízimas Periódicas Números Irracionais e Reais Oitavo Ano Números Irracionais e Reais 1 Exercícios Introdutórios Exercício 1. No quadro abaixo, determine quais números são irracionais.

Leia mais

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO. Escola Básica e Secundária Dr. Vieira de Carvalho. Departamento de Matemática e Ciências Experimentais

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO. Escola Básica e Secundária Dr. Vieira de Carvalho. Departamento de Matemática e Ciências Experimentais AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO Escola Básica e Secundária Dr. Vieira de Carvalho Departamento de Matemática e Ciências Experimentais Planificação Anual de Matemática A 10º ano Ano Letivo

Leia mais

Lista 2 - Cálculo. 17 de maio de Se f e g são funções cujos grácos estão representados abaixo, sejam u(x) = f(x)g(x),

Lista 2 - Cálculo. 17 de maio de Se f e g são funções cujos grácos estão representados abaixo, sejam u(x) = f(x)g(x), Lista 2 - Cálculo 17 de maio de 2019 1. Se f e g são funções cujos grácos estão representados abaixo, sejam u(x) = f(x)g(x), h(x) = f(g(x)) e k(x) = g(f(x)). Encontre as seguintes derivadas: (a) u (1)

Leia mais

Definição 3.1: Seja x um número real. O módulo de x, denotado por x, é definido como: { x se x 0 x se x < 0

Definição 3.1: Seja x um número real. O módulo de x, denotado por x, é definido como: { x se x 0 x se x < 0 Capítulo 3 Módulo e Função Módular A função modular é uma função que apresenta o módulo na sua lei de formação. No entanto, antes de falarmos sobre funções modulares devemos definir o conceito de módulo,

Leia mais

Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira. MAT146 - Cálculo I - Integração por Frações Parciais

Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira. MAT146 - Cálculo I - Integração por Frações Parciais MAT146 - Cálculo I - Integração por Frações Parciais Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira Iremos agora desenvolver um método para resolver integrais de funções racionais,

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Potenciação. Lucas Araújo - Engenharia de Produção

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Potenciação. Lucas Araújo - Engenharia de Produção CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.1 Potenciação Lucas Araújo - Engenharia de Produção Potenciação No século 3 a.c na Grécia antiga, Arquimedes resolveu calcular quantos grãos de areia

Leia mais

Planificação Anual Matemática A 10º Ano

Planificação Anual Matemática A 10º Ano ESCOLA SECUNDÁRIA/3 RAINHA SANTA ISABEL 402643 ESTREMOZ Planificação Anual Matemática A 10º Ano Ano letivo 2017/2018 PERÍODO Nº de AULAS PREVISTAS (45 min) 1º 78 2º 60 3º 54 Total: 192 Total de aulas previstas

Leia mais

Limites de Funções. Bases Matemáticas. 2 o quadrimestre de o quadrimestre de / 57

Limites de Funções. Bases Matemáticas. 2 o quadrimestre de o quadrimestre de / 57 2 o quadrimestre de 2017 2 o quadrimestre de 2017 1 / Visão Geral 1 Limites Finitos Limite para x ± 2 Limites infinitos Limite no ponto Limite para x ± 3 Continuidade Definição e exemplos Resultados importantes

Leia mais

Nono Ano - Fundamental. Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto. Portal da OBMEP

Nono Ano - Fundamental. Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto. Portal da OBMEP Material Teórico - Módulo: Funções - Noções Básicas Exercícios Nono Ano - Fundamental Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto Nesta aula, apresentaremos exemplos e resolveremos

Leia mais

Planificação Anual /Critérios de avaliação. Disciplina: Matemática A _ 10º ano - CCH 2016/2017

Planificação Anual /Critérios de avaliação. Disciplina: Matemática A _ 10º ano - CCH 2016/2017 Agrupamento de Escolas Anselmo de Andrade DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS - Grupo 500 Planificação Anual /Critérios de avaliação Disciplina: Matemática A _ 10º ano - CCH 2016/2017 Início

Leia mais

Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas. Lógica e Teoria dos conjuntos: Introdução à lógica bivalente e à Teoria dos conjuntos

Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas. Lógica e Teoria dos conjuntos: Introdução à lógica bivalente e à Teoria dos conjuntos DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: Matemática A (10º Ano) METAS CURRICULARES/CONTEÚDOS... 1º Período (15 de setembro a 16 de dezembro) Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas

Leia mais

Soluções Comentadas Matemática Curso Mentor Escola de Especialistas da Aeronáutica. Barbosa, L.S.

Soluções Comentadas Matemática Curso Mentor Escola de Especialistas da Aeronáutica. Barbosa, L.S. Soluções Comentadas Matemática Curso Mentor Escola de Especialistas da Aeronáutica Barbosa, L.S. leonardosantos.inf@gmail.com 4 de junho de 014 Sumário I Provas 5 1 Matemática 013 1 7 II Soluções 11 Matemática

Leia mais

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO. Escola Básica e Secundária Dr. Vieira de Carvalho. Departamento de Matemática e Ciências Experimentais

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO. Escola Básica e Secundária Dr. Vieira de Carvalho. Departamento de Matemática e Ciências Experimentais AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO Escola Básica e Secundária Dr. Vieira de Carvalho Departamento de Matemática e Ciências Experimentais Planificação Anual de Matemática A 10º ano Ano Letivo

Leia mais

Agrupamento de Escolas General Humberto Delgado Sede na Escola Secundária/3 José Cardoso Pires Santo António dos Cavaleiros

Agrupamento de Escolas General Humberto Delgado Sede na Escola Secundária/3 José Cardoso Pires Santo António dos Cavaleiros Agrupamento de Escolas General Humberto Delgado Sede na Escola Secundária/3 José Cardoso Pires Santo António dos Cavaleiros Curso Científico-Humanístico de Ciências e Tecnologias Curso Científico-Humanístico

Leia mais

Funções - Terceira Lista de Exercícios

Funções - Terceira Lista de Exercícios Funções - Terceira Lista de Exercícios Módulo - Números Reais. Expresse cada número como decimal: a) 7 b) c) 9 0 5 5 e) 3 7 0 f) 4 g) 8 7 d) 7 8 h) 56 4. Expresse cada número decimal como uma fração na

Leia mais

Professor conteudista: Renato Zanini

Professor conteudista: Renato Zanini Matemática Professor conteudista: Renato Zanini Sumário Matemática Unidade I 1 OS NÚMEROS REAIS: REPRESENTAÇÕES E OPERAÇÕES... EXPRESSÕES LITERAIS E SUAS OPERAÇÕES...6 3 RESOLVENDO EQUAÇÕES...7 4 RESOLVENDO

Leia mais

Planificação Anual Matemática 10º Ano

Planificação Anual Matemática 10º Ano ESCOLA SECUNDÁRIA/3 RAINHA SANTA ISABEL 402643 ESTREMOZ Planificação Anual Matemática 10º Ano Ano letivo 2016/2017 PERÍODO Nº de AULAS PREVISTAS (45 min) 1º 72 2º 72 3º 42 Total: 186 Total de aulas previstas

Leia mais

Lista 1 - Bases Matemáticas

Lista 1 - Bases Matemáticas Lista 1 - Bases Matemáticas Elementos de Lógica e Linguagem Matemática Parte I 1 Atribua valores verdades as seguintes proposições: a) 5 é primo e 4 é ímpar. b) 5 é primo ou 4 é ímpar. c) (Não é verdade

Leia mais

MATEMÁTICA. Conceito de Funções. Professor : Dêner Rocha

MATEMÁTICA. Conceito de Funções. Professor : Dêner Rocha MATEMÁTICA Conceito de Funções Professor : Dêner Rocha Monster Concursos 1 Noção de Função 1º) Dados A = {-, -1, 0, 1, } e B = {-8, -6, -4, -3, 0, 3, 6, 7} e a correspondência entre A e B dada pela fórmula

Leia mais

MATEMÁTICA I. Profa. Dra. Amanda L. P. M. Perticarrari

MATEMÁTICA I. Profa. Dra. Amanda L. P. M. Perticarrari MATEMÁTICA I Profa. Dra. Amanda L. P. M. Perticarrari amanda.perticarrari@unesp.br www.fcav.unesp.br/amanda MATEMÁTICA I AULA 1: PRÉ-CÁLCULO Profa. Dra. Amanda L. P. M. Perticarrari CONJUNTOS NUMÉRICOS

Leia mais

Funções. Pré-Cálculo. O que é uma função? O que é uma função? Humberto José Bortolossi. Parte 2. Definição

Funções. Pré-Cálculo. O que é uma função? O que é uma função? Humberto José Bortolossi. Parte 2. Definição Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Funções Parte 2 Parte 2 Pré-Cálculo Parte 2 Pré-Cálculo 2 O que é uma função? O que é uma função?

Leia mais

Séries Potências II. por Abílio Lemos. Universidade Federal de Viçosa. Departamento de Matemática UFV. Aulas de MAT

Séries Potências II. por Abílio Lemos. Universidade Federal de Viçosa. Departamento de Matemática UFV. Aulas de MAT Séries Potências II por Universidade Federal de Viçosa Departamento de Matemática-CCE Aulas de MAT 147-2018 26 e 28 de setembro de 2018 Se a série de potências c n (x a) n tiver um raio de convergência

Leia mais

Chama-se conjunto dos números naturais símbolo N o conjunto formado pelos números. OBS: De um modo geral, se A é um conjunto numérico qualquer, tem-se

Chama-se conjunto dos números naturais símbolo N o conjunto formado pelos números. OBS: De um modo geral, se A é um conjunto numérico qualquer, tem-se UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Conjuntos Numéricos Prof.:

Leia mais

Secretaria da Educação do Estado do Ceará SEDUC-CE. Professor Nível A - Especialidade: Matemática

Secretaria da Educação do Estado do Ceará SEDUC-CE. Professor Nível A - Especialidade: Matemática Secretaria da Educação do Estado do Ceará SEDUC-CE Professor Nível A - Especialidade: Matemática Edital Nº 030/2018 SEDUC/SEPLAG, de 19 de Julho de 2018 JL086-2018 DADOS DA OBRA Título da obra: Secretaria

Leia mais

EMENTA Lógica; Conjuntos Numéricos; Relações e Funções. OBJETIVOS. Geral

EMENTA Lógica; Conjuntos Numéricos; Relações e Funções. OBJETIVOS. Geral DADOS DO COMPONENTE CURRICULAR Disciplina: Matemática Curso: Técnico Integrado em Eletromecânica Série: 1ª Carga Horária: 100 h.r Docente Responsável: EMENTA Lógica; Conjuntos Numéricos; Relações e Funções.

Leia mais

Lista de Exercícios da Primeira Semana Análise Real

Lista de Exercícios da Primeira Semana Análise Real Lista de Exercícios da Primeira Semana Análise Real Nesta lista, a n, b n, c n serão sempre sequências de números reais.. Mostre que todo conjunto ordenado com a propriedade do supremo possui a propriedade

Leia mais