Vamos estudar o conceito de variabilidade absoluta considerando o conjunto de notas obtidas por cinco alunos:

Tamanho: px
Começar a partir da página:

Download "Vamos estudar o conceito de variabilidade absoluta considerando o conjunto de notas obtidas por cinco alunos:"

Transcrição

1 Medidas de Disperção Itrodução: - Observamos ateriormete que as medidas de tedêcia cetral são usadas para resumir, em um úico úmero, aquele parâmetro que será o represetate do cojuto de dados. Estas medidas (média, moda, mediaa) quado aalisadas sozihas ão os dão uma visão global do cojuto de dados. Isto sigifica que a variabilidade, caso exista, etre os elemetos que compõe o cojuto de dados ão foi verificada, lembrado que esta variabilidade pode ser absoluta ou relativa. Vamos estudar o coceito de variabilidade absoluta cosiderado o cojuto de otas obtidas por cico aluos: A 7, 7, 7, 7, 7 B 5, 6, 7, 8, 9 C 4, 5, 7, 9, 10 D 0, 5, 10, 10, 10 E 4, 7, 7, 7, 10 > calculado a média aritmética destes 5 aluos obteve-se o mesmo resultado X 7. apesar das otas de cada aluo serem costituídas de valores diferetes, a média foi igual para todos. As medidas estatísticas resposáveis pela aálise da variação ou dispersão de um cojuto de dados são chamados de medidas de dispersão ou variabilidade. Pricipais Medidas de Dispersão: Amplitude Total: - AT XMAX XMIN ( defiida como sedo a difereça etre os valores extremos do cojuto de dados.). a vatagem da amplitude total é o seu cálculo rápido e fácil. A amplitude total é pouco utilizada como medida de variabilidade, pois, embora teha uma metodologia de cálculo fácil, uma simples alteração dos dois elemetos utilizados para o cálculo, provoca sigificativas mudaças o resultado da amplitude. Ex: Calcular a amplitude total das otas dos cico aluos (dados acima). Solução: Basta ecotrarmos as difereças etre o maior e o meor valor de cada grupo de otas: 38

2 AT (A) AT (B) AT (C) AT (A) AT (A) Coforme os resultados apresetados, a maior amplitude foi do aluo D, A ão teve variação, C e E possuem a mesma amplitude. Desvio Médio: - Chama-se discrepâcia, resíduo, afastameto ou desvio de uma variável X em relação à sua média, a difereça: d X - X com esta fórmula podemos achar desvios positivos e egativos coforme os valores dados sejam meores, iguais ou maiores, respectivamete, que o valor da média aritmética. Em razão deste fato, podemos mecioar as seguites propriedades: 1) A soma dos desvios, de um cojuto de dados, calculados em relação à sua média aritmética é ula; ) Esta propriedade implica que se calcularmos o desvio médio em relação a um outro termo qualquer da série, diferete da média aritmética, a soma desses desvios será diferete de zero. 3) A soma dos quadrados dos desvios em relação à média aritmética é um míimo; esta última propriedade é de muita utilidade o estudo do cálculo da variâcia e do desvio padrão. Desvio Médio para dados isolados: - Desvio Médio de uma série com termos é a média aritmética dos desvios absolutos tomados em relação à sua média aritmética. Aplicado-se a seguite fórmula: Xi X Dm > ou > Dm d Ode: d X - X OBS: o Desvio Médio utiliza a fução módulo ( ) como forma de trasformar as difereças egativas obtidas em valores positivos. 39

3 Exemplo: Cosiderado as otas dos aluos C e E, observamos que a amplitude total dos dois grupos é a mesma. Ache o desvio médio destes aluos e verifique se a variabilidade é igual. Solução: Iicialmete devemos costruir uma tabela e colocar os valores observados para os dois grupos, e em seguida calculamos os desvios e depois somamos o módulo destes desvios: X (otas) d X - X d X (otas) d X - X d Total Fote: Elaboração própria, 004 Tabela 19 - Notas obtidas pelos aluos C e E Aluo C Aluo E Assim, aplicado-se a fórmula, temos: Aluo C: Aluo E: d 10 d 6 Dm > Dm Dm > Dm 1, 5 5 Coclusão: O cojuto de otas C apresetou um desvio médio maior que o aluo E. Coclui-se que as otas do aluo C são mais dispersas (meos homogêeo) do que a do aluo E. Desvio Médio para dados agrupados uma tabela: - Quado os dados estiverem agrupados em uma distribuição de freqüêcias, acha-se o desvio médio através da seguite fórmula: Dm Pm X fi i 1 i 1 ou i 1 fi d fi i 1 fi Ode: d Pm X (poto médio meos a média aritmética) e 40

4 fi freqüêcia absoluta Exemplo: Calcular o desvio médio da distribuição de freqüêcias, coforme tabela 0: Tabela 0 - Quociete de Iteligêcia (Q.I.) de 50 pessoas Classes de Q.I. fi Pm Pm.fi Pm - X. f i Total Fote: Elaboração própria, 004 Solução: Ates de aplicar a fórmula do Dm, deve-se em primeiro lugar ecotrar os potos médios, uma vez que a distribuição de freqüêcias é composta de apeas as duas primeiras coluas. Em seguida, deve-se calcular a média aritmética, criado-se a quarta colua da tabela. A média ecotrada será: X fi Pm X fi ,4 50 A qual será arredodada para X 11. Deste modo costrói-se a quita colua. Aplicado-se a fórmula: Dm Pm X fi fi i 1 i 1 1,5 Variâcia e Desvio Padrão Itrodução: - Lembrado que o desvio médio utiliza a fução de módulo como forma de trasformar as difereças egativas obtidas em valores positivos. O cálculo da 41

5 variâcia utiliza também essas difereças e para torá-las positivas os resultados são elevados ao quadrado. A variâcia é a mais importate medida de variabilidade. É represetada pela letra grega sigma miúscula ao quadrado σ² para referir-se a toda população e S², para referir-se a amostras. O cálculo pode ser efetuado tato para dados isolados como para dados agrupados.uma medida de disperção derivada da variâcia é o desvio padrão. Para calcularmos o desvio padrão basta ecotrar a raiz quadrada da variâcia, ou seja: σ σ² ou S S² Cálculo da Variâcia para dados isolados: - A variâcia de uma série estatística de N elemetos pode ser defiida como sedo a média quadrática dos desvios calculados em relação à média aritmética da série. As fórmulas para dados isolados são as seguites: População > ( Xi X ) σ ou σ d Amostra > Ode: d Xi X ( ) Xi X d S ou S 1 1 Exemplo: Calcular a variâcia das otas obtidas pelos aluos C e D a partir dos dados da tabela 1. 4

6 Tabela 1 - Notas obtidas pelos aluos C e E Aluo C Aluo E X (otas) d X - X d² X (otas) d X - X d² Total Fote: Elaboração própria, 004 Solução: Para calcularmos o desvio padrão dos aluos C e E, usado a fórmula, precisamos achar d², assim os desvios ecotrados foram: Aluo C: Aluo E: ( ) 6 6 Xi X d S ou S 6, ( ) Xi X d S ou S , Podemos observar que a variâcia do aluo E é meor do que a do aluo C. Coclui-se que as otas do aluo E são mais homogêeas (meos dispersas) do que as do aluo C. O desvio padrão dos dois aluos será: S( C) 6,5,6 S ( E) 4,5,1 Novamete o desvio padrão do aluo E possui otas mais homogêeas, mais cocetradas em toro da média. OBS: Para facilitar o cálculo da variâcia e do desvio padrão, vamos trabalhar somete com amostras (iclusive para distribuição de freqüêcias), portato, usaremos somete a fórmula para amostras. S²... Desvio padrão para dados agrupados uma tabela. 43

7 A fórmula para o cálculo do desvio padrão de uma amostra represetada por uma distribuição de freqüêcias é dada por: ( ) Pm X fi S 1 Exemplo: Utilizado os dados da tabela, calcular o desvio padrão: Tabela - Quociete de Iteligêcia (Q.I.) de 50 pessoas Classes de Q.I. fi Pm Pm.fi (Pm - X)². f i ( 85-11,4)² ( 36,4)² 1.34, ( 95-11,4)² ( 6,4)² 696, ( ,4)² ( 16,4)² 68, fi Pm X ( ,4)² 11,4 ( 6,4)² 40, fi ( 15-11,4)² ( - 3,6)² 1, ( ,4)² ( -13,6)² 184, ( ,4)² ( -3,6)² 556, Total Fote: Elaboração própria, 004 Solução: Para aplicar a fórmula acima, deve-se em primeiro lugar calcular a média aritmética dos dados da tabela. O passo seguite é calcular os desvios quadrado tomados em relação à média e aplicar a fórmula como segue: ( ) Pm X fi S ,61 15,08 Assim o desvio padrão desta distribuição de freqüêcias em relação à média aritmética é de 15,1 potos (arredodado). Medida de Dispersão Relativa. Até o mometo, estudamos medidas de dispersão absolutas, cujas uidades de medidas são as mesmas dos valores da série estatística. Existem situações que precisamos comparar duas gradezas, cujas uidades ao diferetes, vamos cosiderar o exemplo: Um professor de educação física obteve de um grupo de 50 estudates uma média de pesos igual a 59,8kg e desvio padrão de 7,5kg. Por outro lado a média das alturas desse 44

8 mesmo grupo foi de 170, cm com desvio padrão de 7,cm. Qual das duas distribuições é a mais homogêea? Para respoder com precisão, devemos cohecer uma medida de dispersão relativa, pois, ão há setido comparar duas gradezas absolutas com uidades diferetes. (kg e cm). Coeficiete de Variação (C.V.) é uma medida de dispersão relativa. O coeficiete de variação mede percetualmete a relação existete etre o desvio padrão e a média aritmética. E é ecotrado através da seguite expressão: ode: S C. V. 100 X C.V. Coeficiete de Variação (%) S Desvio Padrão X Média Aritmética (diferete de zero) Agora etão, podemos verificar qual das duas distribuições é a mais homogêea: Coeficiete de Variação dos pesos: S 7,5 C. Vp ,5% X 59,8 Coeficiete de Variação das alturas: S 7, C. Va ,% X 170, Percebemos que a porcetagem das alturas é meor que a porcetagem dos pesos, com isto coclui-se que a distribuição das alturas é mais homogêea do que a distribuição de pesos. 45

9 OBS: Seu uso é recomedado a aálise da dispersão de séries com uidades de medidas diferetes, e também se deve utilizar o coeficiete de variação quado as séries tiverem ordes de gradezas difereciadas. Observe o próximo exemplo: Em uma empresa, a média de salários dos homes é de R$.500,00 com desvio padrão de R$ 800,00 e a média de salários das mulheres é de R$ 1.800,00 com desvio padrão de R$ 650,00. Quais os salários mais dispersos, dos homes ou das mulheres? S 800 C. V.homes % X.500 S 650 C. V. mulheres % X Coclui-se que os salários das mulheres apresetam maior dispersão relativa do que os dos homes. Para cosiderar se a dispersão relativa é baixa, média ou alta, devemos seguir a seguite classificação: C.V. 15% caracteriza uma baixa dispersão; 15% < C.V. < 30%, caracteriza uma média dispersão; C.V. 30% caracteriza uma alta dispersão. Exercícios Propostos: Livro Estatística Básica Autor: Djalma Agra págias: 11 a 117. Medidas de Assimetria e Curtose. 46

10 Medidas de Assimetria - Itrodução: - são parâmetros que os mostra a forma de uma distribuição, depededo do grau de alogameto a curva, esta distribuição pode ser do tipo: simétrica ou assimétrica. Simétrica > Quado o comportameto dos dados são exatamete os mesmos as duas caudas em toro da medida de tedêcia cetral. Quado isto ão ocorre, existe uma relação de desigualdade etre os dados e afirmamos que a distribuição é assimétrica. Quado efetuamos os cálculos da média aritmética, da mediaa e da moda para dados agrupados em uma distribuição de freqüêcias, estas três medidas somete serão iguais quado as distribuição dos dados for Simétrica. Figura 1 Curva de uma distribuição ormal. (Padrão de Simetria) Figura - assimetria positiva Quado o alogameto a curva cocetra-se a cauda direita da distribuição, dizemos que a assimetria é positiva. Figura 3 - assimetria egativa 47

11 Quado o alogameto a curva cocetra-se a cauda esquerda da distribuição, dizemos que a assimetria é egativa. Uma medida de assimetria será desigada por As. Coeficiete de Assimetria de Pearso. Este coeficiete (ídice) foi criado baseado a observação dos dados calculados em relação à média aritmética, a moda e ao desvio padrão. A fórmula é defiida por: A s X M S o Ode: X > é a Média Aritmética; Mo > é a Moda e, S > é o Desvio-Padrão do cojuto de dados. Quado se efetua o cálculo, ecotra-se o valor das assimetrias: AS 0 (igual a zero), a distribuição é simétrica; AS > 0 (estritamete maior que zero), a distribuição é assimétrica positiva, isto é, há uma maior cocetração de dados a cauda direita da curva. AS < 0 (estritamete meor que zero), a distribuição é assimétrica egativa, isto é, há uma maior cocetração de dados a cauda esquerda da curva. Exemplo: Achar o coeficiete de assimetria dos dados da tabela 3. 48

12 Solução: Para aplicarmos a fórmula acima, para termos o coeficiete de assimetria de uma distribuição, precisamos calcular a média, a moda e o desvio padrão, deste cojuto. Tabela 3 - Quociete de Iteligêcia (Q.I.) de 50 pessoas Classes de Q.I. fi Total 50 Fote: Elaboração própria, 004 Os valores ecotrados para os dados da tabela acima, são: Média Aritmética ( X ) 11,4 Desvio Padrão ( S ) 14,9 Moda (Mo) 117,06 colocado os valores a fórmula temos: A s X M S o 11,4 117,06 4,34 0,9 14,9 14,9 Com o valor da assimetria calculado, As > 0 (estritamete maior do que zero), dizemos que a distribuição de Q.I. s da tabela 3, é assimétrica positiva, isto é, a distribuição é mais alogada (mais cocetrada) a cauda direita. Medidas de Curtose ou de Achatameto Essas medidas são as formas de caracterizar uma distribuição de dados quato ao seu grau de achatameto ou afilameto. O padrão de comparação do grau de achatameto de uma distribuição de dados é forecido pela curva ormal. 49

13 Figura 4 Curva de uma distribuição ormal Coeficiete de Curtose Depededo do seu grau de achatameto ou afilameto, as curvas podem ser do tipo: Mesocúrtica (curva ormal) Leptocúrtica (mais afiladas ou mais cocetradas em toro da média) e Platicúrtica (mais achatadas ou mais dispersas). Figura 5 Curva Leptocúrtica Figura 6 Curva Platicúrtica Para medir o ídice de curtose de uma distribuição de dados é através da fórmula abaixo, cujo coeficiete K é baseado o quociete das difereças etre quartis e percetis: Q3 Q1 K ( P90 P10) 50

14 Ode: Q1 é o primeiro quartil; Q3 é o terceiro quartil; P10 é o décimo percetil e P90 é o oagésimo percetil da distribuição de dados Quado calculamos o valor de K e ecotramos: K 0,63 > a curva correspodete à distribuição dos dados é mesocúrtica, e; K > 0,63 > a curva correspodete à distribuição dos dados é platicúrtica, e; K < 0,63 > a curva correspodete à distribuição dos dados é leptocúrtica. Ex: Achar o coeficiete de curtose da distribuição de Q.I. apresetados a tabela 3. Solução: Devemos calcular as separatrizes idicadas a fórmula, ou seja, devemos calcular: Q1, Q3, P10 e P90. i / 4 ' fac 1,5 10 Q1 Li + h ,67 111,67 fi 15 i / 4 ' fac 37,5 5 Q3 Li + h ,4 140,4 fi 1 i /100 ' fac 5 P10 Li + h fi 3 i /100 ' fac P90 Li + h fi 10 Aplicado a fórmula, obtemos: Q3 Q1 K ( P90 P10) 140,4 111,67 ( ) 8,75 0,

15 O valor obtido da curtose K > 0,63, diz-se que a curva correspodete à distribuição dos dados da tabela 3, é platicúrtica, os dados estão mais espalhados em toro da média aritmética fazedo com que a curva fique mais achatada. Exercícios Propostos: Livro Estatística Básica Autor: Djalma Agra págias: 14 a 18. 5

Métodos Quantitativos Aplicados

Métodos Quantitativos Aplicados Métodos Quatitativos Aplicados Aula 3 http://www.iseg.ulisboa.pt/~vescaria/mqa/ Tópicos apresetação Itrodução aos packages estatísticos: SPSS Aálise Uivariada: Redução de dados e caracterização de distribuições

Leia mais

Aula 1 Assimetria e Curtose

Aula 1 Assimetria e Curtose 2º Bimestre 1 Estatística e Probabilidade Aula 1 Assimetria e Curtose Professor Luciano Nóbrega Medidas de assimetria As medidas de assimetria e curtose (esta última veremos na próxima aula) são as que

Leia mais

Intervalo de Confiança para uma Média Populacional

Intervalo de Confiança para uma Média Populacional Estatística II Atoio Roque Aula 5 Itervalo de Cofiaça para uma Média Populacioal Um dos objetivos mais importates da estatística é obter iformação sobre a média de uma dada população. A média de uma amostra

Leia mais

O que é Estatística?

O que é Estatística? O que é Estatística? É um método de observação de feômeos coletivos. Ocupa-se da coleta, orgaização, resumo, apresetação e aálise de dados. Objetivo - Obter iformações que permitam uma descrição dos feômeos

Leia mais

MEDIDAS E INCERTEZAS

MEDIDAS E INCERTEZAS 9//0 MEDIDAS E INCERTEZAS O Que é Medição? É um processo empírico que objetiva a desigação de úmeros a propriedades de objetos ou a evetos do mudo real de forma a descrevêlos quatitativamete. Outra forma

Leia mais

A vida sem reflexão não merece ser vivida Sócrates Disciplina: ESTATÍSTICA e PROBABILIDADE

A vida sem reflexão não merece ser vivida Sócrates Disciplina: ESTATÍSTICA e PROBABILIDADE Notas de aula 07 1 A vida sem reflexão não merece ser vivida Sócrates Disciplina: ESTATÍSTICA e PROBABILIDADE 1. Medidas de Forma: Assimetria e Curtose. A medida de assimetria indica o grau de distorção

Leia mais

Curso Mentor. Radicais ( ) www.cursomentor.wordpress.com. Definição. Expoente Fracionário. Extração da Raiz Quadrada. Por definição temos que:

Curso Mentor. Radicais ( ) www.cursomentor.wordpress.com. Definição. Expoente Fracionário. Extração da Raiz Quadrada. Por definição temos que: Curso Metor www.cursometor.wordpress.com Defiição Por defiição temos que: Radicais a b b a, N, Observação : Se é par devemos ter que a é positivo. Observação : Por defiição temos:. 0 0 Observação : Chamamos

Leia mais

3.4.2 Cálculo da moda para dados tabulados. 3.4 Moda Cálculo da moda para uma lista Cálculo da moda para distribuição de freqüências

3.4.2 Cálculo da moda para dados tabulados. 3.4 Moda Cálculo da moda para uma lista Cálculo da moda para distribuição de freqüências 14 Calcular a mediaa do cojuto descrito pela distribuição de freqüêcias a seguir. 8,0 10,0 10 Sabedo-se que é a somatória das, e, portato, = 15+25+16+34+10 = 100, pode-se determiar a posição cetral /2

Leia mais

Stela Adami Vayego DEST/UFPR

Stela Adami Vayego DEST/UFPR Resumo 3 Resumo dos dados uméricos por meio de úmeros 1. Medidas de Tedêcia Cetral A tedêcia cetral da distribuição de freqüêcias de uma variável em um cojuto de dados é caracterizada pelo valor típico

Leia mais

Coeficiente de Assimetria e Curtose. Rinaldo Artes. Padronização., tem as seguintes propriedades: Momentos

Coeficiente de Assimetria e Curtose. Rinaldo Artes. Padronização., tem as seguintes propriedades: Momentos Coeficiente de Assimetria e Curtose Rinaldo Artes 2014 Padronização Seja X uma variável aleatória com E(X)=µ e Var(X)=σ 2. Então a variável aleatória Z, definida como =, tem as seguintes propriedades:

Leia mais

ESTATÍSTICA DESCRITIVA:

ESTATÍSTICA DESCRITIVA: UNIVERSIDADE FEDERAL DE MATO GROSSO Campus Universitário de Sinop(CUS) ESTATÍSTICA DESCRITIVA: Medidas de forma: Assimetria e Curtose Profº Evaldo Martins Pires SINOP -MT TEMAS TRABALHADOS ATÉ AGORA Aula

Leia mais

Estimação por Intervalo (Intervalos de Confiança):

Estimação por Intervalo (Intervalos de Confiança): Estimação por Itervalo (Itervalos de Cofiaça): 1) Itervalo de Cofiaça para a Média Populacioal: Muitas vezes, para obter-se a verdadeira média populacioal ão compesa fazer um levatameto a 100% da população

Leia mais

Stela Adami Vayego DEST/UFPR

Stela Adami Vayego DEST/UFPR Resumo 3 Resumo dos dados uméricos por meio de úmeros. Medidas de Tedêcia Cetral A tedêcia cetral da distribuição de freqüêcias de uma variável em um cojuto de dados é caracterizada pelo valor típico dessa

Leia mais

AEP FISCAL ESTATÍSTICA

AEP FISCAL ESTATÍSTICA AEP FISCAL ESTATÍSTICA Módulo 0: Medidas de Dispersão (webercampos@gmail.com) MÓDULO 0 - MEDIDAS DE DISPERSÃO 1. Coceito: Dispersão é a maior ou meor diversificação dos valores de uma variável, em toro

Leia mais

MEDIDAS DE TENDÊNCIA CENTRAL II

MEDIDAS DE TENDÊNCIA CENTRAL II MEDIDAS DE TENDÊNCIA CENTRAL II 8. MÉDIA, MEDIANA E MODA 8. Mediana 8 7 A mediana divide um conjunto de dados pré-ordenados em duas porções iguais, ou seja, duas partes de 50% cada. Nesta divisão, 50%

Leia mais

10 - Medidas de Variabilidade ou de Dispersão

10 - Medidas de Variabilidade ou de Dispersão 10 - Medidas de Variabilidade ou de Dispersão 10.1 Itrodução Localizado o cetro de uma distribuição de dados, o próximo passo será verificar a dispersão desses dados, buscado uma medida para essa dispersão.

Leia mais

Medidas de Tendência Central. Introdução Média Aritmética Moda Mediana

Medidas de Tendência Central. Introdução Média Aritmética Moda Mediana Medidas de Tendência Central Introdução Média Aritmética Moda Mediana Introdução A maioria dos dados apresenta uma tendência de se concentrar em torno de um ponto central Portanto, é possível selecionar

Leia mais

Medidas de dispersão e assimetria

Medidas de dispersão e assimetria Metodologia de Diagnóstico e Elaboração de Relatório FASHT Medidas de dispersão e assimetria Profª Cesaltina Pires cpires@uevora.pt Plano da Apresentação Medidas de dispersão Variância Desvio padrão Erro

Leia mais

n Xi = X1 + X2 + X3 +...+. Xn i = 1 n Xi, deve ser lida soma dos valores xi, para i variando de 1 até n. i = 1

n Xi = X1 + X2 + X3 +...+. Xn i = 1 n Xi, deve ser lida soma dos valores xi, para i variando de 1 até n. i = 1 MEDIDAS DE TENDÊNCIA CENTRAL Introdução Neste tópico, vamos aprender sobre o cálculo de medidas que possibilitem representar um conjunto de dados relativos à observação de determinado fenômeno de forma

Leia mais

Cap. 5. Testes de Hipóteses

Cap. 5. Testes de Hipóteses Cap. 5. Testes de Hipóteses Neste capítulo será estudado o segudo problema da iferêcia estatística: o teste de hipóteses. Um teste de hipóteses cosiste em verificar, a partir das observações de uma amostra,

Leia mais

Estatística Aplicada Medidas Resumo Apostila 4 Prof. Fábio Hipólito Aluno(a):

Estatística Aplicada Medidas Resumo Apostila 4 Prof. Fábio Hipólito Aluno(a): Medidas Resumo Apostila 4 Prof. Fábio Hipólito Aluo(a): # Objetivo desta aula: Calcular as medidas de tedêcia cetral: média, moda e mediaa para distribuições de frequêcias potuais e por itervalos de classes.

Leia mais

Coeficiente de Rendimento. Universidade Iguaçu

Coeficiente de Rendimento. Universidade Iguaçu Coeficiete de Redimeto Uiversidade Iguaçu 1. INTRODUÇÃO Para efocar o seu desempeho escolar, o Coeficiete de Redimeto CR ou Coeficiete de Redimeto Acumulado CRA devem ser expressos por uma média poderada,

Leia mais

ESTATÍSTICA- II DISTRIBUIÇÃO DE FREQUÊNCIA. 1- CONCEITO É a série estatística que tem o tempo, o espaço e a espécie como variáveis dependentes.

ESTATÍSTICA- II DISTRIBUIÇÃO DE FREQUÊNCIA. 1- CONCEITO É a série estatística que tem o tempo, o espaço e a espécie como variáveis dependentes. ESTATÍSTICA- II DISTRIBUIÇÃO DE FREQUÊNCIA 1- CONCEITO É a série estatística que tem o tempo, o espaço e a espécie como variáveis depedetes. - DISTRIBUIÇÃO DE FREQUÊNCIA a) Dados Brutos É um cojuto resultate

Leia mais

MEDIDAS DESCRITIVAS DE POSIÇÃO, TENDÊNCIA CENTRAL E VARIABILIDADE

MEDIDAS DESCRITIVAS DE POSIÇÃO, TENDÊNCIA CENTRAL E VARIABILIDADE MEDIDAS DESCRITIVAS DE POSIÇÃO, TENDÊNCIA CENTRAL E VARIABILIDADE 1 Estatística descritiva (Eploratória) PRIMEIRO PASSO: Tabelas (distribuição de frequêcia) e Gráficos. SEGUNDO PASSO: Cálculo de medidas

Leia mais

UNICAMP - 2004. 2ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

UNICAMP - 2004. 2ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR UNICAMP - 004 ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Em uma sala há uma lâmpada, uma televisão [TV] e um aparelho de ar codicioado [AC]. O cosumo da lâmpada equivale

Leia mais

CAPÍTULO III ANÁLISE DOS DADOS. Para responder à primeira pergunta, observe os dois gráficos abaixo

CAPÍTULO III ANÁLISE DOS DADOS. Para responder à primeira pergunta, observe os dois gráficos abaixo CAPÍTULO III ANÁLISE DOS DADOS III.5 Idéias básicas sobre gráficos e modelos Modelos são regras matemáticas que permitem reproduzir um cojuto de valores uméricos a partir de outro ao qual correspodem.

Leia mais

Capítulo 8 Estimativa do Intervalo de Confiança. Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc.

Capítulo 8 Estimativa do Intervalo de Confiança. Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc. Capítulo 8 Estimativa do Itervalo de Cofiaça Statistics for Maagers Usig Microsoft Excel, 5e 2008 Pearso Pretice-Hall, Ic. Chap 8-1 Objetivos: Neste capítulo, você aprederá: Costruir e iterpretar estimativas

Leia mais

Estatística - exestatmedposic.doc 25/02/09

Estatística - exestatmedposic.doc 25/02/09 Medidas de Posição Introdução Vimos anteriormente que, através de uma distribuição de freqüências se estabelece um sistema de classificação que descreve o padrão de variação de um determinado fenômeno

Leia mais

MEDIDAS DE TENDÊNCIA CENTRAL E MEDIDAS DE DISPERSÃO Í N D I C E

MEDIDAS DE TENDÊNCIA CENTRAL E MEDIDAS DE DISPERSÃO Í N D I C E MEDIDAS DE TENDÊNCIA CENTRAL E MEDIDAS DE DISPERSÃO Í N D I C E Medidas de Tedêcia Cetral Itrodução... 1- Média Aritmética... - Moda... 3- Mediaa... Medidas de Dispersão 4- Amplitude Total... 5- Variâcia

Leia mais

Medidas de Localização

Medidas de Localização MATEMÁTICA APLICADA ÀS CIÊNCIAS SOCIAIS RESUMO Estatística 2 Medidas de Localização e Dispersão 10º ano Cláudia Henriques Medidas de Localização Estatísticas Medidas que se calculam a partir dos dados

Leia mais

MATEMÁTICA PARA CONCURSOS II

MATEMÁTICA PARA CONCURSOS II MATEMÁTICA PARA CONCURSOS II Módulo III Neste Módulo apresetaremos um dos pricipais assutos tratados em cocursos públicos e um dos mais temíveis por parte dos aluos: Progressão Aritmética e Progressão

Leia mais

População x Amostra. statística descritiva X inferência estatística. Revisão de Estatística e Probabilidade

População x Amostra. statística descritiva X inferência estatística. Revisão de Estatística e Probabilidade Revisão de Estatística e Probabilidade Magos Martiello Uiversidade Federal do Espírito Sato - UFES Departameto de Iformática DI Laboratório de Pesquisas em Redes Multimidia LPRM statística descritiva X

Leia mais

x = xi n x = xifi fi 1. MÉDIA Exercício: Quando a distribuição é simétrica, a média e a mediana coincidem.

x = xi n x = xifi fi 1. MÉDIA Exercício: Quando a distribuição é simétrica, a média e a mediana coincidem. 1. MÉDIA Exercício: Quando a distribuição é simétrica, a média e a mediana coincidem. Determine a média aritmética da distribuição: A mediana não é tão sensível, como a média, às observações que são muito

Leia mais

Variáveis Frequências Gráficos Medidas de Posição Medidas de Dispersão Medidas Complementares Inferência

Variáveis Frequências Gráficos Medidas de Posição Medidas de Dispersão Medidas Complementares Inferência Tipos de Variáveis Problema Motivador: Um pesquisador está interessado em fazer um levantamento sobre aspectos sócio-econômicos dos empregados da seção de orçamentos de uma companhia (vide tabela). Algumas

Leia mais

( ) ( ) ( ) ( ) ( ) 3 - INTRODUÇÃO À RESOLUÇÃO DE SISTEMAS NÃO LINEARES. Introdução.

( ) ( ) ( ) ( ) ( ) 3 - INTRODUÇÃO À RESOLUÇÃO DE SISTEMAS NÃO LINEARES. Introdução. 55 3 - INTRODUÇÃO À RESOLUÇÃO DE SISTEMAS NÃO LINEARES. Itrodução. No processo de resolução de um problema prático é reqüete a ecessidade de se obter a solução de um sistema de equações ão lieares. Dada

Leia mais

CORRELAÇÃO Aqui me tens de regresso

CORRELAÇÃO Aqui me tens de regresso CORRELAÇÃO Aqui me tes de regresso O assuto Correlação fez parte, acompahado de Regressão, do programa de Auditor Fiscal, até 998, desaparecedo a partir do cocurso do ao 000 para agora retorar soziho.

Leia mais

ESTATÍSTICA. PROF. RANILDO LOPES U.E PROF EDGAR TITO

ESTATÍSTICA. PROF. RANILDO LOPES  U.E PROF EDGAR TITO ESTATÍSTICA PROF. RANILDO LOPES http://ueedgartito.wordpress.com U.E PROF EDGAR TITO Medidas de tedêcia cetral Medidas cetrais são valores que resumem um cojuto de dados a um úico valor que, de alguma

Leia mais

Estatística II. Aula 6. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística II. Aula 6. Prof.: Patricia Maria Bortolon, D. Sc. Estatística II Aula 6 Prof.: Patricia Maria Bortolo, D. Sc. Testes ara duas amostras Objetivos Nesta aula você arederá a usar o teste de hióteses ara comarar as difereças etre: As médias de duas oulações

Leia mais

Desigualdades (por Iuri de Silvio ITA-T11)

Desigualdades (por Iuri de Silvio ITA-T11) Desigualdades (por Iuri de Silvio ITA-T) Apresetação O objetivo desse artigo é apresetar as desigualdades mais importates para quem vai prestar IME/ITA, e mostrar como elas podem ser utilizadas a resolução

Leia mais

Objetivo Estimar uma proporção p (desconhecida) de elementos uma população, apresentando certa característica de interesse, partir

Objetivo Estimar uma proporção p (desconhecida) de elementos uma população, apresentando certa característica de interesse, partir Objetivo Estimar uma roorção (descohecida) de elemetos em uma oulação, aresetado certa característica de iteresse, a artir da iformação forecida or uma amostra. Exemlos: : roorção de aluos da USP que foram

Leia mais

9 - INFERÊNCIA ESTATÍSTICA Estimação de Parâmetros

9 - INFERÊNCIA ESTATÍSTICA Estimação de Parâmetros INE 7 - Iferêcia Estatística Estimação de Parâmetros 1 9 - INFERÊNCIA ESTATÍSTICA Estimação de Parâmetros 9.1 - Itrodução Estatística é a ciêcia que se ocupa de orgaizar, descrever, aalisar e iterpretar

Leia mais

8/8/2012. Administração Financeira e Orçamentária. Conteúdo. Conteúdo. Tema 3 O valor do dinheiro no tempo. Tema 4 Risco e Retorno

8/8/2012. Administração Financeira e Orçamentária. Conteúdo. Conteúdo. Tema 3 O valor do dinheiro no tempo. Tema 4 Risco e Retorno Admiistração Fiaceira e Orçametária Tema 3 O valor do diheiro o tempo. Tema 4 Risco e Retoro Ivoete Melo de Carvalho, MSc Coteúdo As mutações do valor do diheiro o tempo. Os fatores que iterferem o valor

Leia mais

MEDIDAS DE DISPERSÃO. o grau de variabilidade, ou dispersão, dos valores em torno da média.

MEDIDAS DE DISPERSÃO. o grau de variabilidade, ou dispersão, dos valores em torno da média. UNIVERSIDADE FEDERAL DA PARAÍBA MEDIDAS DESCRITIVAS Departamento de Estatística Tarciana Liberal As medidas de posição apresentadas fornecem a informação dos dados apenas a nível pontual, sem ilustrar

Leia mais

Guia do Professor. Endireita essa coluna! Série Mundo da Matemática

Guia do Professor. Endireita essa coluna! Série Mundo da Matemática Guia do Professor Edireita essa colua! Série Mudo da Matemática Coordeação Geral Elizabete dos Satos Autores Bárbara Nivalda Palharii Alvim Souza Karia Alessadra Pessôa da Silva Lourdes Maria Werle de

Leia mais

Disciplina: Probabilidade e Estatística (MA70H) Profª Silvana Heidemann Rocha Estudante: Código: APRESENTAÇÃO DE DADOS PARA VARIÁVEL QUANTITATIVA

Disciplina: Probabilidade e Estatística (MA70H) Profª Silvana Heidemann Rocha Estudante: Código: APRESENTAÇÃO DE DADOS PARA VARIÁVEL QUANTITATIVA Miistério da Educação UIVERSIDADE TECOLÓGICA FEDERAL DO PARAÁ Câmpus Curitiba Diretoria de Graduação e Educação Profissioal Departameto Acadêmico de Estatística 1 Disciplia: Probabilidade e Estatística

Leia mais

n ) uma amostra aleatória da variável aleatória X.

n ) uma amostra aleatória da variável aleatória X. - Distribuições amostrais Cosidere uma população de objetos dos quais estamos iteressados em estudar uma determiada característica. Quado dizemos que a população tem distribuição FX ( x ), queremos dizer

Leia mais

Lição 5 Medidas Descritivas Medidas de Dispersão

Lição 5 Medidas Descritivas Medidas de Dispersão 99 Lição 5 Medidas Descritivas Medidas de Dispersão Após concluir o estudo desta lição, esperamos que você possa: identifi car o objetivo das medidas de dispersão; identifi car o conceito de variância;

Leia mais

Universidade São Judas Tadeu Faculdade de Tecnologia e Ciências Exatas Laboratório de Física e Química

Universidade São Judas Tadeu Faculdade de Tecnologia e Ciências Exatas Laboratório de Física e Química Uiversidade São Judas Tadeu Faculdade de Tecologia e Ciêcias Exatas Laboratório de Física e Química Aálise de Medidas Físicas Quado fazemos uma medida, determiamos um úmero para caracterizar uma gradeza

Leia mais

a = b n Vejamos alguns exemplos que nos permitem observar essas relações. = 4 4² = 16 radical radicando

a = b n Vejamos alguns exemplos que nos permitem observar essas relações. = 4 4² = 16 radical radicando Caro aluo, Com o objetivo de esclarecer as dúvidas sobre a raiz quadrada, apresetamos este material a defiição de radiciação, o cálculo da raiz quadrada e algumas propriedades de radiciação. Além disso,

Leia mais

Cap. VI Histogramas e Curvas de Distribuição

Cap. VI Histogramas e Curvas de Distribuição TLF /11 Capítulo VI Histogramas e curvas de distribuição 6.1. Distribuições e histogramas. 6 6.. Distribuição limite 63 6.3. Sigificado da distribuição limite: frequêcia esperada e probabilidade de um

Leia mais

s =, sendo n= n Uma amostra de 60 indivíduos onde a massa corpórea, em kg, tiver média 42kg e um desvio padrão de 3,5 o Erro Padrão da Média será:

s =, sendo n= n Uma amostra de 60 indivíduos onde a massa corpórea, em kg, tiver média 42kg e um desvio padrão de 3,5 o Erro Padrão da Média será: statística Aplicada Prof. Atoio Sales/ 013 DSVIO PADRÃO RRO PADRÃO DA MÉDIA As iferêcias sobre uma população podem ser baseadas em observações a partir de amostras de populações. Como a amostra, a maior

Leia mais

n i=1 X i n X = n 1 i=1 X2 i ( n i=1 X i) 2 n

n i=1 X i n X = n 1 i=1 X2 i ( n i=1 X i) 2 n Exercício 1. As otas fiais de um curso de Estatística foram as seguites 7, 5, 4, 5, 6, 1, 8, 4, 5, 4, 6, 4, 5, 6, 4, 6, 6, 4, 8, 4, 5, 4, 5, 5 e 6. a. Determie a mediaa, os quartis e a média. Resposta:

Leia mais

6.1 Estimativa de uma média populacional: grandes amostras. Definição: Um estimador é uma característica amostral (como a média amostral

6.1 Estimativa de uma média populacional: grandes amostras. Definição: Um estimador é uma característica amostral (como a média amostral 6 ESTIMAÇÃO 6.1 Estimativa de uma média populacioal: grades amostras Defiição: Um estimador é uma característica amostral (como a média amostral x ) utilizada para obter uma aproximação de um parâmetro

Leia mais

Intervalos de Confiança

Intervalos de Confiança Itervalos de Cofiaça Prof. Adriao Medoça Souza, Dr. Departameto de Estatística - PPGEMQ / PPGEP - UFSM - 0/9/008 Estimação de Parâmetros O objetivo da Estatística é a realização de iferêcias acerca de

Leia mais

Sumário. 2 Índice Remissivo 19

Sumário. 2 Índice Remissivo 19 i Sumário 1 Estatística Descritiva 1 1.1 Coceitos Básicos.................................... 1 1.1.1 Defiições importates............................. 1 1.2 Tabelas Estatísticas...................................

Leia mais

Análise Combinatória I

Análise Combinatória I Aálise Combiatória I O pricípio fudametal da cotagem ada mais é que a maeira mais simples possível de determiar de quatas maeiras diferetes que um eveto pode acotecer. Se eu, por exemplo, estiver pitado

Leia mais

Experimento 1 Estudo da Lei de Hooke

Experimento 1 Estudo da Lei de Hooke Experimeto 1 Estudo da Lei de Hooke 1.1 Objetivos Físicos Verificação experimetal da lei de Hooke para uma mola helicoidal: Medida experimetal do módulo de rigidez do material μ. 1. Objetivos Didáticos

Leia mais

Aula 6 Medidas de Tendência Central

Aula 6 Medidas de Tendência Central 1 Estatística e Probabilidade Aula 6 Medidas de Tendência Central Professor Luciano Nóbrega Somatório Quando queremos representar uma soma de valores que obedecem à uma sequência, podemos codificá-la através

Leia mais

Teorema do limite central e es/mação da proporção populacional p

Teorema do limite central e es/mação da proporção populacional p Teorema do limite cetral e es/mação da proporção populacioal p 1 RESULTADO 1: Relembrado resultados importates Seja uma amostra aleatória de tamaho de uma variável aleatória X, com média µ e variâcia σ.temos

Leia mais

Mineração de Dados em Biologia Molecular

Mineração de Dados em Biologia Molecular Mieração de Dados em Biologia Molecular Tópicos Adré C. P. L. F. de Carvalho Moitor: Valéria Carvalho Preparação de dados Dados Caracterização de dados Istâcias e Atributos Tipos de Dados Exploração de

Leia mais

é 4. Portanto, o desvio padrão é 2. Neste caso 100% dos valores da população estão a um desvio padrão da média.

é 4. Portanto, o desvio padrão é 2. Neste caso 100% dos valores da população estão a um desvio padrão da média. Desvio Padrão From Wikipedia, the free encyclopedia probabilidade e estatística, o desvio padrão de uma distribuição de probabilidade, de uma variável aleatória, ou população é uma medida do espalhamento

Leia mais

Testes de Hipóteses 5.1 6 8.8 11.5 4.4 8.4 8 7.5 9.5

Testes de Hipóteses 5.1 6 8.8 11.5 4.4 8.4 8 7.5 9.5 Testes de Hipóteses Supoha que o ível crítico de ifestação por um iseto-praga agrícola é de 10% das platas ifestadas. Você decide fazer um levatameto em ove lotes, selecioados aleatoriamete, de uma área

Leia mais

Medida de Tendência Central

Medida de Tendência Central Medida de Tendência Central um valor no centro ou no meio de um conjunto de dados 1 Definições Média (Média Aritmética) o número obtido somando-se todos os valores de um conjunto de dados, dividindo-se

Leia mais

Estatística II Aula 3. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística II Aula 3. Prof.: Patricia Maria Bortolon, D. Sc. Estatística II Aula 3 Prof.: Patricia Maria Bortolo, D. Sc. Estimação por Itervalo Objetivos Nesta semaa, veremos: Como costruir e iterpretar estimativas por itervalos de cofiaça para a média e a proporção

Leia mais

11 Aplicações da Integral

11 Aplicações da Integral Aplicações da Itegral Ao itroduzirmos a Itegral Defiida vimos que ela pode ser usada para calcular áreas sob curvas. Veremos este capítulo que existem outras aplicações. Essas aplicações estedem-se aos

Leia mais

1 a Lista de PE Solução

1 a Lista de PE Solução Uiversidade de Brasília Departameto de Estatística 1 a Lista de PE Solução 1. a) Qualitativa omial. b) Quatitativa discreta. c) Quatitativa discreta. d) Quatitativa cotíua. e) Quatitativa cotíua. f) Qualitativa

Leia mais

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos:

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos: 48 DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL LEI DOS GRANDES NÚMEROS Pretede-se estudar o seguite problema: À medida que o úmero de repetições de uma experiêcia cresce, a frequêcia relativa

Leia mais

IMPORTÂNCIA DO CÁLCULO DA PROPAGAÇÃO DE ERROS EM UM EXPERIMENTO DE ATRITO ESTÁTICO + *

IMPORTÂNCIA DO CÁLCULO DA PROPAGAÇÃO DE ERROS EM UM EXPERIMENTO DE ATRITO ESTÁTICO + * IMPORTÂNCIA DO CÁLCULO DA PROPAGAÇÃO DE ERROS EM UM EXPERIMENTO DE ATRITO ESTÁTICO + * Celso Yuji Matuo J. R. Marielli Departameto de Física Floriaópolis - SC UFSC Resumo Mostra-se que, mesmo em um experimeto

Leia mais

Medidas de Posição. É igual ao quociente entre a soma dos valores do conjunto e o número total dos valores.

Medidas de Posição. É igual ao quociente entre a soma dos valores do conjunto e o número total dos valores. Medidas de Posição São as estatísticas que represetam uma série de dados orietado-os quato à posição da distribuição em relação ao eixo horizotal do gráfico da curva de freqüêcia As medidas de posições

Leia mais

ESTATÍSTICA E PROBABILIDADES

ESTATÍSTICA E PROBABILIDADES ESTATÍSTICA E PROBABILIDADES Aluo(a): Turma: Professores: Data: Edu/Vicete Noções de Estatística Podemos eteder a Estatística como sedo o método de estudo de comportameto coletivo, cujas coclusões são

Leia mais

21037 : e-fólio A- proposta de resolução

21037 : e-fólio A- proposta de resolução 21037 : e-fólio A- proposta de resolução 1. Os motates de depósito a prazo, em uidades codificadas (UC), correspodem a uma variável quatitativa cotíua, e estão orgaizados em classes com a mesma amplitude.

Leia mais

Distribuições Amostrais

Distribuições Amostrais Distribuições Amostrais O problema da iferêcia estatística: fazer uma afirmação sobre os parâmetros da população θ (média, variâcia, etc) através da amostra. Usaremos uma AAS de elemetos sorteados dessa

Leia mais

Fundamentos de Análise Matemática Profª Ana Paula. Números reais

Fundamentos de Análise Matemática Profª Ana Paula. Números reais Fudametos de Aálise Matemática Profª Aa Paula Números reais 1,, 3, cojuto dos úmeros aturais 0,1,,3, cojuto dos úmeros iteiros p q /p e q cojuto dos úmeros racioais a, a 0 a 1 a a, a e a i 0, 1,, 3, 4,

Leia mais

AEP FISCAL ESTATÍSTICA

AEP FISCAL ESTATÍSTICA AEP FISCAL ESTATÍSTICA Módulo 04: Medidas de Posição (webercampos@gmail.com) . MÉDIA ARITMÉTICA : Para um cojuto de valores Média Aritmética Simples: xi p Média Aritmética Poderada: MÓDULO 04 - MEDIDAS

Leia mais

Estimadores de Momentos

Estimadores de Momentos Estimadores de Mometos A média populacioal é um caso particular daquilo que chamamos de mometo. Na realidade, ela é o primeiro mometo. Se X for uma v.a. cotíua, com desidade f(x; θ 1,..., θ r ), depededo

Leia mais

ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p

ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p Objetivo Estimar uma proporção p (descohecida) de elemetos em uma população, apresetado certa característica de iteresse, a partir da iformação forecida por uma amostra.

Leia mais

a = b n Vejamos alguns exemplos que nos permitem observar essas relações. = 4 4² = 16 radical radicando

a = b n Vejamos alguns exemplos que nos permitem observar essas relações. = 4 4² = 16 radical radicando RADICIAÇÃO CONTEÚDOS Radiciação Propriedades dos radicais Extração de fatores do radicado AMPLIANDO SEUS CONHECIMENTOS Radiciação A radiciação é defiida como a operação em que dado um úmero a e um úmero,

Leia mais

BIOESTATÍSTICA. Parte 1 - Estatística descritiva e análise exploratória dos dados

BIOESTATÍSTICA. Parte 1 - Estatística descritiva e análise exploratória dos dados BIOESTATÍSTICA Parte 1 - Estatística descritiva e análise exploratória dos dados Aulas Teóricas de 17/02/2011 a 03/03/2011 1.1. População, amostra e dados estatísticos. Dados qualitativos e quantitativos

Leia mais

Medidas de Tendência Central

Medidas de Tendência Central Média, Mediana e Moda 1 Coletando Dados A coleta de dados produz um conjunto de escores de uma ou mais variáveis Para chegar à distribuição dos escores, estes têm de ser arrumados / ordenados do menor

Leia mais

O jogo MAX_MIN - Estatístico

O jogo MAX_MIN - Estatístico O jogo MAX_MIN - Estatístico José Marcos Lopes Resumo Apresetamos este trabalho um jogo (origial) de treiameto para fortalecer os coceitos de Média, Mediaa, Moda, Desvio Padrão e Desvio Médio da Estatística

Leia mais

Estatística Descritiva. 3. Estatísticas Medidas de posição Medidas de dispersão

Estatística Descritiva. 3. Estatísticas Medidas de posição Medidas de dispersão Estatística Descritiva 3. Estatísticas 3.1. Medidas de posição 3.. Medidas de dispersão 1 Exemplo 1: Compare as 4 colheitadeiras quato às porcetages de quebra de semetes de milho. Tabela 1. Porcetagem

Leia mais

Capítulo 5- Introdução à Inferência estatística. (Versão: para o manual a partir de 2016/17)

Capítulo 5- Introdução à Inferência estatística. (Versão: para o manual a partir de 2016/17) Capítulo 5- Itrodução à Iferêcia estatística. (Versão: para o maual a partir de 2016/17) 1.1) Itrodução.(222)(Vídeo 39) Na iferêcia estatística, aalisamos e iterpretamos amostras com o objetivo de tirar

Leia mais

Capítulo 5- Introdução à Inferência estatística.

Capítulo 5- Introdução à Inferência estatística. Capítulo 5- Itrodução à Iferêcia estatística. 1.1) Itrodução.(184) Na iferêcia estatística, aalisamos e iterpretamos amostras com o objetivo de tirar coclusões acerca da população de ode se extraiu a amostra.

Leia mais

5n 3. 1 nsen(n + 327) e)

5n 3. 1 nsen(n + 327) e) Exercícios 1 Mostre, utilizado a defiição, que as seguites sucessões são limitadas: 2 4 50 a) b) 3 +16 1 5 3 2 c) 1 4( 1) 8 5 d) 100 5 3 2 + 2( 1) 1 4( 1) 8 1 se( + 327) e) f) 5 3 2 4 4 2 2 Mostre, utilizado

Leia mais

Estimar uma proporção p (desconhecida) de elementos em uma população, apresentando certa característica de interesse, a partir da informação

Estimar uma proporção p (desconhecida) de elementos em uma população, apresentando certa característica de interesse, a partir da informação ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p 1 Objetivo Estimar uma proporção p (descohecida) de elemetos em uma população, apresetado certa característica de iteresse, a partir da iformação forecida por uma

Leia mais

Análise da Informação Económica e Empresarial

Análise da Informação Económica e Empresarial Aálise da Iforação Ecoóica e Epresarial Aula 7: Redução de Dados: Medidas de Localização Aálise da Iforação Ecoóica e Epresarial Guião Aula 7: Redução de Dados: Medidas de Localização Coceitos Fudaetais:

Leia mais

MATEMÁTICA FINANCEIRA. UNIDADE XI RENDAS Capitalização e Amortização Compostas (Séries de Pagamentos ou Rendas)

MATEMÁTICA FINANCEIRA. UNIDADE XI RENDAS Capitalização e Amortização Compostas (Séries de Pagamentos ou Rendas) 1 UNIDADE XI RENDAS Capitalização e Amortização Compostas (Séries de Pagametos ou Redas) Elemetos ou Classificação: - Redas: Sucessão de depósitos ou de prestações, em épocas diferetes, destiados a formar

Leia mais

Análise de Regressão. Notas de Aula

Análise de Regressão. Notas de Aula Análise de Regressão Notas de Aula 2 Modelos de Regressão Modelos de regressão são modelos matemáticos que relacionam o comportamento de uma variável Y com outra X. Quando a função f que relaciona duas

Leia mais

Cap. 4 - Estimação por Intervalo

Cap. 4 - Estimação por Intervalo Cap. 4 - Estimação por Itervalo Amostragem e iferêcia estatística População: cosiste a totalidade das observações em que estamos iteressados. Nº de observações a população é deomiado tamaho=n. Amostra:

Leia mais

MATEMÁTICA MÓDULO 6 ESTATÍSTICA. Professor Haroldo Filho

MATEMÁTICA MÓDULO 6 ESTATÍSTICA. Professor Haroldo Filho MATEMÁTICA Professor Haroldo Filho MÓDULO 6 ESTATÍSTICA 1.1 ESTATÍSTICA É a ciêcia que utiliza a coleta de dados, sua classificação, sua apresetação, sua aálise e sua iterpretação para se tomar algum tipo

Leia mais

ELEMENTOS DE ESTATÍSTICA DESCRITIVA. Amílcar Oliveira Teresa A. Oliveira

ELEMENTOS DE ESTATÍSTICA DESCRITIVA. Amílcar Oliveira Teresa A. Oliveira ELEMENTOS DE ESTATÍSTICA DESCRITIVA Amílcar Oliveira Teresa A. Oliveira Lisboa Jaeiro de 2011 Coteúdo Resumo. Pretede-se com o presete texto uma abordagem aos pricipais tópicos desevolvidos em Estatística

Leia mais

Obtemos, então, uma amostra aleatória de tamanho n de X, que representamos por X 1, X 2,..., X n.

Obtemos, então, uma amostra aleatória de tamanho n de X, que representamos por X 1, X 2,..., X n. Vamos observar elemetos, extraídos ao acaso e com reposição da população; Para cada elemeto selecioado, observamos o valor da variável X de iteresse. Obtemos, etão, uma amostra aleatória de tamaho de X,

Leia mais

Emerson Marcos Furtado

Emerson Marcos Furtado Emerso Marcos Furtado Mestre em Métodos Numéricos pela Uiversidade Federal do Paraá (UFPR). Graduado em Matemática pela UFPR. Professor do Esio Médio os estados do Paraá e Sata Cataria desde 199. Professor

Leia mais

Grandes Conjuntos de Dados

Grandes Conjuntos de Dados Prof. Lorí Viali, Dr. viali@pucrs.br http://www.pucrs.br/famat/viali/ Grades Cojutos de Dados Orgaização; Resumo; Apresetação. Amostra ou População Defeitos em uma liha de produção Lascado Meor Deseho

Leia mais

Ajuste de Curvas pelo Método dos Quadrados Mínimos

Ajuste de Curvas pelo Método dos Quadrados Mínimos Notas de aula de Métodos Numéricos. c Departameto de Computação/ICEB/UFOP. Ajuste de Curvas pelo Método dos Quadrados Míimos Marcoe Jamilso Freitas Souza, Departameto de Computação, Istituto de Ciêcias

Leia mais

SISTEMA MÉTRICO DECIMAL

SISTEMA MÉTRICO DECIMAL SISTEMA MÉTRICO DECIMAL UNIDADES DE COMPRIMENTO A uidade fudametal chama-se metro (m). Múltiplos: quilômetro (km), hectômetro (hm) e decâmetro (dam) Submúltiplos: decímetro (dm), cetímetro (cm) e milímetro

Leia mais

CPV O cursinho que mais aprova na FGV

CPV O cursinho que mais aprova na FGV O cursiho que mais aprova a FGV FGV ecoomia a Fase 0/dezembro/00 MATEMÁTICA 0. Se P é 0% de Q, Q é 0% de R e S é 0% de R, etão P S é igual a: 0 c 0. Dado um petágoo regular ABCDE, costrói-se uma circuferêcia

Leia mais

4 HIDROLOGIA ESTATÍSTICA: conceitos e aplicações

4 HIDROLOGIA ESTATÍSTICA: conceitos e aplicações 4 HIDROLOGIA ESTATÍSTICA: coceitos e aplicações 4. Coceitos básicos de Probabilidades Um cojuto de dados hidrológicos ecessita ser previamete aalisado com base em algus idicadores estatísticos básicos

Leia mais

Material Teórico - Módulo de ESTATÍSTICA. As Diferentes Médias. Primeiro Ano do Ensino Médio

Material Teórico - Módulo de ESTATÍSTICA. As Diferentes Médias. Primeiro Ano do Ensino Médio Material Teórico - Módulo de ESTATÍSTICA As Diferetes Médias Primeiro Ao do Esio Médio Autor: Prof Atoio Camiha Muiz Neto Revisor: Prof Fracisco Bruo Holada Nesta aula, pausamos a discussão de Estatística

Leia mais

4. Inferência Estatística Estimadores Pontuais

4. Inferência Estatística Estimadores Pontuais 4. Iferêcia Estatística Estimadores Potuais 4.1. Itrodução Em lihas gerais, a Iferêcia Estatística objetiva estudar a população através de evidêcias forecidas pela amostra. É a amostra que cotém os elemetos

Leia mais