Cálculo III-A Módulo 9

Tamanho: px
Começar a partir da página:

Download "Cálculo III-A Módulo 9"

Transcrição

1 Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada álculo III-A Módulo 9 Aula 17 Teorema de Green Objetivo Estudar um teorema que estabelece uma ligação importante entre integrais de linha e integrais duplas. O Teorema de Green Teorema: Seja uma região fechada e limitada de R 2, cuja fronteira é formada por um número finito de curvas simples, fechadas e 1 por partes, duas a duas disjuntas, orientadas no sentido que deia à esquerda das curvas, (isto é, está orientada positivamente). Seja F P(,) i +Q(,) j um campo vetorial de classe 1 em um conjunto aberto U com U. Então + r P d+q d + ( ) Q P dd No caso, e r F d r + r + r + r

2 álculo III-A Módulo 9 2 OBS.: Geralmente, usamos o Teorema de Green, quando F d r é + difícil de ser calculada diretamente. Eemplo 1 Seja F (,) (2+) i +(3+4) j. Vamos calcular as duas integrais do enunciado do Teorema de Green, para a região triangular de vértices (,), (1,) e (,1). B (,1) + 1 O A (1,) Temos OA AB BO. álculo de F d r OA Temos OA :, 1, portanto d. Então r P(,)d álculo de AB r OA OA 1 2 d [ 2] 1 1. Temos AB : 1, 1, portanto d d. Então r P(1,)( d)+q(1,)d AB AB [ 2(1 )+ ] d + [ 3 +4(1 ) ] d ( )d 2d [ ]

3 álculo III-A Módulo 9 3 álculo de BO r OB r Temos OB :, 1, portanto d. Então BO r OB Q(,) d 1 [ ] 1 3 (3 +) d Somando, temos + r Por outro lado, ( ) Q P dd (4 1) dd 3A() Eemplo 2 Seja F (,) 2 i + 2 j e o disco de centro (,) e raio 1. alculemos F d r, para + orientada no sentido anti-horário. Solução: o Teorema de Green, temos r + ( ) Q P 1 dd ( ) dd. 1 Passando para coordenadas polares, temos rcosθ rsenθ dd rdrdθ r 2

4 álculo III-A Módulo 9 4 e rθ é dado por Então rθ : { r 1 θ 2π r r 2 r drdθ r 3 drdθ rθ rθ + 1 r 3 2π dθdr 2π 1 [ r 3 dr 2π ] 1 r 4 4 π 2. Eemplo 3 Seja F (,) i j definido em R 2 {(,)}. alculemos: a) r, sendo 1 : a 2, a > ; b) + 1 r, sendo 2 uma curva fechada, 1 por partes, que envolve a origem. + 2 Solução: a) Observemos que a região limitada por 1 não está contida em, pois (,) /. Então não podemosaplicar o Teorema de Green. Sendo assim, usaremos a definição. Parametrizando 1, temos acost e asent, com t 2π portanto d asent dt e d acost dt. Então + 1 r d d 2π 2π 2π 2π. [ asent ( asent)+ acost (acost) ] dt a 2 a 2 (sen 2 t+cos 2 t) dt dt

5 álculo III-A Módulo 9 5 b) 2 Aqui também não podemos aplicar o Teorema de Green, pois (,) está na região limitada por 2 e (,) /. Usar a definição é impossível pois nem conhecemos uma equação de 2. Então o que fazer? R a 1 a 2 A ideia é de isolar (,) por uma circunferência 1 : a 2 com o raio a adequado de modo que 1 esteja no interior da região limitada por 2, orientada no sentido horário. Seja R a região limitada por 1 e 2. Logo, R 2 1. omo R não contém (,), então podemos aplicar o Teorema de Green em R. Temos omo ( ) Q P portanto F d r R + r (Verifique!) então r ou R R + ( ) Q P dd. F d r. Logo, r + 2 F d r + r 2π por (a). 1 F d r Eemplo 4 a) Se é uma região plana qualquer à qual se aplica o Teorema de Green, mostre que a área de é dada por A() d ou A() d ou A() 1 d+ d b) Aplique uma das fórmulas acima para mostrar que a área limitada pela elipse 2 é πab. a b 2 1

6 álculo III-A Módulo 9 6 Solução: a) Pelo Teorema de Green, tem-se d d+d + + ( ) ( ) dd (+1)dd dd A(). Logo, A() d. Analogamente, prova-se as outras fórmulas. + b) O esboço de é: b a A área de é dada por A() Então A() d onde é parametrizada por { + γ(t) (acost,bsent), t 2π. γ (t) ( asent,bcost) 2π ( bsent)( asent) dt 2π ab 1 2 absen 2 tdt [ ab 1 2 2π πab u.a. t sen2t 2 ] 2π

7 álculo III-A Módulo 9 7 O Teorema da ivergência Teorema: Seja uma região fechada e limitada de R 2, cuja fronteira é formada por um número finito de curvas simples, fechadas e 1 por partes, duas a duas disjuntas, orientadas no sentido que deia à esquerda das curvas, (isto é, está orientada positivamente). Seja F P(,) i +Q(,) j um campo vetorial de classe 1 em um conjunto aberto U com U e n o vetor normal unitário que aponta para o eterior de. Então + F n ds div F dd Observação: O teorema acima é uma forma vetorial do Teorema de Green. Para obtê-lo, basta aplicar o teorema de Green ao campo G Q(,) i +P(,) j. Eemplo 5 alcule F n ds onde F (,) (+2 +e 2, ) e 1 2, com 1 o semicírculo de raio 2 centrado na origem e contido no semiplano percorrida no sentido trigonométrico, 2 o segmento de reta que une os pontos ( 2,) a (,) e n o vetor normal à curva que aponta sempre para o eterior do semidisco ,. Solução: Vamos usar o teorema da divergência no semi-disco {(,) , } com bordo 3 onde 3 é o segmento de reta que une a origem ao ponto (2,). Assim, div F dd F n ds F n ds+ F n ds 3 Mas div F ) (+2 +e 2 + ( ) Além disso, o vetor normal unitário eterior a na curva 3 é (, 1). Portanto em 3, F n F (,) (, 1) e

8 álculo III-A Módulo 9 8 logo, F n ds π 2 [ 2r 3 3 2dd d 3 ] r 2 senθdrdθ+ [ ] π cosθ + [ ] 2 d Aula 18 Teorema das Quatro Equivalências Objetivo Estudar condições sobre o domínio de F para que valha a recíproca do Teorema 1, da aula 16, isto é, em que domínios, campos de rotacional nulo são conservativos? ondições sobre (i) é aberto. (ii) é coneo (isto é, dois pontos quaisquer de podem ser ligados por uma curva contida em ). (iii) é sem buracos (isto é, qualquer curva fechada de delimita uma região inteiramente contida em ). Um conjunto satisfazendo as condições (i), (ii) e (iii) é dito um conjunto simplesmente coneo. A seguir daremos eemplos de conjuntos simplesmente coneos. R Agora, daremos eemplos de conjuntos não simplesmente coneos.

9 álculo III-A Módulo 9 9 R 2 {(,)} R 2 eio OBS.: Seja R 3. izemos que é um conjunto simplesmente coneoseéaberto, coneoe semburacos (nosentido dequequalquer curva fechada de delimita uma superfície inteiramente contida em ). Eemplo 1 O R 3, uma bola aberta em R 3, o R 3 {(,,)} são conjuntos simplesmente coneos. O R 3 sem uma reta não é simplesmente coneo. Teorema 1: Seja F um campo de classe 1 em um domínio de R 2, simplesmente coneo. Se rot F então F é conservativo. emonstração O fato de que é um conjunto simplesmente coneo e rot F segue do Teorema de Green que r. para todo caminho fechado de. aí mostramos que F d r não depende do caminho. Em seguida, mostra-se que F é conservativo. o Teorema 1 e de teoremas da aula 16, enunciamos um teorema contendo quatro equivalências. Teorema das quatro equivalências: Seja F (P,Q) : R 2 R 2 um campo de classe 1 em. Se R 2 é um conjunto simplesmente coneo, então as seguintes afirmações são equivalentes: a) Q P b) c) em r qualquer que seja a curva fechada de. r não depende do caminho de.

10 álculo III-A Módulo 9 1 d) F é conservativo. Eemplo 2 onsidere a curva dada por σ(t) ( cos π,et 1), 1 t 2. alcule t F (,) ( 2 sen,2cos). F d r, onde Solução: omo F é de classe 1 em R 2 (que é um conjunto simplesmente coneo) e Q P 2sen, então pelo teorema das quatro equivalências, segue que F d r não depende do caminho que liga σ(1) (1,1) e σ(2) (,e). Então considere 1 2, onde 1 : 1, 1, portanto d e 2 :, 1 e, portanto d. (,e) 2 (1,1) 1 Temos r 1 Logo, 1 r 1 r Q(,) d 2 2 Uma solução alternativa P(,1)d e 1 1 2cos d ( sen)d e r 1 cos1+e 2 1 e 2 cos d 2 e e 2 1. sen d cos 1 1 cos1. Pelo teorema das quatro equivalências segue que F é conservativo. Logo, eiste ϕ(,) definido em R 2, tal que ϕ 2 sen (1) ϕ 2cos (2) 1

11 álculo III-A Módulo 9 11 Integrando (1) e (2) em relação a e respectivamente, temos ϕ(,) 2 cos+f() ϕ(,) 2 cos+g() Tomando f() e g(), temos que ϕ(,) 2 cos é uma função potencial de F. Logo, r ϕ(σ(2)) ϕ(σ(1)) ϕ(,e) ϕ(1,1) e 2 cos 1 2 cos1 e 2 cos1. Eemplo 3 onsidere a integral de linha (ke +) d+( 2 e + k) d. a) etermine a constante k para que esta integral seja independente do caminho. b) alcule o valor da integral de A (,) a B (1,1) para o valor de k encontrado em (a). Solução: a) O campo F é definido em R 2 que é um conjunto simplesmente coneo. Pelo teorema das quatro equivalências é necessário que rot F para que a integral independa do caminho. Então rot F Q P em R 2 2e +1 ke +1 2e ke 2 k pois e para todo R k 2. Portanto, para k 2 segue que rot F, portanto pelo teorema das equivalências temos que a integral independe do caminho. b) Temos que k 2 F (,) (2e +) i + ( 2 e + 2 ) j.

12 álculo III-A Módulo B (1,1) 2 A (,) 1 1 omo a integral independe do caminho, tomemos 1 2, onde 1 :, com 1 portanto d e 2 : 1, com 1, portanto d. Temos 1 1 [ ] F d 1 r P(,)d 2e d 2d [ ] F d 1 r Q(1,)d (e +1 2) d e + 2 e Somando temos, Uma solução alternativa r 1+e 1 e. Também do teorema das equivalências resulta que F é conservativo, isto é, eiste ϕ(,) definido em R 2, tal que ϕ 2e + (3) ϕ 2 e + 2 (4) Integrando (3) e (4) em relação a e respectivamente, temos ϕ(,) 2 e + +f() ϕ(,) 2 e + 2 +g(). evemos tomar f() 2 e g(). Assim ϕ(,) 2 e + 2 é uma função potencial de F. Logo, r ϕ(b) ϕ(a) ϕ(1,1) ϕ(,) e e. Eercício 1: alcule a integral de linha diretamente e, também, pelo teorema de Green: d+ 2 d onde é o caminho fechado formado por 2 e, no sentido anti-horário. Eercício 2: Utilize o teorema de Green para calcular:

13 álculo III-A Módulo 9 13 a) I 2 d+arctg d onde é o caminho fechado formado por, 1, e, no sentido anti-horário; b) I e sen d + (+e cos)d, onde é a elipse , no sentido anti- -horário; c) I 2arctg d + ( ln ( 2 + 2) + ) d onde é parametrizada por 4 + 2cost e 4+sent, com t 2π. Eercício 3: O teorema de Green pode ser utilizado para calcular a integral de linha 2 + d d 2 a) onde é a circunferência , orientada no sentido anti-horário? b) onde é o triângulo com vértices (1,), (1,2) e (2,2), orientado no sentido anti-horário? c) Qual é o valor da integral de linha onde é o triângulo da parte (b)? Eercício 4: Use uma integral de linha para calcular a área da região plana limitada pelas curvas 2 e 2. Eercício 5: Uma partícula move-se ao longo da circunferência 4 2 do ponto (2,) até ( 2, ). etermine o trabalho realizado nessa partícula pelo campo de força a seguir: ( F(,) +e 2, e 2). Eercício 6: Mostre que I (2,3) (,1) é independente do caminho e calcule-a. ( 2+ 3 ) d+ ( ) d Eercício 7: a) Mostre que I caminho. ( ) d + ( ln ( 1+ 2)) d é independente do

14 álculo III-A Módulo 9 14 b) alcule a integral I para : ( 1) , com, no sentido horário. Eercício 8: Mostre que I (1+2 +ln) d+ 2 d é independente do caminho e calcule o valor de I onde é dada por γ(t) (1 + cost,sent), com π/2 t π/2.

Cálculo III-A Módulo 9 Tutor

Cálculo III-A Módulo 9 Tutor Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada álculo III-A Módulo 9 Tutor Eercício : alcule a integral de linha diretamente e, também, pelo teorema

Leia mais

Cálculo III-A Lista 8

Cálculo III-A Lista 8 Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada álculo III-A Lista 8 Eercício : Um objeto percorre uma elipse 4 +5 no sentido anti-horário e se

Leia mais

Cálculo III-A Módulo 14

Cálculo III-A Módulo 14 Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada álculo III-A Módulo 4 Aula 25 Teorema de tokes Objetivo Estudar um teorema famoso que generalia

Leia mais

Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada. Cálculo 3A Lista 8

Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada. Cálculo 3A Lista 8 Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada álculo 3A Lista 8 Eercício : Um objeto percorre uma elipse 4 +5 no sentido anti-horário e se encontra

Leia mais

Cálculo IV EP10 Tutor

Cálculo IV EP10 Tutor Fundação entro de iências e Educação Superior a istância do Estado do Rio de Janeiro entro de Educação Superior a istância do Estado do Rio de Janeiro álculo IV EP Tutor Eercício : alcule a integral de

Leia mais

Cálculo III-A Lista 14

Cálculo III-A Lista 14 Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Eercício : Mostre que álculo III-A Lista 4 I + +ln) d+ d é independente do caminho e calcule o valor

Leia mais

Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada. Cálculo 3A Lista 13. rot F n ds.

Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada. Cálculo 3A Lista 13. rot F n ds. Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada álculo 3A Lista 3 Eercício : Verifique o Teorema de tokes, calculando as duas integrais do enunciado,

Leia mais

Cálculo III-A Módulo 2 Tutor

Cálculo III-A Módulo 2 Tutor Eercício : Calcule Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Cálculo III-A Módulo Tutor + e +. + da onde é a região compreendida pelas retas,,

Leia mais

Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada. Cálculo 3A Lista 7.

Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada. Cálculo 3A Lista 7. Eercício : ada a integral dupla I Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Cálculo 3A Lista 7 f,)dd + f,)dd. a) Esboce a região. b) Inverta

Leia mais

Cálculo IV EP2 Tutor

Cálculo IV EP2 Tutor Eercício : Calcule + e +. Fundação Centro de Ciências e Educação Superior a istância do Estado do Rio de Janeiro Centro de Educação Superior a istância do Estado do Rio de Janeiro Cálculo IV EP Tutor da

Leia mais

Cálculo III-A Módulo 3

Cálculo III-A Módulo 3 Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Cálculo III-A Módulo 3 Aula 5 Aplicações da Integrais uplas Objetivo Estudar algumas aplicações

Leia mais

3xz dx + 4yz dy + 2xy dz, do ponto A = (0, 0, 0) ao ponto B = (1, 1, 2), ao longo dos seguintes caminhos:

3xz dx + 4yz dy + 2xy dz, do ponto A = (0, 0, 0) ao ponto B = (1, 1, 2), ao longo dos seguintes caminhos: Lista álculo III -A- 201-1 10 Universidade Federal Fluminense EGM - Instituto de Matemática GMA - Departamento de Matemática Aplicada LISTA - 201-1 Integral de Linha de ampo Vetorial Teorema de Green ampos

Leia mais

Cálculo III-A Módulo 10 Tutor

Cálculo III-A Módulo 10 Tutor Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Cálculo III-A Módulo Tutor Eercício : eja a superfície parametriada por ϕ(u,v) = (u,v, v ), com

Leia mais

Cálculo III-A Lista 6

Cálculo III-A Lista 6 Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada álculo III-A Lista 6 Eercício : Apresente uma parametrização diferenciável para as seguintes curvas

Leia mais

Cálculo III-A Módulo 7

Cálculo III-A Módulo 7 Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada álculo III-A Módulo 7 Aula 13 Aplicações da Integral de Linha de ampo Escalar Objetivo Apresentar

Leia mais

Cálculo 3A Lista 6. Exercício 1: Apresente uma parametrização diferenciável para as seguintes curvas planas:

Cálculo 3A Lista 6. Exercício 1: Apresente uma parametrização diferenciável para as seguintes curvas planas: Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada álculo 3A Lista 6 Eercício : Apresente uma parametrização diferenciável para as seguintes curvas

Leia mais

Cálculo III-A Módulo 4

Cálculo III-A Módulo 4 Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada Cálculo III-A Módulo 4 Aula 7 Integrais Triplas Objetivo Compreender a noção de integral tripla.

Leia mais

Total. UFRGS INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT Turma A /1 Prova da área I

Total. UFRGS INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT Turma A /1 Prova da área I UFRG INTITUTO E MATEMÁTIA epartamento de Matemática Pura e Aplicada MAT01168 - Turma A - 2017/1 Prova da área I 1-8 9 10 Total Nome: artão: Regras Gerais: Não é permitido o uso de calculadoras, telefones

Leia mais

Solução: Um esboço da região pode ser visto na figura abaixo.

Solução: Um esboço da região pode ser visto na figura abaixo. Instituto de Matemática - IM/UFRJ Gabarito prova final - Escola Politécnica / Escola de Química - 29/11/211 Questão 1: (2.5 pontos) Encontre a área da região do primeiro quadrante limitada simultaneamente

Leia mais

Cálculo 3A Lista 4. Exercício 1: Seja a integral iterada. I = 1 0 y 2

Cálculo 3A Lista 4. Exercício 1: Seja a integral iterada. I = 1 0 y 2 Eercício : Seja a integral iterada Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada Cálculo A Lista 4 I = ddd. a) Esboce o sólido cujo volume é

Leia mais

Cálculo III-A Módulo 13

Cálculo III-A Módulo 13 Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Cálculo III-A Módulo 3 Aula 4 Teorema de Gauss Objetivo Estudar um teorema famoso que permite calcular

Leia mais

Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada. Cálculo 3A Lista 9

Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada. Cálculo 3A Lista 9 Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Cálculo A Lista 9 Eercício : eja uma superfície parametriada por com u π e v. ϕu,v) vcosu, vsenu,

Leia mais

Integral de linha de campo vectorial. Sejam : C uma curva dada por r(t) = (x(t), y(t), z(t)), com. e F : Dom( F ) R 3 R 3

Integral de linha de campo vectorial. Sejam : C uma curva dada por r(t) = (x(t), y(t), z(t)), com. e F : Dom( F ) R 3 R 3 Integral de linha de campo vectorial Sejam : C uma curva dada por r(t) = (x(t), y(t), z(t)), com t [a, b]. e F : Dom( F ) R 3 R 3 F = (F 1, F 2, F 3 ) um campo vectorial contínuo cujo Dom( F ) contem todos

Leia mais

Cálculo IV EP11 Tutor

Cálculo IV EP11 Tutor Fundação Centro de Ciências e Educação uperior a istância do Estado do Rio de Janeiro Centro de Educação uperior a istância do Estado do Rio de Janeiro Cálculo IV EP Tutor Eercício : eja a superfície parametriada

Leia mais

Cálculo IV EP3. Aula 5 Aplicações da Integrais Duplas. Estudar algumas aplicações físicas como massa, centro de massa e momento de inércia.

Cálculo IV EP3. Aula 5 Aplicações da Integrais Duplas. Estudar algumas aplicações físicas como massa, centro de massa e momento de inércia. Fundação Centro de Ciências e Educação Superior a istância do Estado do Rio de Janeiro Centro de Educação Superior a istância do Estado do Rio de Janeiro Cálculo IV EP3 Aula Aplicações da Integrais uplas

Leia mais

Cálculo IV EP4. Aula 7 Integrais Triplas. Na aula 1, você aprendeu a noção de integral dupla. agora, você verá o conceito de integral tripla.

Cálculo IV EP4. Aula 7 Integrais Triplas. Na aula 1, você aprendeu a noção de integral dupla. agora, você verá o conceito de integral tripla. Fundação Centro de Ciências e Educação Superior a Distância do Estado do Rio de Janeiro Centro de Educação Superior a Distância do Estado do Rio de Janeiro Cálculo IV EP4 Aula 7 Integrais Triplas Objetivo

Leia mais

PROFESSOR: RICARDO SÁ EARP

PROFESSOR: RICARDO SÁ EARP LISTA DE EXERCÍCIOS SOBRE TRABALHO, CAMPOS CONSERVATIVOS, TEOREMA DE GREEN, FLUXO DE UM CAMPO AO LONGO DE UMA CURVA, DIVERGÊNCIA E ROTACIONAL DE UM CAMPO NO PLANO, FUNÇÕES HARMÔNICAS PROFESSOR: RICARDO

Leia mais

UNIDADE III LISTA DE EXERCÍCIOS

UNIDADE III LISTA DE EXERCÍCIOS Universidade Federal da Bahia Instituto de Matemática. - Departamento de Matemática. Disciplina: MATA álculo B UNIDADE III LISTA DE EXERÍIOS Atualizada. Derivada Direcional e Gradiente alcule o gradiente

Leia mais

Lista Determine o volume do sólido contido no primeiro octante limitado pelo cilindro z = 9 y 2 e pelo plano x = 2.

Lista Determine o volume do sólido contido no primeiro octante limitado pelo cilindro z = 9 y 2 e pelo plano x = 2. UFPR - Universidade Federal do Paraná Departamento de Matemática CM042 - Cálculo II (Turma B) Prof. José Carlos Eidam Lista 3 Integrais múltiplas. Calcule as seguintes integrais duplas: (a) R (2y 2 3x

Leia mais

Cálculo III-A Lista 10

Cálculo III-A Lista 10 Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Cálculo III-A Lista Eercício : eja a parte do cilindro + entre os planos e +. a) Parametrie e esboce.

Leia mais

Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada. Cálculo 3A Lista 1

Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada. Cálculo 3A Lista 1 Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Cálculo 3A Lista Eercício : Calcule as seguintes integrais duplas: a) b) c) dd, sendo [,] [,]. +

Leia mais

Instituto de Matemática e Estatística da USP MAT Cálculo Diferencial e Integral III para Engenharia 2a. Prova - 1o. Semestre /05/2017

Instituto de Matemática e Estatística da USP MAT Cálculo Diferencial e Integral III para Engenharia 2a. Prova - 1o. Semestre /05/2017 Instituto de Matemática e Estatística da USP MAT55 - Cálculo iferencial e Integral III para Engenharia a. Prova - 1o. Semestre 17-3/5/17 Turma A Questão 1: Calcule xy ds, onde é dada pela interseção das

Leia mais

Cálculo III-A Lista 1

Cálculo III-A Lista 1 Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Cálculo III-A Lista Eercício : Calcule as seguintes integrais duplas: a) b) c) dd, sendo [,] [,].

Leia mais

Cálculo III-A Módulo 1

Cálculo III-A Módulo 1 Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Prezado aluno, Cálculo III-A Módulo Seja bem-vindo à nossa disciplina. Este teto possui - salvo

Leia mais

Cálculo 3. Integrais de Linha Resumo e Exercícios P2

Cálculo 3. Integrais de Linha Resumo e Exercícios P2 Cálculo 3 Integrais de Linha Resumo e Exercícios P2 Integrais de Linhas de Campos Vetoriais Calculo pelo produto escalar Dado um campo vetorial F e uma curva γ e sua orientação com parametrização γ t a

Leia mais

Universidade Federal do Paraná

Universidade Federal do Paraná Universidade Federal do Paraná etor de iências Exatas Departamento de Matematica Prof. Juan arlos Vila Bravo Lista de exercicios de cálculo II uritiba, 28 de Maio de 2014 INTEGRAL DE LINHA DE AMPO VETORIAL:

Leia mais

Lista 6: Área e Integral de Superfície, Fluxo de Campos Vetoriais, Teoremas de Gauss e Stokes

Lista 6: Área e Integral de Superfície, Fluxo de Campos Vetoriais, Teoremas de Gauss e Stokes MAT 00 2 ō em. 2017 Prof. Rodrigo Lista 6: Área e Integral de uperfície, Fluo de Campos Vetoriais, Teoremas de Gauss e tokes 1. Forneça uma parametrização para: a a porção do cilindro 2 + y 2 = a 2 compreendida

Leia mais

Cálculo IV EP15 Aluno

Cálculo IV EP15 Aluno Fundção entro de iêncis e Educção uperior istânci do Estdo do Rio de Jneiro entro de Educção uperior istânci do Estdo do Rio de Jneiro álculo IV EP5 Aluno Objetivo Aul 25 Teorem de tokes Estudr um teorem

Leia mais

Integrais Sobre Caminhos e Superfícies. Teoremas de Integração do Cálculo Vectorial.

Integrais Sobre Caminhos e Superfícies. Teoremas de Integração do Cálculo Vectorial. Capítulo 5 Integrais Sobre Caminhos e Superfícies. Teoremas de Integração do Cálculo Vectorial. 5.1 Integral de Um Caminho. Integral de Linha. Exercício 5.1.1 Seja f(x, y, z) = y e c(t) = t k, 0 t 1. Mostre

Leia mais

Descrevendo Regiões no Plano Cartesiano e no Espaço Euclidiano

Descrevendo Regiões no Plano Cartesiano e no Espaço Euclidiano Descrevendo Regiões no Plano Cartesiano e no Espaço Euclidiano Americo Cunha Débora Mondaini Ricardo Sá Earp Departamento de Matemática Pontifícia Universidade Católica do Rio de Janeiro Regiões no Plano

Leia mais

UNIVERSIDADE ESTADUAL DE SANTA CRUZ UESC. 1 a Avaliação escrita de Cálculo IV Professor: Afonso Henriques Data: 10/04/2008

UNIVERSIDADE ESTADUAL DE SANTA CRUZ UESC. 1 a Avaliação escrita de Cálculo IV Professor: Afonso Henriques Data: 10/04/2008 1 a Avaliação escrita de Professor: Afonso Henriques Data: 10/04/008 1. Seja R a região do plano delimitada pelos gráficos de y = x, y = 3x 18 e y = 0. Se f é continua em R, exprima f ( x, y) da em termos

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia III 2a. Lista de Exercícios - 1o. semestre de 2014

MAT Cálculo Diferencial e Integral para Engenharia III 2a. Lista de Exercícios - 1o. semestre de 2014 MAT455 - Cálculo Diferencial e Integral para Engenharia III a. Lista de Exercícios - 1o. semestre de 014 1. Calcule as seguintes integrais de linha ao longo da curva indicada: x ds, (t) = (t 3, t), 0 t

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia II 2 a Lista de Exercícios

MAT Cálculo Diferencial e Integral para Engenharia II 2 a Lista de Exercícios MAT454 - Cálculo Diferencial e Integral para Engenharia II a Lista de Eercícios - 014 1. Seja f (, y) = + y + 4 e seja γ(t) = (t cos t, t sen t, t + 4), t 0. (a) Mostre que a imagem de γ está contida no

Leia mais

1. Superfícies Quádricas

1. Superfícies Quádricas . Superfícies Quádricas álculo Integral 44. Identifique e esboce as seguintes superfícies quádricas: (a) x + y + z = (b) x + z = 9 x + y + z = z (d) x + y = 4 z (e) (z 4) = x + y (f) y = x z = + y (g)

Leia mais

Lista 2 - Métodos Matemáticos II Respostas

Lista 2 - Métodos Matemáticos II Respostas Lista - Métodos Matemáticos II Respostas Prof. Jorge Delgado Importante: As resoluções não pretendem ser completas mas apenas uma indicação para o aluno consultar caso seja necessário, cabendo a ele fornecer

Leia mais

1 Distância entre dois pontos do plano

1 Distância entre dois pontos do plano Noções Topológicas do Plano Americo Cunha André Zaccur Débora Mondaini Ricardo Sá Earp Departamento de Matemática Pontifícia Universidade Católica do Rio de Janeiro 1 Distância entre dois pontos do plano

Leia mais

Cálculo III-A Módulo 1 Tutor

Cálculo III-A Módulo 1 Tutor Eercício : Calcule as integrais iteradas: Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Cálculo III-A Módulo Tutor a) e dd b) dd Solução: a) Temos:

Leia mais

Exercícios Referentes à 1ª Avaliação

Exercícios Referentes à 1ª Avaliação UNIVESIDADE FEDEAL DO PAÁ CUSO DE LICENCIATUA EM MATEMÁTICA PLANO NACIONAL DE FOMAÇÃO DE DOCENTES DA EDUCAÇÃO BÁSICA - PAFO Docente: Município: Discente: 5ª Etapa: Janeiro -fevereiro - ) Calcule as integrais

Leia mais

Total. UFRGS - INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT Turma D /2 Prova da área I

Total. UFRGS - INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT Turma D /2 Prova da área I UFRG - INTITUTO DE MATEMÁTIA Departamento de Matemática Pura e Aplicada MAT01168 - Turma D - 018/ Prova da área I 1-6 7 8 Total Nome: artão: Regras Gerais: Não é permitido o uso de calculadoras, telefones

Leia mais

Universidade Federal do Paraná

Universidade Federal do Paraná Universidade Federal do Paraná etor de iências Exatas epartamento de Matematica Prof. Juan arlos Vila Bravo 5 ta Lista de exercicios de cálculo II uritiba, 02 de Junho de 2010 INTEGRAL E LINHA E FUNÇÃO

Leia mais

Cálculo III-A Lista 5

Cálculo III-A Lista 5 Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada Cálculo III-A Lista 5 Eercício : Calcule + dv onde é a região contida dentro do cilindro + = 4

Leia mais

x 2 (2 x) 2 + z 2 = 1 4x + z 2 = 5 x = 5 z2 4 Como y = 2 x, vem que y = 3+z2

x 2 (2 x) 2 + z 2 = 1 4x + z 2 = 5 x = 5 z2 4 Como y = 2 x, vem que y = 3+z2 Turma A Questão 1: (a Calcule Instituto de Matemática e Estatística da USP MAT55 - Cálculo Diferencial e Integral III para Engenharia a. Prova - 1o. Semestre 15-19/5/15 e z dx + xz dy + zy dz sendo a curva

Leia mais

Cálculo IV EP12 Tutor

Cálculo IV EP12 Tutor Eercício : Calcule com u e v. Fundação Centro de Ciências e Educação uperior a istância do Estado do Rio de Janeiro Centro de Educação uperior a istância do Estado do Rio de Janeiro Cálculo IV EP Tutor

Leia mais

Figura6.1: A regiãoàesquerdanão ésimples;adadireitaésimples..

Figura6.1: A regiãoàesquerdanão ésimples;adadireitaésimples.. apítulo 6 TEOREMA E GREEN Nesta seção apresentaremos uma versão simplificada de um dos teoremas clássicos da Análise Vetorial, o teorema de Green. Utilizaremos alguns argumentos intuitivos aceitavéis,

Leia mais

(b) a quantidade de cloro no tanque no instante t;

(b) a quantidade de cloro no tanque no instante t; NOME: Universidade Federal do Rio de Janeiro Instituto de Matemtica Departamento de Mtodos Matemticos Gabarito da a Prova de Cálculo II - 06//0 a QUESTÃO : Um tanque possui 0 litros de solução com cloro

Leia mais

1. Esboce o grá co de cada curva dada abaixo, indicando a orientação positiva. (a) ~r (t) = t~i + (1 t)~j; 0 t 1: (b) ~r (t) = 2t~i + t 2 ~j; 1 t 0:

1. Esboce o grá co de cada curva dada abaixo, indicando a orientação positiva. (a) ~r (t) = t~i + (1 t)~j; 0 t 1: (b) ~r (t) = 2t~i + t 2 ~j; 1 t 0: 2. NTEGRAL E LNHA CÁLCULO 3-2018.1 2.1. :::: :::::::::::::::::::::::: ARCOS REGULARES Um arco (ou trajetória) : ~r (t) = x (t)~i + y (t)~j + z (t) ~ k; a t b; denomina-se arco regular quando as componentes

Leia mais

Cálculo III-A Módulo 10

Cálculo III-A Módulo 10 Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Cálculo III-A Módulo 10 Aula 19 Superfícies Parametriadas Objetivo Estudar as superfícies parametriadas,

Leia mais

Gabarito - Primeira Verificação Escolar de Cálculo IIIA GMA Turma C1. x 2. 2 y

Gabarito - Primeira Verificação Escolar de Cálculo IIIA GMA Turma C1. x 2. 2 y Universidade Federal Fluminense Andrés Gabarito - Primeira Verificação Escolar de álculo IIIA GMA - Turma. onsidere a integral dupla a Esboce a região. y Temos que onde Observando que f(x, ydxdy + y {(x,

Leia mais

Cálculo IV EP5. Aula 9 Mudança de Variáveis na Integral Tripla. Aprender a fazer mudança de variáveis em integrais triplas. W uvw.

Cálculo IV EP5. Aula 9 Mudança de Variáveis na Integral Tripla. Aprender a fazer mudança de variáveis em integrais triplas. W uvw. Fundação Centro de Ciências e Educação Superior a Distância do Estado do Rio de Janeiro Centro de Educação Superior a Distância do Estado do Rio de Janeiro Cálculo IV EP5 Aula 9 Mudança de Variáveis na

Leia mais

Linhas. Integrais de Linha

Linhas. Integrais de Linha Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Prof. Gabriel Pires Linhas. Integrais de Linha Linhas e Caminhos. Um segmento de recta 3 Consideremos o segmento de recta

Leia mais

Nome Cartão Turma Chamada

Nome Cartão Turma Chamada UFGS Instituto de Matemática 2015/1 MAT0154 álculo e Geometria Analítica IIA POVA 2 15 de maio de 2015 08h0 1 2 4 5 081 Nome artão Turma hamada 0811 Seja a região plana delimitada pela curva de equação

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia II 1 a lista de exercícios

MAT Cálculo Diferencial e Integral para Engenharia II 1 a lista de exercícios MAT5 - Cálculo Diferencial e Integral para Engenharia II a lista de eercícios - 0 I - Polinômio de Talor. Utilizando o polinômio de Talor de ordem, calcule um valor aproimado e avalie o erro: (a) 8, (b)

Leia mais

Lista Determine uma representação paramétrica de cada uma das superfícies descritas abaixo e calcule

Lista Determine uma representação paramétrica de cada uma das superfícies descritas abaixo e calcule UFPR - Universidade Federal do Paraná Departamento de Matemática CM042 - Cálculo II (Turma B) Prof. José Carlos Eidam Lista 4 Superfícies parametrizadas 1. Determine uma representação paramétrica de cada

Leia mais

LISTA DE PRÉ-CÁLCULO

LISTA DE PRÉ-CÁLCULO LISTA DE PRÉ-CÁLCULO Instituto de Matemática - UFRJ Prof. Nei Rocha Rio de Janeiro 2018-2 Eercício 1 Resolva: (a) 1 = + 1 (b) 6 3 1 = 3 (1 + 2 2 ) (c) 8 < 3 4 (d) 2 2 + 10 12 < 0 (e) 1 2 + 2 3 4 (f) +

Leia mais

2 Integrais Duplas em Coordenadas Polares

2 Integrais Duplas em Coordenadas Polares Lista 3: CDCI2 Turmas: 2AEMN e 2BEMN Prof. Alexandre Alves Universidade São Judas Tadeu 1 Mudança de Variáveis em Integrais Duplas Exercício 1: Calcule a integral dupla transformando a região de integração

Leia mais

CÁLCULO II - MAT0023. F (x, y, z) =

CÁLCULO II - MAT0023. F (x, y, z) = UNIERIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERIANA Instituto Latino-Americano de iências da ida e da Natureza entro Interdisciplinar de iências da Natureza ÁLULO II - MAT0023 17 a Lista de exercícios 1.

Leia mais

ln (1 + y) (x;y)!(0;0) x 2 + y 2 2) Veri que se as funções dadas são contínuas nos pontos indicados

ln (1 + y) (x;y)!(0;0) x 2 + y 2 2) Veri que se as funções dadas são contínuas nos pontos indicados Governo do Estado do Rio Grande do Norte Universidade do Estado do Rio Grande do Norte Faculdade de iências Eatas e Naturais epartamento de Matemática e Estatística isciplina álculo iferencial Integral

Leia mais

Ca lculo Vetorial. 2) Fac a uma corresponde ncia entre as func o es f e os desenhos de seus campos vetoriais gradientes.

Ca lculo Vetorial. 2) Fac a uma corresponde ncia entre as func o es f e os desenhos de seus campos vetoriais gradientes. Se tima Lista de Exercı cios a lculo II - Engenharia de Produc a o extraı da do livro A LULO - vol, James Stewart a lculo Vetorial 1) Determine o campo vetorial gradiente de f. a) f (x, y) = ln(x + y)

Leia mais

MAT1153 / LISTA DE EXERCÍCIOS : CAMPOS CONSERVATIVOS, INTEGRAIS DE LINHA, TRABALHO E TEOREMA DE GREEN

MAT1153 / LISTA DE EXERCÍCIOS : CAMPOS CONSERVATIVOS, INTEGRAIS DE LINHA, TRABALHO E TEOREMA DE GREEN MAT1153 / 2008.1 LISTA DE EXERCÍCIOS : CAMPOS CONSERVATIVOS, INTEGRAIS DE LINHA, TRABALHO E TEOREMA DE GREEN OBS: Faça os exercícios sobre campos conservativos em primeiro lugar. (1 Fazer exercícios 1:(c,

Leia mais

Integrais Duplas. 1. Em cada caso, esboce a região de integração e calcule a integral: x 2 y 2 dxdy; (a) (b) e x+y dxdy; (c) x 1+y 3 dydx; (d)

Integrais Duplas. 1. Em cada caso, esboce a região de integração e calcule a integral: x 2 y 2 dxdy; (a) (b) e x+y dxdy; (c) x 1+y 3 dydx; (d) Integrais uplas Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas epartamento de Matemática Sexta Lista de Exercícios MAT 4 - Cálculo iferencial e Integral III - 7/I Em cada caso,

Leia mais

3 Cálculo Integral em R n

3 Cálculo Integral em R n 3 Cálculo Integral em n Exercício 3.. Calcule os seguintes integrais. Universidade da Beira Interior Matemática Computacional II Engenharia Informática 4/5 Ficha Prática 3 3 x + y dxdy x y + x dxdy e 3

Leia mais

Cálculo III-A Módulo 3 Tutor

Cálculo III-A Módulo 3 Tutor Universidde Federl Fluminense Instituto de Mtemátic e Esttístic eprtmento de Mtemátic Aplicd Cálculo III-A Módulo Tutor Eercício 1: Clcule mss totl M, o centro d mss, de um lâmin tringulr, com vértices,,

Leia mais

Aula 31 Funções vetoriais de uma variável real

Aula 31 Funções vetoriais de uma variável real MÓDULO 3 - AULA 31 Aula 31 Funções vetoriais de uma variável real Objetivos Conhecer as definições básicas de funções vetoriais de uma variável real. Aprender a parametrizar curvas simples. Introdução

Leia mais

Cálculo III-A Módulo 6

Cálculo III-A Módulo 6 Universidde Federl Fluminense Instituto de Mtemátic e Esttístic Deprtmento de Mtemátic Aplicd álculo III-A Módulo 6 Aul urvs Prmetrids Objetivo Prmetrir curvs plns e espciis. Prmetrição de curvs Prmetrir

Leia mais

Cálculo Diferencial e Integral II

Cálculo Diferencial e Integral II Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral II Ficha de trabalho 1 (versão de 6/0/009 (Esboço de Conjuntos. Topologia. Limites. Continuidade

Leia mais

Universidade Federal da Bahia

Universidade Federal da Bahia Universidade Federal da Bahia Instituto de Matemática DISCIPLINA: MATA3 - CÁLCULO B UNIDADE II - LISTA DE EXERCÍCIOS Atualiada 13.1 Coordenadas Polares [1] Dados os pontos P 1 (3, 5π 3 ), P ( 3, 33 ),

Leia mais

Universidade Federal da Bahia

Universidade Federal da Bahia Universidade Federal da Bahia Instituto de Matemática DISCIPLINA: MATA0 - CÁLCULO B UNIDADE I - LISTA DE EXERCÍCIOS Atualizada 0. Áreas de figuras planas em coordenadas cartesianas [] Determine a área

Leia mais

Teorema de Green Curvas Simples Fechadas e Integral de

Teorema de Green Curvas Simples Fechadas e Integral de Cálculo III Departamento de Matemática - ICEx - UFMG Marcelo Terra Cunha Teorema de Green Agora chegamos a mais um teorema da família do Teorema Fundamental do Cálculo, mas dessa vez envolvendo integral

Leia mais

Análise Matemática 2 FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO. Mestrado Integrado em Engenharia Electrotécnica e de Computadores

Análise Matemática 2 FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO. Mestrado Integrado em Engenharia Electrotécnica e de Computadores FAULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO Mestrado Integrado em Engenharia Electrotécnica e de omputadores Análise Matemática 2 Apontamentos das aulas teóricas - Integrais de Linha 29/21 Maria do

Leia mais

1. Determine o valor do integral curvilíneo do campo F (x, y, z) = xzî + xĵ + y k ao longo da linha (L), definida por: { x 2 /4 + y 2 /25 = 1 z = 2

1. Determine o valor do integral curvilíneo do campo F (x, y, z) = xzî + xĵ + y k ao longo da linha (L), definida por: { x 2 /4 + y 2 /25 = 1 z = 2 Análise Matemática IIC Ficha 6 - Integrais Curvilíneos de campos de vectores. Teorema de Green. Integrais de Superfície. Teorema de Stokes. Teorema da Divergência. 1. Determine o valor do integral curvilíneo

Leia mais

Prova de Conhecimentos Específicos 1 a QUESTÃO: (2,0 pontos)

Prova de Conhecimentos Específicos 1 a QUESTÃO: (2,0 pontos) Prova de Conhecimentos Específicos 1 a QUESTÃO: (,0 pontos) a) etermine números reais a 0, b, c, e d tais que o gráfico de f(x) ax + bx + cx + d tenha um ponto de inflexão em (1, ) e o coeficiente angular

Leia mais

Exercícios Resolvidos Integral de Linha de um Campo Escalar

Exercícios Resolvidos Integral de Linha de um Campo Escalar Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Eercícios Resolvidos Integral de Linha de um ampo Escalar Eercício onsidere o caminho g : [, ] R definido por g(t) = (e

Leia mais

Universidade Federal da Bahia

Universidade Federal da Bahia Universidade Federal da Bahia Instituto de Matemática DISCIPLINA: MATA0 - CÁLCULO B UNIDADE I - LISTA DE EXERCÍCIOS Atualizada 00. Áreas de figuras planas em coordenadas cartesianas [] Determine a área

Leia mais

f, da, onde R é uma das regiões mostradas na

f, da, onde R é uma das regiões mostradas na Integrais Duplas em Coordenadas Polares Bibliografia básica: THOMAS, G. B. Cálculo. Vol. Capítulo 1. Item 1.3. STEWAT, J. Cálculo. Vol.. Capítulo 15. Item 15.4. Sabemos que o cálculo da área de uma região

Leia mais

y ds, onde ds é uma quantidade infinitesimal (muito pequena) da curva C. A curva C é chamada o

y ds, onde ds é uma quantidade infinitesimal (muito pequena) da curva C. A curva C é chamada o Integral de Linha As integrais de linha podem ser encontradas em inúmeras aplicações nas iências Eatas, como por eemplo, no cálculo do trabalho realizado por uma força variável sobre uma partícula, movendo-a

Leia mais

Cálculo Vetorial. Prof. Ronaldo Carlotto Batista. 20 de novembro de 2014

Cálculo Vetorial. Prof. Ronaldo Carlotto Batista. 20 de novembro de 2014 Cálculo 2 Cálculo Vetorial ECT1212 Prof. Ronaldo Carlotto Batista 20 de novembro de 2014 Integrais de linha Podemos integrar uma função escalar f = f (x, y, z) em um dado caminho C, esta integral é dada

Leia mais

Lista 5: Rotacional, Divergente, Campos Conservativos, Teorema de Green

Lista 5: Rotacional, Divergente, Campos Conservativos, Teorema de Green MAT 003 2 ō Sem. 207 Prof. Rodrigo Lista 5: Rotacional, Divergente, Campos Conservativos, Teorema de Green. Considere o campo de forças F (x, y) = f( r ) r, onde f : R R é uma função derivável e r = x

Leia mais

1. Calcule a integral do fluxo F nds (i) diretamente e (ii) usando o teorema do divergente.

1. Calcule a integral do fluxo F nds (i) diretamente e (ii) usando o teorema do divergente. Lista de Exercícios de álculo 3 Módulo 3 - Nona Lista - 02/2016 Parte A 1. alcule a integral do fluxo F nd (i) diretamente e (ii) usando o teorema do divergente. (a) F = (x 3 y 3 )i + (y 3 z 3 )j + (z

Leia mais

LISTA DE EXERCÍCIOS SOBRE TEOREMA DE GREEN, FLUXO (CONT.), DIVERGÊNCIA E ROTACIONAL DE UM CAMPO ESPAÇO, LAPLACIANO, FUNÇÕES HARMÔNICAS (CONT)

LISTA DE EXERCÍCIOS SOBRE TEOREMA DE GREEN, FLUXO (CONT.), DIVERGÊNCIA E ROTACIONAL DE UM CAMPO ESPAÇO, LAPLACIANO, FUNÇÕES HARMÔNICAS (CONT) LISTA DE EXEÍIOS SOBE TEOEMA DE GEEN, FLUXO (ONT.), DIVEGÊNIA E OTAIONAL DE UM AMPO ESPAÇO, LAPLAIANO, FUNÇÕES HAMÔNIAS (ONT) POFESSO: IADO SÁ EAP () Sejam F (x, y, ) e G(x, y, ) campos vetoriais definidos

Leia mais

LISTA DE CÁLCULO III. (A) Integrais Duplas. 1. Em cada caso, esboce a região de integração e calcule a integral: (e) (f) (g) (h)

LISTA DE CÁLCULO III. (A) Integrais Duplas. 1. Em cada caso, esboce a região de integração e calcule a integral: (e) (f) (g) (h) 1 LISTA E CÁLCULO III (A) Integrais uplas 1. Em cada caso, esboce a região de integração e calcule a integral: (c) (d) 1 y y a a 2 x 2 a 1 y 1 2 2 x x 2 y 2 dxdy; a 2 x 2 (x + y)dydx; e x+y dxdy; x 1 +

Leia mais

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial 178 Capítulo 10 Equação da reta e do plano no espaço 1. Equações paramétricas da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que

Leia mais

Questão 2 (3,5 pontos) Calcule. 48, z e S a parte da superfície

Questão 2 (3,5 pontos) Calcule. 48, z e S a parte da superfície Instituto de Matemática e Estatística da UP MAT455 - Cálculo Diferencial e Integral III para Engenharia a. Prova - o. emestre 5 - /6/5 Turma A Questão :(, pontos) Calcule a massa da superfície que é parte

Leia mais

Total. UFRGS - INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT Turma A /1 Prova da área I

Total. UFRGS - INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT Turma A /1 Prova da área I UFRG - INTITUTO DE MTEMÁTIC Departamento de Matemática Pura e plicada MT1168 - Turma - 19/1 Prova da área I 1-6 7 8 Total Nome: Ponto extra: ( )Wikipédia ( )presentação ( )Nenhum Tópico: Cartão: Regras

Leia mais

Teorema da Divergência

Teorema da Divergência Instituto Superior Técnico epartamento de atemática Secção de Álgebra e Análise Prof. Gabriel Pires Teorema da ivergência Nestas notas apresentaremos o teorema da divergência em R 3 (Teorema de Gauss devido

Leia mais

Total. UFRGS - INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT Turma C /2 Prova da área I

Total. UFRGS - INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT Turma C /2 Prova da área I UFRGS - INSTITUTO DE MATEMÁTIA Departamento de Matemática Pura e Aplicada MAT068 - Turma - 07/ Prova da área I -6 7 8 Total Nome: artão: Regras Gerais: Não é permitido o uso de calculadoras, telefones

Leia mais

1 Cônicas Não Degeneradas

1 Cônicas Não Degeneradas Seções Cônicas Reginaldo J. Santos Departamento de Matemática-ICE Universidade Federal de Minas Gerais http://www.mat.ufmg.br/~regi regi@mat.ufmg.br 11 de dezembro de 2001 Estudaremos as (seções) cônicas,

Leia mais