Autovalores e Autovetores Determinante de. Motivando com Geometria Definição Calculando Diagonalização Teorema Espectral:

Tamanho: px
Começar a partir da página:

Download "Autovalores e Autovetores Determinante de. Motivando com Geometria Definição Calculando Diagonalização Teorema Espectral:"

Transcrição

1 Lema (determinante de matriz ) A B A 0 Suponha que M = ou M =, com A e D 0 D C D matrizes quadradas Então det(m) = det(a) det(d) A B Considere M =, com A, B, C e D matrizes C D quadradas De forma geral, det(m) det(a) det(d) det(b) det(c) Calcule os valores de λ tais que det M = 0 λ 3 λ M = 0 0 λ 0 0 λ Definindo λ λ λ M =, M λ =, M λ 3 = 3 + λ, M M = 0 M det(m) = 0 0 M 3 det(m ) det(m ) det(m 3 ) = (λ ) (λ )(3 + λ) = 0 As raízes são,, 3 Álgebra Linear II 008/ Prof Marco Cabral & Prof Paulo Goldfeld DMA / IM / UFRJ / 33 Álgebra Linear II 008/ Prof Marco Cabral & Prof Paulo Goldfeld DMA / IM / UFRJ / 33 Introdução s Quando v e T v são paralelos? Qual direção é preservada por T? T uma reflexão em torno do eixo-x = T (x, y) = (x, y) Incluir Figura: relexão em torno do eixo-x } T (, 0) = (, 0) direções preservadas T (0, ) = (0, ) } T (, ) = (, ) direções não preservadas T (, 3) = (, 3) T uma rotação de 90 = T (x, y) = (y, x) Incluir Figura: rotação de 90 graus Nenhuma direção é preservada! Álgebra Linear II 008/ Prof Marco Cabral & Prof Paulo Goldfeld DMA / IM / UFRJ 3 / 33 Álgebra Linear II 008/ Prof Marco Cabral & Prof Paulo Goldfeld DMA / IM / UFRJ 4 / 33 Autovalor e Autovetor Autoespaço Seja T : V V TL Dizemos que 0 v V é autovetor associado ao autovalor λ se T v = λv λ pode ser zero, mas v não! (Se v = 0, então T v = λv λ) Se T v = λv então T v λv = T v (λi)v = 0 Logo (T λi)v = 0 Portanto v Nuc(T λi) O autoespaço associado a λ é Nuc(T λi) autoespaço assoc a λ = {autovetores assoc a λ} {0} Álgebra Linear II 008/ Prof Marco Cabral & Prof Paulo Goldfeld DMA / IM / UFRJ 5 / 33 Álgebra Linear II 008/ Prof Marco Cabral & Prof Paulo Goldfeld DMA / IM / UFRJ 6 / 33 Como calcular autovalores e autoespaços? Dado λ, calculamos seu autoespaço: Nuc(T λi) Mas como encontrar um autovalor λ? T v = λv, v 0 (T λi)v = 0, v 0 Nuc(T λi)não trivial det(t λi) = 0 De fato, λ é autovalor de T sss det(t λi) = 0 Calcule os autovalores e autoespaços de x T (x, y) = y ( λ) det(a λi) = det = ( λ) ( λ) = (λ 0)(λ ) autoespaço para λ = 0: Resolvemos o sistema (A 0I)x = 0 3 autoespaço para λ = : Resolvemos o sistema (A I)x = 0 Álgebra Linear II 008/ Prof Marco Cabral & Prof Paulo Goldfeld DMA / IM / UFRJ 7 / 33 Álgebra Linear II 008/ Prof Marco Cabral & Prof Paulo Goldfeld DMA / IM / UFRJ 8 / 33

2 Polinômio Característico : polinômio independe da base p(λ) = det(t λi) é um polinômio em λ, chamado polinômio característico de T O grau de p(λ) é igual à dimensão do espaço Lema O polinômio característico independe da base escolhida: det(t β λi) = det(t γ λi) Sejam A = T γ e B = T β Se P = I β γ, então PAP = B Assim, det(b λi) = det(pap λi) = det(pap P(λI)P ) = det(p(a λi)p ) = det(p) det(a λi) det(p ) = det(p) det(p ) det(a λi) = det(a λi) Álgebra Linear II 008/ Prof Marco Cabral & Prof Paulo Goldfeld DMA / IM / UFRJ 9 / 33 Álgebra Linear II 008/ Prof Marco Cabral & Prof Paulo Goldfeld DMA / IM / UFRJ 0 / 33 Resumo do Cálculo Determinamos os zeros do polinômio det(t λi) = 0 para achar autovalores; Substituímos os autovalores na equação (T λi)v = 0 para determinar os autovetores v Calcule os autovetores de 3 0 x T (x, y, z) = 0 y 0 z Álgebra Linear II 008/ Prof Marco Cabral & Prof Paulo Goldfeld DMA / IM / UFRJ / 33 Álgebra Linear II 008/ Prof Marco Cabral & Prof Paulo Goldfeld DMA / IM / UFRJ / 33 Calcular autovalores e autovetores de uma projeção e de uma reflexão Note que uma rotação não possui autovalores reais Isto indica que NENHUMA direção é preservada (Exceto para múltiplos de π radianos) Álgebra Linear II 008/ Prof Marco Cabral & Prof Paulo Goldfeld DMA / IM / UFRJ 3 / 33 Álgebra Linear II 008/ Prof Marco Cabral & Prof Paulo Goldfeld DMA / IM / UFRJ 4 / 33 Multiplicidade Teorema (Teorema Fundamental da Álgebra) T : V V, (V funções reais diferenciáveis) definida por Tv = v Qual autovetor (chamada também de autofunção) associado ao autovalor 3? Isto é, para qual função v, v = 3v? v(t) = exp(3t) pois v (t) = 3 exp(3t), isto é, v = 3v Um polinômio de grau n tem exatamente n raízes (não necessariamente distintas) sobre o corpo dos complexos, isto é, existem números complexos, λ,, λ n, tais que n a k λ k = a n (λ λ )(λ λ ) (λ λ n ) λ, k=0 onde λ k s são números complexos Esta fatoração é única (a menos da ordem) Álgebra Linear II 008/ Prof Marco Cabral & Prof Paulo Goldfeld DMA / IM / UFRJ 5 / 33 Álgebra Linear II 008/ Prof Marco Cabral & Prof Paulo Goldfeld DMA / IM / UFRJ 6 / 33

3 Multiplicidade Agrupando-se termos repetidos, temos n a k λ k = a n (λ λ ) m (λ λ p ) mp λ, k=0 onde λ,, λ p são raízes distintas e m k é a multiplicidade da raiz λ k (Multiplicidade (Algébrica)) Se λ é raiz de multiplicidade m do polinômio característico de T, p T c, diz-se que λ é autovalor de multiplicidade λ de T Dizemos que T é diagonalizável se existe uma base β tal que T β é uma matriz diagonal Teorema T : V V é diagonalizável se, e somente se, V possui uma base de autovetores de T Álgebra Linear II 008/ Prof Marco Cabral & Prof Paulo Goldfeld DMA / IM / UFRJ 7 / 33 Álgebra Linear II 008/ Prof Marco Cabral & Prof Paulo Goldfeld DMA / IM / UFRJ 8 / 33 Lema associados a autovalores distintos são linearmente independentes, ou seja, se 0 v k e T v k = λ k v k, k =,, p, com λ k s distintos, então {v,, v p } é LI Vamos provar para três autovetores {v, v, v 3 } com três autovalores (distintos) já ordenados por módulo: λ > λ > λ 3 Se α v + α v + α 3 v 3 = 0, aplicando T obtemos: T (α v + α v + α 3 v 3 ) = T 0 = 0 α T v + α T v + α 3 T v 3 = α λ v + α λ v + α 3 λ 3 v 3 = 0 Aplicando T novamente: T (α λ v + α λ v + α 3 λ 3 v 3 ) = 0 α (λ ) v + α (λ ) v + α 3 (λ 3 ) v 3 = 0 Aplicando T várias vezes: α (λ ) n v + α (λ ) n v + α 3 (λ 3 ) n v 3 = 0 Dividindo por (λ ) n : α v + α (λ /λ ) n v + α 3 (λ 3 /λ ) n v 3 = 0 Álgebra Linear II 008/ Prof Marco Cabral & Prof Paulo Goldfeld DMA / IM / UFRJ 9 / 33 Álgebra Linear II 008/ Prof Marco Cabral & Prof Paulo Goldfeld DMA / IM / UFRJ 0 / 33 α v + α (λ /λ ) n v + α 3 (λ 3 /λ ) n v 3 = 0 Passando ao limite (n ), como λ /λ <, α v = 0 Logo α = 0 Voltando a equação 0(λ ) n v + α (λ ) n v + α 3 (λ 3 ) n v 3 = 0, dividindo por (λ ) n : α v + α 3 (λ 3 /λ ) n v 3 = 0 Passando ao limite (n ), como λ 3 /λ <, α v = 0 Logo α = 0 Da equação 0v + 0v + α 3 v 3 = 0, concluimos que: α 3 = 0, o que implica que autovetores são LIs É fácil generalizar para o caso geral de n autovetores (veja o livro para outra prova) Corolário Se o espaço V possui dimensão n e existem n autovalores distintos então T é diagonalizável Para diagonalizar uma TL em dimensão n: Calcular os autovalores (raízes do polinômio caractertístico) Se n autovalores distintos é diagonalizável Encontrar bases para autospaços (resolver sistemas homogêneos) 3 Juntar os vetores de todas as bases: se forem suficientes (n vetores LI s), T é diagonalizável, caso contrário, não Álgebra Linear II 008/ Prof Marco Cabral & Prof Paulo Goldfeld DMA / IM / UFRJ / 33 Álgebra Linear II 008/ Prof Marco Cabral & Prof Paulo Goldfeld DMA / IM / UFRJ / 33 Decomposição Espectral es Diagonalizáveis Se A é diagonalizável, definindo D matriz diagonal com autovalores e P matriz com autovetores nas colunas, AP = PD : AP é uma matriz onde cada coluna é λ i v i PD é também uma matriz onde cada coluna é λ i v i Como autovetores formam base LI, P é invertível Assim A = PDP, chamada decomposição espectral de A A = A = 0 0 A = A = TODAS possuem no autovalores distintos iguais a dimensão da matriz Álgebra Linear II 008/ Prof Marco Cabral & Prof Paulo Goldfeld DMA / IM / UFRJ 3 / 33 Álgebra Linear II 008/ Prof Marco Cabral & Prof Paulo Goldfeld DMA / IM / UFRJ 4 / 33

4 Encontre a decomposição espectral de 3 A = Autovalores são e Temos que calcular autoespaços para saber se é diagonalizável! Base do autoespaço do : v = (, 0, ) e v = (,, 0) Base do autoespaço do : w = (,, 0) Três autovetores LI s: É diagonalizável A = PDP com P = v v w D = Ou, A = PDP com P = w v v D = Ou, A = PDP com P = v w v D = Ou, A = PDP com P = v w v D = Álgebra Linear II 008/ Prof Marco Cabral & Prof Paulo Goldfeld DMA / IM / UFRJ 5 / 33 Álgebra Linear II 008/ Prof Marco Cabral & Prof Paulo Goldfeld DMA / IM / UFRJ 6 / 33 Encontre a decomposição espectral de 3 0 A = 0 0 Autovalores são e Temos que calcular autoespaços para saber se é diagonalizável! Base do autoespaço do : (3, 3, ) Base do autoespaço do : (0, 0, ) Dois autovetores LI s: Não é diagonalizável Não possui decomposição espectral T projeção ortogonal na reta r = w Determine decomposição espectral Se v é perpendicular à reta r, T v = 0 = 0v e T w = w São autovalores 0 e com autovetores associados w e v T = PDP com P = v w 0 D = Álgebra Linear II 008/ Prof Marco Cabral & Prof Paulo Goldfeld DMA / IM / UFRJ 7 / 33 Álgebra Linear II 008/ Prof Marco Cabral & Prof Paulo Goldfeld DMA / IM / UFRJ 8 / 33 Teorema Espectral potência de matrizes Teorema Se A = A t (dizemos que a matriz A é simétrica) então existe uma base ortogonal de autovetores que diagonaliza A Se A = PDP é diagonalizável podemos calcular facilmente A k por exemplo A = (PDP )(PDP ) = PD(P P)DP = PDDP = PD P calcular D é fácil: basta calcular o quadrado dos elementos da diagonal outro exemplo A 3 = (PDP )(PDP )(PDP ) = PD(P P)D(P P)DP = PDDDP = PD 3 P de forma geral, A k = PD k P Álgebra Linear II 008/ Prof Marco Cabral & Prof Paulo Goldfeld DMA / IM / UFRJ 9 / 33 Álgebra Linear II 008/ Prof Marco Cabral & Prof Paulo Goldfeld DMA / IM / UFRJ 30 / 33 de potência Raiz Quadrada es Calcule A 0 para A = O autoespaço associado ao / é (, ) O autoespaço associado ao é (, ) / Portanto, P = com D = a inversa de P determinamos que P = / Como D 0 0 =,calculando o produto PD 0 P obtemos que A 0 = Podemos de forma similar calcular raiz quadrada de matrizes diagonalizáveis Se A = PDP, definimos A = P DP, onde D significa tomar raiz dos elementos da diagonal ( A) = (P DP )(P DP ) = P D DP = P( D) P = PDP = A Álgebra Linear II 008/ Prof Marco Cabral & Prof Paulo Goldfeld DMA / IM / UFRJ 3 / 33 Álgebra Linear II 008/ Prof Marco Cabral & Prof Paulo Goldfeld DMA / IM / UFRJ 3 / 33

5 de raíz quadrada Calcule 6 30 A para A = 5 9 O autoespaço associado ao 9 é (, ) O autoespaço 3 associado ao 4 é ( 3, ) Portanto, P = com 9 D = a inversa de P determinamos 4 que P 3 = Como 3 D =, calculando o produto P DP = A obtemos que B = 0 6 A = 5 Verifique diretamente que B = A Álgebra Linear II 008/ Prof Marco Cabral & Prof Paulo Goldfeld DMA / IM / UFRJ 33 / 33

Matrizes Semelhantes e Matrizes Diagonalizáveis

Matrizes Semelhantes e Matrizes Diagonalizáveis Diagonalização Matrizes Semelhantes e Matrizes Diagonalizáveis Nosso objetivo neste capítulo é estudar aquelas transformações lineares de R n para as quais existe pelo menos uma base em que elas são representadas

Leia mais

Provas. As notas da primeira e segunda prova já foram digitadas no Minha UFMG. Caso você não veja sua nota, entre em contato com o professor.

Provas. As notas da primeira e segunda prova já foram digitadas no Minha UFMG. Caso você não veja sua nota, entre em contato com o professor. Provas As notas da primeira e segunda prova já foram digitadas no Minha UFMG. Caso você não veja sua nota, entre em contato com o professor. Terceira prova. Sábado, 15/junho, 10:00-12:00 horas, ICEx. Diagonalização

Leia mais

Exercício: Identifique e faça um esboço do conjunto solução da. 3x xy + y 2 + 2x 2 3y = 0

Exercício: Identifique e faça um esboço do conjunto solução da. 3x xy + y 2 + 2x 2 3y = 0 Motivação Exercício: Identifique e faça um esboço do conjunto solução da equação 3x 2 + 2 3xy + y 2 + 2x 2 3y = 0 Motivação Exercício: Identifique e faça um esboço do conjunto solução da equação 3x 2 +

Leia mais

AUTOVALORES E AUTOVETORES

AUTOVALORES E AUTOVETORES AUTOVALORES E AUTOVETORES Prof a Simone Aparecida Miloca Definição 1 Uma tranformação linear T : V V é chamada de operador linear. Definição Seja T : V V um operador linear. existirem vetores não-nulos

Leia mais

Álgebra Linear I - Aula 20

Álgebra Linear I - Aula 20 Álgebra Linear I - Aula 20 1 Matrizes diagonalizáveis Exemplos 2 Forma diagonal de uma matriz diagonalizável 1 Matrizes diagonalizáveis Exemplos Lembramos que matriz quadrada a 1,1 a 1,2 a 1,n a 2,1 a

Leia mais

Álgebra Linear I - Aula Forma diagonal de uma matriz diagonalizável

Álgebra Linear I - Aula Forma diagonal de uma matriz diagonalizável Álgebra Linear I - Aula 18 1 Forma diagonal de uma matriz diagonalizável 2 Matrizes ortogonais Roteiro 1 Forma diagonal de uma matriz diagonalizável Sejam A uma transformação linear diagonalizável, β =

Leia mais

Álgebra Linear I - Lista 12. Matrizes semelhantes. Diagonalização. Respostas

Álgebra Linear I - Lista 12. Matrizes semelhantes. Diagonalização. Respostas Álgebra Linear I - Lista 12 Matrizes semelhantes. Diagonalização Respostas 1) Determine quais das matrizes a seguir são diagonalizáveis. Nos caso afirmativos encontre uma base de autovetores e uma forma

Leia mais

GAAL - Exame Especial - 12/julho/2013. Questão 1: Considere os pontos A = (1, 2, 3), B = (2, 3, 1), C = (3, 1, 2) e D = (2, 2, 1).

GAAL - Exame Especial - 12/julho/2013. Questão 1: Considere os pontos A = (1, 2, 3), B = (2, 3, 1), C = (3, 1, 2) e D = (2, 2, 1). GAAL - Exame Especial - /julho/3 SOLUÇÕES Questão : Considere os pontos A = (,, 3), B = (, 3, ), C = (3,, ) e D = (,, ) (a) Chame de α o plano que passa pelos pontos A, B e C e de β o plano que passa pelos

Leia mais

G3 de Álgebra Linear I

G3 de Álgebra Linear I G3 de Álgebra Linear I 2.2 Gabarito ) Considere a matriz 4 N = 4. 4 Observe que os vetores (,, ) e (,, ) são dois autovetores de N. a) Determine uma forma diagonal D de N. b) Determine uma matriz P tal

Leia mais

P3 de Álgebra Linear I

P3 de Álgebra Linear I P3 de Álgebra Linear I 2008.2 Data: 14 de Novembro de 2008. Gabarito. 1) Decida se cada afirmação a seguir é verdadeira ou falsa. Considere uma transformação linear T : R 3 R 3 tal que existem vetores

Leia mais

Álgebra Linear. Determinantes, Valores e Vectores Próprios. Jorge Orestes Cerdeira Instituto Superior de Agronomia

Álgebra Linear. Determinantes, Valores e Vectores Próprios. Jorge Orestes Cerdeira Instituto Superior de Agronomia Álgebra Linear Determinantes, Valores e Vectores Próprios Jorge Orestes Cerdeira Instituto Superior de Agronomia - 200 - ISA/UTL Álgebra Linear 200/ 2 Conteúdo Determinantes 5 2 Valores e vectores próprios

Leia mais

G3 de Álgebra Linear I

G3 de Álgebra Linear I G de Álgebra Linear I 7 Gabarito ) Considere a transformação linear T : R R cuja matriz na base canônica E = {(,, ), (,, ), (,, )} é [T] E = a) Determine os autovalores de T e seus autovetores correspondentes

Leia mais

1 Autovetor e Autovalor 9. 2 Matrizes Ortogonais e Transformações Lineares Planas e Espaciais 55

1 Autovetor e Autovalor 9. 2 Matrizes Ortogonais e Transformações Lineares Planas e Espaciais 55 Capítulo LINE LINE Autovetor e Autovalor 9 Matrizes Ortogonais e Transformações Lineares Planas e Espaciais 55 Matrizes Simétricas, o Teorema Espectral e Operadores Auto-adjuntos 8 4 Formas Bilineares,

Leia mais

Resolução das objetivas 3ª Prova de Álgebra Linear II da UFRJ, período

Resolução das objetivas 3ª Prova de Álgebra Linear II da UFRJ, período www.engenhariafacil.weebly.com Resolução das objetivas 3ª Prova de Álgebra Linear II da UFRJ, período 4. OBS: Todas as alternativas corretas são as letras A. ) Devemos utilizar o teorema que diz: (Im(A

Leia mais

Álgebra Linear I - Aula 22

Álgebra Linear I - Aula 22 Álgebra Linear I - Aula 1. Bases Ortonormais.. Matrizes Ortogonais. 3. Exemplos. 1 Bases Ortonormais Lembre que uma base β é ortogonal se está formada por vetores ortogonais entre si: para todo par de

Leia mais

Álgebra Linear e suas Aplicações Notas de Aula. Petronio Pulino = Q

Álgebra Linear e suas Aplicações Notas de Aula. Petronio Pulino = Q Álgebra Linear e suas Aplicações Notas de Aula Petronio Pulino 1 3 4 3 1 0 4 0 1 = Q 4 1 6 Qt Q t Q = 1 1 1 PULINUS Álgebra Linear e suas Aplicações Notas de Aula Petronio Pulino Departamento de Matemática

Leia mais

Álgebra Linear I - Aula 19

Álgebra Linear I - Aula 19 Álgebra Linear I - Aula 19 1. Matrizes diagonalizáveis. 2. Matrizes diagonalizáveis. Exemplos. 3. Forma diagonal de uma matriz diagonalizável. 1 Matrizes diagonalizáveis Uma matriz quadrada T = a 1,1 a

Leia mais

(c) apenas as afirmações (II) e (III) são necessariamente verdadeiras;

(c) apenas as afirmações (II) e (III) são necessariamente verdadeiras; Q1. Considere o espaço vetorial R 4 munido do seu produto interno usual. Sejam B uma base de R 4, A M 4 (R) uma matriz e T : R 4 R 4 a transformação linear tal que [T ] B = A. Considere as seguintes afirmações:

Leia mais

Autovalores e Autovetores

Autovalores e Autovetores Autovalores e Autovetores Maria Luísa B. de Oliveira SME0300 Cálculo Numérico 24 de novembro de 2010 Introdução Objetivo: Dada matriz A, n n, determinar todos os vetores v que sejam paralelos a Av. Introdução

Leia mais

G3 de Álgebra Linear I

G3 de Álgebra Linear I G3 de Álgebra Linear I 11.1 Gabarito 1) Seja A : R 3 R 3 uma transformação linear cuja matriz na base canônica é 4 [A] = 4. 4 (a) Determine todos os autovalores de A. (b) Determine, se possível, uma forma

Leia mais

Álgebra Linear e Geometria Analítica. Valores Próprios e Vectores Próprios

Álgebra Linear e Geometria Analítica. Valores Próprios e Vectores Próprios Álgebra Linear e Geometria nalítica Valores Próprios e Vectores Próprios Será assim para todos os vectores? R α α, Será assim para todos os vectores? Definição: Seja um número real e uma matriz quadrada

Leia mais

P4 de Álgebra Linear I de junho de 2005 Gabarito

P4 de Álgebra Linear I de junho de 2005 Gabarito P4 de Álgebra Linear I 25.1 15 de junho de 25 Gabarito 1) Considere os pontos A = (1,, 1), B = (2, 2, 4), e C = (1, 2, 3). (1.a) Determine o ponto médio M do segmento AB. (1.b) Determine a equação cartesiana

Leia mais

G4 de Álgebra Linear I

G4 de Álgebra Linear I G4 de Álgebra Linear I 20122 Gabarito 7 de Dezembro de 2012 1 Considere a transformação linear T : R 3 R 3 definida por: T ( v = ( v (1, 1, 2 (0, 1, 1 a Determine a matriz [T ] ε da transformação linear

Leia mais

Resolução das objetivas 3ª Prova de Álgebra Linear II da UFRJ, período

Resolução das objetivas 3ª Prova de Álgebra Linear II da UFRJ, período www.engenhariafacil.weebly.com Resolução das objetivas 3ª Prova de Álgebra Linear II da UFRJ, período 2013.2 OBS: Todas as alternativas corretas são as letras A. 1) Para encontrar o autovetor associado

Leia mais

Álgebra Linear I - Aula 18

Álgebra Linear I - Aula 18 Álgebra Linear I - Aula 18 1. Matrizes semelhantes. 2. Matriz de uma transformação linear em uma base. Roteiro 1 Matrizes semelhantes Definição 1 (Matrizes semelhantes). Considere duas matrizes quadradas

Leia mais

Legenda. Questões. Lista de Exercícios - Autovalores e autovetores. Cálculos Teoria Geometria

Legenda. Questões. Lista de Exercícios - Autovalores e autovetores. Cálculos Teoria Geometria Lista de Exercícios - Autovalores e autovetores Legenda Cálculos Teoria Geometria Questões. Considere o quadrado determinado pelos pontos A(0, 0), B(, 0), C(, ) e D(0, ).Em cada item aplique o referido

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática 1 Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática Lista 4 - MAT 137 -Introdução à Álgebra Linear 2017/II 1. Entre as funções dadas abaixo, verifique quais

Leia mais

G4 de Álgebra Linear I

G4 de Álgebra Linear I G4 de Álgebra Linear I 013.1 8 de junho de 013. Gabarito (1) Considere o seguinte sistema de equações lineares x y + z = a, x z = 0, a, b R. x + ay + z = b, (a) Mostre que o sistema é possível e determinado

Leia mais

Aula 19 Operadores ortogonais

Aula 19 Operadores ortogonais Operadores ortogonais MÓDULO 3 AULA 19 Aula 19 Operadores ortogonais Objetivos Compreender o conceito e as propriedades apresentadas sobre operadores ortogonais. Aplicar os conceitos apresentados em exemplos

Leia mais

Diagonalização de Operadores. Teorema Autovetores associados a autovalores distintos de um operador linear T : V V são linearmente independentes.

Diagonalização de Operadores. Teorema Autovetores associados a autovalores distintos de um operador linear T : V V são linearmente independentes. Teorema Autovetores associados a autovalores distintos de um operador linear T : V V são linearmente independentes. Teorema Autovetores associados a autovalores distintos de um operador linear T : V V

Leia mais

ÁLGEBRA LINEAR - MAT0024

ÁLGEBRA LINEAR - MAT0024 UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e Da Natureza Centro Interdisciplinar de Ciências da Natureza ÁLGEBRA LINEAR - MAT0024 11 a Lista de exercícios

Leia mais

P4 de Álgebra Linear I

P4 de Álgebra Linear I P4 de Álgebra Linear I 2008.2 Data: 28 de Novembro de 2008. Gabarito. 1) (Enunciado da prova tipo A) a) Considere o plano π: x + 2 y + z = 0. Determine a equação cartesiana de um plano ρ tal que a distância

Leia mais

CM005 Álgebra Linear Lista 3

CM005 Álgebra Linear Lista 3 CM005 Álgebra Linear Lista 3 Alberto Ramos Seja T : V V uma transformação linear. Se temos que T v = λv, v 0, para λ K. Dizemos que λ é um autovalor de T e v autovetor de T associado a λ. Observe que λ

Leia mais

Geovan Tavares, Hélio Lopes e Sinésio Pesco PUC-Rio Departamento de Matemática Laboratório Matmidia

Geovan Tavares, Hélio Lopes e Sinésio Pesco PUC-Rio Departamento de Matemática Laboratório Matmidia Álgebra Linear Computacional Geovan Tavares, Hélio Lopes e Sinésio Pesco PUC-Rio Departamento de Matemática Laboratório Matmidia http://www.matmidia.mat.puc-rio.br 1 Álgebra Linear Computacional - Parte

Leia mais

Forma Canônica de Matrizes 2 2

Forma Canônica de Matrizes 2 2 Forma Canônica de Matrizes Slvie Olison Kamphorst Departamento de Matemática - ICE - UFMG Versão. - Novembro 5 a b Seja A c d induzida por A uma matriz real e seja T a transformação operador linear de

Leia mais

Roteiros e Exercícios - Álgebra Linear v1.0

Roteiros e Exercícios - Álgebra Linear v1.0 Roteiros e Exercícios - Álgebra Linear v1.0 Robinson Alves Lemos 14 de janeiro de 2017 Introdução Este material é um roteiro/apoio para o curso de álgebra linear da engenharia civil na UNEMAT de Tangará

Leia mais

(d) p(λ) = λ(λ + 1) (b) 4 (c) 1 (d) Seja A uma matriz n n. Assinale a alternativa FALSA:

(d) p(λ) = λ(λ + 1) (b) 4 (c) 1 (d) Seja A uma matriz n n. Assinale a alternativa FALSA: UFRJ Instituto de Matemática Disciplina: Algebra Linear II - MAE 125 Professor: Bruno Costa, Luiz Carlos Guimarães, Mário de Oliveira, Milton Ramirez, Monique Carmona, Nilson Bernardes e Nilson Roberty

Leia mais

Aula 1 Autovetores e Autovalores de Matrizes Aula 2 Autovetores e Autovalores de Matrizes Casos Especiais 17

Aula 1 Autovetores e Autovalores de Matrizes Aula 2 Autovetores e Autovalores de Matrizes Casos Especiais 17 Sumário Aula 1 Autovetores e Autovalores de Matrizes.......... 8 Aula 2 Autovetores e Autovalores de Matrizes Casos Especiais 17 Aula 3 Polinômio Característico................. 25 Aula 4 Cálculo de Autovalores

Leia mais

ÁLGEBRA LINEAR I - MAT0032

ÁLGEBRA LINEAR I - MAT0032 UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e Da Natureza Centro Interdisciplinar de Ciências da Natureza ÁLGEBRA LINEAR I - MAT0032 11 a Lista de

Leia mais

Álgebra Linear I - Aula Bases Ortonormais e Matrizes Ortogonais

Álgebra Linear I - Aula Bases Ortonormais e Matrizes Ortogonais Álgebra Linear I - Aula 19 1. Bases Ortonormais e Matrizes Ortogonais. 2. Matrizes ortogonais 2 2. 3. Rotações em R 3. Roteiro 1 Bases Ortonormais e Matrizes Ortogonais 1.1 Bases ortogonais Lembre que

Leia mais

Álgebra Linear I - Aula 21

Álgebra Linear I - Aula 21 Álgebra Linear I - Aula 1 1. Matrizes ortogonalmente diagonalizáveis: exemplos. Matrizes simétricas. Roteiro 1 Matrizes ortogonalmente diagonalizáveis: exemplos Exemplo 1. Considere a matriz M = 4 4 4

Leia mais

MAT2458 ÁLGEBRA LINEAR PARA ENGENHARIA II 2 a Prova - 2 o semestre de T ( p(x) ) = p(x + 1) p(x), (a) 8, (b) 5, (c) 0, (d) 3, (e) 4.

MAT2458 ÁLGEBRA LINEAR PARA ENGENHARIA II 2 a Prova - 2 o semestre de T ( p(x) ) = p(x + 1) p(x), (a) 8, (b) 5, (c) 0, (d) 3, (e) 4. MAT2458 ÁLGEBRA LINEAR PARA ENGENHARIA II 2 a Prova - 2 o semestre de 218 Q1. Considere a transformação linear T : P 3 (R) P 2 (R), dada por T ( p(x) ) = p(x + 1) p(x), para todo p(x) P 3 (R), e seja A

Leia mais

Álgebra Linear I - Aula Propriedades dos autovetores e autovalores

Álgebra Linear I - Aula Propriedades dos autovetores e autovalores Álgebra Linear I - Aula 17 1. Propriedades dos autovetores e autovalores. 2. Matrizes semelhantes. 1 Propriedades dos autovetores e autovalores Propriedade 1: Sejam λ e β autovalores diferentes de T e

Leia mais

Álgebra Linear I - Lista 11. Autovalores e autovetores. Respostas. 1) Calcule os autovalores e autovetores das matrizes abaixo.

Álgebra Linear I - Lista 11. Autovalores e autovetores. Respostas. 1) Calcule os autovalores e autovetores das matrizes abaixo. Álgebra Linear I - Lista 11 Autovalores e autovetores Respostas 1 Calcule os autovalores e autovetores das matrizes abaixo. (a ( 4 1 1, (b ( 1 1, (c ( 5 6 3 4, (d 1 1 3 1 6 6, (e 3 5 1, (f 1 1 1 1 1 1

Leia mais

Parte 3 - Produto Interno e Diagonalização

Parte 3 - Produto Interno e Diagonalização Parte 3 - Produto Interno e Diagonalização Produto Escalar: Sejam u = (u 1,..., u n ) e v = (v 1,..., v n ) dois vetores no R n. O produto escalar, ou produto interno euclidiano, entre esses vetores é

Leia mais

Álgebra Linear I - Aula Matrizes simultaneamente ortogonais e simétricas

Álgebra Linear I - Aula Matrizes simultaneamente ortogonais e simétricas Álgebra Linear I - Aula 22 1. Matrizes 2 2 ortogonais e simétricas. 2. Projeções ortogonais. 3. Matrizes ortogonais e simétricas 3 3. Roteiro 1 Matrizes simultaneamente ortogonais e simétricas 2 2 Propriedade

Leia mais

Algebra Linear. 1. Revisitando autovalores e autovetores. 2. Forma Diagonal e Forma de Jordan. 2.1 Autovalores distintos. 2.2 Autovalores complexos

Algebra Linear. 1. Revisitando autovalores e autovetores. 2. Forma Diagonal e Forma de Jordan. 2.1 Autovalores distintos. 2.2 Autovalores complexos Algebra Linear 1. Revisitando autovalores e autovetores 2. Forma Diagonal e Forma de Jordan 2.1 Autovalores distintos 2.2 Autovalores complexos 2.3 Nem todos autovalores distintos 3. Autovalores e autovetores

Leia mais

Álgebra Linear I - Aula Autovetores e autovalores de uma transformação

Álgebra Linear I - Aula Autovetores e autovalores de uma transformação Álgebra Linear I - Aula 18 1. Autovalores e autovetores. 2. Cálculo dos autovetores e autovalores. Polinômio característico. Roteiro 1 Autovetores e autovalores de uma transformação linear Considere uma

Leia mais

Unidade 22 - Teorema espectral para operadores simétricos, reconhecimento de cônicas. A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa

Unidade 22 - Teorema espectral para operadores simétricos, reconhecimento de cônicas. A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa MA33 - Introdução à Álgebra Linear Unidade 22 - Teorema espectral para operadores simétricos, reconhecimento de cônicas A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa PROFMAT - SBM 10 de agosto

Leia mais

Capítulo 5. Operadores Auto-adjuntos. Curso: Licenciatura em Matemática. Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo

Capítulo 5. Operadores Auto-adjuntos. Curso: Licenciatura em Matemática. Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo Capítulo 5 Operadores Auto-adjuntos Curso: Licenciatura em Matemática Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo Disciplina: Álgebra Linear II Unidade II Aula 5: Operadores Auto-adjuntos

Leia mais

Segunda prova de Álgebra Linear - 01/07/2011 Prof. - Juliana Coelho

Segunda prova de Álgebra Linear - 01/07/2011 Prof. - Juliana Coelho Segunda prova de Álgebra Linear - 01/07/011 Prof - Juliana Coelho JUSTIFIQUE SUAS RESPOSTAS! Questões contendo só a resposta, sem desenvolvimento ou justificativa serão desconsideradas! QUESTÃO 1, pts

Leia mais

ficha 4 valores próprios e vectores próprios

ficha 4 valores próprios e vectores próprios Exercícios de Álgebra Linear ficha 4 valores próprios e vectores próprios Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2011/12

Leia mais

G2 de Álgebra Linear I

G2 de Álgebra Linear I G2 de Álgebra Linear I 2013.1 17 de Maio de 2013. Gabarito 1) Considere a transformação linear T : R 3 R 2 definida por: T (1, 1, 0) = (2, 2, 0), T (0, 1, 1) = (1, 0, 0) T (0, 1, 0) = (1, 1, 0). (a) Determine

Leia mais

5. Seja R : R 3 R 3 uma rotação em torno do eixo gerado por (0, 0, 1). Suponha que R mande o vetor

5. Seja R : R 3 R 3 uma rotação em torno do eixo gerado por (0, 0, 1). Suponha que R mande o vetor Universidade Federal do Rio de Janeiro Instituto de Matemática Disciplina: Álgebra Linear II Professor: Bruno Costa, Cesar Niche, Francesco Noseda, Luiz Carlos Guimarães, Mário de Oliveira, Milton Ramirez,

Leia mais

3 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão e B =

3 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão e B = 3 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão 2008. (a) Ache os auto-valores e auto-vetores de A = 3 4 2 0 2 0 0 0 e B = 0 0 2 0 2 0 2 0 0 (b) Mostre que λ + λ 2 + λ 3 é igual ao

Leia mais

5 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão 2009

5 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão 2009 5 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão 29 Soluções dos exercícios Devido ao fato de A ser simétrica, existe uma base ortonormal {u,, u n } formada por autovetores de A, então

Leia mais

GAAL - Terceira Prova - 15/junho/2013. Questão 1: Analise se a afirmação abaixo é falsa ou verdadeira:

GAAL - Terceira Prova - 15/junho/2013. Questão 1: Analise se a afirmação abaixo é falsa ou verdadeira: GAAL - Terceira Prova - /junho/3 SOLUÇÕES Questão : Analise se a afirmação abaio é falsa ou verdadeira: [ A matriz A é diagonalizável SOLUÇÃO: Sabemos que uma matriz n n é diagonalizável se ela possuir

Leia mais

1 Matrizes Ortogonais

1 Matrizes Ortogonais Álgebra Linear I - Aula 19-2005.1 Roteiro 1 Matrizes Ortogonais 1.1 Bases ortogonais Lembre que uma base β é ortogonal se está formada por vetores ortogonais entre si: para todo par de vetores distintos

Leia mais

Autovetor e Autovalor de um Operador Linear

Autovetor e Autovalor de um Operador Linear Autovetor e Autovalor de um Operador Linear Definição Seja T : V V um operador linear. Um vetor v V, v 0, é dito um autovetor de T se existe um número real λ tal que T (v) = λv. O número real λ acima é

Leia mais

FORMA CANÔNICA DE JORDAN

FORMA CANÔNICA DE JORDAN FORMA CANÔNICA DE JORDAN Álgebra Linear (MAT-27) Ronaldo Rodrigues Pelá IEFF-ITA 4 de novembro de 2011 Roteiro Motivação 1 Motivação 2 3 4 5 6 Roteiro Motivação 1 Motivação 2 3 4 5 6 Matrizes Quase Diagonalizáveis

Leia mais

MAE125 Álgebra Linear /1 Turmas EQN/QIN

MAE125 Álgebra Linear /1 Turmas EQN/QIN MAE25 Álgebra Linear 2 205/ Turmas EQN/QIN Planejamento (última revisão: 0 de junho de 205) Os exercícios correspondentes a cada aula serão cobrados oralmente na semana seguinte à aula e valem nota Todas

Leia mais

Lista de exercícios 13 Diagonalização

Lista de exercícios 13 Diagonalização Universidade Federal do Paraná 2 semestre 206. Algebra Linear Olivier Brahic Lista de exercícios 3 Diagonalização Exercícios da Seção 6. Exercício : Para cada uma das seguintes matrizes, encontre os autovalores

Leia mais

5. Seja A uma matriz qualquer. Assinale a afirmativa

5. Seja A uma matriz qualquer. Assinale a afirmativa UFRJ Instituto de Matemática Disciplina: Algebra Linear II - MAE 125 Professor: Bruno, Gregório, Luiz Carlos, Mario, Milton, Monique e Umberto Data: 12 de julho de 2013 Terceira Prova 1. Considere no espaço

Leia mais

Álgebra Linear /2 Turma 11852

Álgebra Linear /2 Turma 11852 Álgebra Linear 2 202/2 Turma 852 Planejamento (última revisão: 26/0/202) Os exercícios correspondentes a cada aula serão cobrados oralmente na aula seguinte e valem nota Todas as referências e exercícios

Leia mais

Álgebra Linear I - Lista 10. Matrizes e Transformações lineares. Respostas

Álgebra Linear I - Lista 10. Matrizes e Transformações lineares. Respostas Álgebra Linear I - Lista 1 Matrizes e Transformações lineares Respostas 1 Sejam A e B matrizes quadradas do mesmo tamanho Dê um exemplo onde (A + B 2 A 2 + 2A B + B 2 Complete: (A + B 2 = A 2 + B 2 +?

Leia mais

Álgebra Linear I - Aula Matriz de uma transformação linear em uma base. Exemplo e motivação

Álgebra Linear I - Aula Matriz de uma transformação linear em uma base. Exemplo e motivação Álgebra Linear I - Aula 19 1. Matriz de uma transformação linear em uma base. Exemplo e motivação 2. Matriz de uma transformação linear T na base β 1 Matriz de uma transformação linear em uma base. Exemplo

Leia mais

Parte I. Álgebra Linear. Sistemas Dinâmicos Lineares. Autovalores, autovetores. Autovalores, autovetores. Autovalores e Autovetores.

Parte I. Álgebra Linear. Sistemas Dinâmicos Lineares. Autovalores, autovetores. Autovalores, autovetores. Autovalores e Autovetores. Sistemas Dinâmicos Lineares Romeu Reginatto Programa de Pós-Graduação em Engenharia de Sistemas Dinâmicos e Energéticos Universidade Estadual do Oeste do Paraná Parte I Álgebra Linear Adaptado das notas

Leia mais

Álgebra Linear II - Poli - Gabarito Prova SUB-tipo 00

Álgebra Linear II - Poli - Gabarito Prova SUB-tipo 00 Álgebra Linear II - Poli - Gabarito Prova SUB-tipo 00 [ ] 4 2 Questão 1. Seja T : R 2 R 2 o operador linear cuja matriz, com respeito à base canônica de R 2, é. 1 3 [ ] 2 0 Seja B uma base de R 2 tal que

Leia mais

. (1) Se S é o espaço vetorial gerado pelos vetores 1 e,0,1

. (1) Se S é o espaço vetorial gerado pelos vetores 1 e,0,1 QUESTÕES ANPEC ÁLGEBRA LINEAR QUESTÃO 0 Assinale V (verdadeiro) ou F (falso): (0) Os vetores (,, ) (,,) e (, 0,) formam uma base de,, o espaço vetorial gerado por,, e,, passa pela origem na direção de,,

Leia mais

Análise multivariada

Análise multivariada UNIFAL-MG, campus Varginha 11 de Setembro de 2018 Dada uma matriz A (p p), podemos obter um escalar λ e um vetor v (p 1) de modo que seja satisfeita? Av = λv (1) Dada uma matriz A (p p), podemos obter

Leia mais

MAE125 Álgebra Linear /2 Turmas EQN/QIN

MAE125 Álgebra Linear /2 Turmas EQN/QIN MAE25 Álgebra Linear 2 205/2 Turmas EQN/QIN Planejamento (última revisão: 26 de outubro de 205) Os exercícios correspondentes a cada aula serão cobrados oralmente na aula seguinte e valem nota Todas as

Leia mais

Dou Mó Valor aos Autovalores

Dou Mó Valor aos Autovalores 1. Definições Preliminares Dou Mó Valor aos Autovalores 21ª Semana Olímpica Maceió, AL Prof. Davi Lopes Nível U Dada uma matriz quadrada A n n de entradas complexas, podemos definir os conceitos a seguir,

Leia mais

Universidade Federal Fluminense - GAN

Universidade Federal Fluminense - GAN Solimá Gomes Pimentel Universidade Federal Fluminense IM - GAN Solimá Gomes Pimentel, ****- Matemática para Economia III/Solimá Gomes Pimentel 2pt, ; 31cm Inclui Bibliografia. 1. Matemática para Economia

Leia mais

Álgebra Linear /2 Turma EM1 (unificada)

Álgebra Linear /2 Turma EM1 (unificada) Álgebra Linear 2 2013/2 Turma EM1 (unificada) Planejamento preliminar (última revisão: 3/4/2013) Os exercícios correspondentes a cada aula serão discutidos na aula seguinte e não valem nota Este planejamento

Leia mais

ÁLGEBRA LINEAR. Valores Próprios (Autovalores) e Vetores Próprios (Autovetores) Prof. Susie C. Keller

ÁLGEBRA LINEAR. Valores Próprios (Autovalores) e Vetores Próprios (Autovetores) Prof. Susie C. Keller ÁLGEBRA LINEAR Valores Próprios (Autovalores) e Vetores Próprios (Autovetores) Prof. Susie C. Keller Autovalores e Autovetores de um Operador Linear Seja T:V V um operador linear. Um vetor v V, v 0, é

Leia mais

Geometria anaĺıtica e álgebra linear

Geometria anaĺıtica e álgebra linear Geometria anaĺıtica e álgebra linear Francisco Dutenhefner Departamento de Matematica ICEx UFMG 22/08/13 1 / 24 Determinante: teorema principal Teorema: Se A é uma matriz quadrada, então o sistema linear

Leia mais

SME Roberto F. Ausas / Gustavo C. Buscaglia

SME Roberto F. Ausas / Gustavo C. Buscaglia SME0305-2016 Roberto F. Ausas / Gustavo C. Buscaglia ICMC - Ramal 736628, rfausas@gmail.com ICMC - Ramal 738176, gustavo.buscaglia@gmail.com Cálculo de autovalores e autovetores Existem vários problemas

Leia mais

Algoritmos Numéricos 2 a edição

Algoritmos Numéricos 2 a edição Algoritmos Numéricos 2 a edição Capítulo 2: Sistemas lineares c 2009 FFCf 2 2.1 Conceitos fundamentais 2.2 Sistemas triangulares 2.3 Eliminação de Gauss 2.4 Decomposição LU Capítulo 2: Sistemas lineares

Leia mais

(d) v é um autovetor de T se, e somente se, T 2 = T ; (e) v é um autovetor de T se, e somente se, T (v) = v.

(d) v é um autovetor de T se, e somente se, T 2 = T ; (e) v é um autovetor de T se, e somente se, T (v) = v. Q1. Seja V um espaço vetorial real de dimensão finita munido de um produto interno. Sejam T : V V um operador linear simétrico e W um subespaço de V tal que T (w) W, para todo w W. Suponha que W V e que

Leia mais

3 a Avaliação Parcial - Álgebra Linear

3 a Avaliação Parcial - Álgebra Linear 3 a Avaliação Parcial - Álgebra Linear - 016.1 1. Considere a função T : R 3 R 3 dada por T(x, y, z) = (x y z, x y + z, x y z) e as bases de R 3 B = (1, 1, 1), (1, 0, 1), ( 1,, 0)} (a) Encontre [T] B B.

Leia mais

1. Entre as funções dadas abaixo, verifique quais são transformações lineares: x y z

1. Entre as funções dadas abaixo, verifique quais são transformações lineares: x y z MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA 657- - VIÇOSA - MG BRASIL a LISTA DE EXERCÍCIOS DE MAT 8 I SEMESTRE DE Entre as funções dadas abaixo, verifique quais são transformações

Leia mais

Instituto Superior Técnico Departamento de Matemática Última actualização: 3/Dez/2003 ÁLGEBRA LINEAR A

Instituto Superior Técnico Departamento de Matemática Última actualização: 3/Dez/2003 ÁLGEBRA LINEAR A Instituto uperior Técnico Departamento de Matemática ecção de Álgebra e Análise Última actualização: 3/Dez/2003 ÁLGEBRA LINEAR A REVIÃO DA PARTE IV Parte IV - Diagonalização Conceitos: valor próprio, vector

Leia mais

APLICAÇÃO DE AUTOVALORES E AUTOVETORES NAS POTÊNCIAS DE MATRIZES

APLICAÇÃO DE AUTOVALORES E AUTOVETORES NAS POTÊNCIAS DE MATRIZES Universidade Federal de Goiás Câmpus de Catalão Departamento de Matemática Seminário Semanal de Álgebra APLICAÇÃO DE AUTOVALORES E AUTOVETORES NAS POTÊNCIAS DE MATRIZES Aluno: Ana Nívia Pantoja Daniela

Leia mais

CM005 Álgebra Linear Lista 2

CM005 Álgebra Linear Lista 2 CM005 Álgebra Linear Lista 2 Alberto Ramos 1. Seja M M n (R) uma matriz. Mostre que se {v 1,..., v p } R n é linearmente dependente, então {Mv 1,..., Mv p } é também linearmente dependente. Agora suponha

Leia mais

(I) T tem pelo menos um autovalor real; (II) T é diagonalizável; (III) no espaço vetorial real R n, o conjunto {u, v} é linearmente independente.

(I) T tem pelo menos um autovalor real; (II) T é diagonalizável; (III) no espaço vetorial real R n, o conjunto {u, v} é linearmente independente. Q1. Sejam n um inteiro positivo, T : C n C n um operador linear e seja A = [T ] can a matriz que representa T em relação à base canônica do espaço vetorial complexo C n. Suponha que a matriz A tenha entradas

Leia mais

2 Álgebra Linear (revisão)

2 Álgebra Linear (revisão) Teoria de Controle (sinopse) 2 Álgebra Linear (revisão) J. A. M. Felippe de Souza Neste capítulo vamos citar os principais tópicos de Álgebra Linear que são necessários serem revistos para o acompanhamento

Leia mais

Tópicos de Álgebra Linear Verão 2019 Lista 4: Formas de Jordan

Tópicos de Álgebra Linear Verão 2019 Lista 4: Formas de Jordan Universidade Federal do Paraná Centro Politécnico ET-DMAT Prof. Maria Eugênia Martin Tópicos de Álgebra Linear Verão 2019 Lista 4: Formas de Jordan Exercício 1. Seja A = (a i j ) uma matriz diagonal sobre

Leia mais

folha prática 5 valores próprios e vetores próprios página 1/3

folha prática 5 valores próprios e vetores próprios página 1/3 folha prática 5 valores próprios e vetores próprios página 1/ Universidade de Aveiro Departamento de Matemática 1. Determine os valores próprios e vetores próprios de cada uma das seguintes matrizes. Averigue

Leia mais

G4 de Álgebra Linear I

G4 de Álgebra Linear I G4 de Álgebra Linear I 27.1 Gabarito 1) Considere a base η de R 3 η = {(1, 1, 1); (1,, 1); (2, 1, )} (1.a) Determine a matriz de mudança de coordenadas da base canônica para a base η. (1.b) Considere o

Leia mais

P2 de Álgebra Linear I Data: 10 de outubro de Gabarito

P2 de Álgebra Linear I Data: 10 de outubro de Gabarito P2 de Álgebra Linear I 2005.2 Data: 10 de outubro de 2005. Gabarito 1 Decida se cada afirmação a seguir é verdadeira ou falsa. Itens V F N 1.a F 1.b V 1.c V 1.d F 1.e V 1.a Considere duas bases β e γ de

Leia mais

Álgebra Linear (MAT-27) Ronaldo Rodrigues Pelá. 21 de outubro de 2011

Álgebra Linear (MAT-27) Ronaldo Rodrigues Pelá. 21 de outubro de 2011 APLICAÇÕES DA DIAGONALIZAÇÃO Álgebra Linear (MAT-27) Ronaldo Rodrigues Pelá IEFF-ITA 21 de outubro de 2011 Roteiro 1 2 3 Roteiro 1 2 3 Introdução Considere a equação de uma cônica: Forma Geral Ax 2 + Bxy

Leia mais

Equação Geral do Segundo Grau em R 2

Equação Geral do Segundo Grau em R 2 8 Equação Geral do Segundo Grau em R Sumário 8.1 Introdução....................... 8. Autovalores e autovetores de uma matriz real 8.3 Rotação dos Eixos Coordenados........... 5 8.4 Formas Quadráticas..................

Leia mais

5 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão Encontre os autovalores, os autovetores e a exponencial e At para

5 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão Encontre os autovalores, os autovetores e a exponencial e At para 5 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão 2008 1. Encontre os autovalores, os autovetores e a exponencial e At para [ ] 1 1 1 1 2. Uma matriz diagonal Λ satisfaz a regra usual

Leia mais

Álgebra Linear - 1 a lista de exercícios Prof. - Juliana Coelho

Álgebra Linear - 1 a lista de exercícios Prof. - Juliana Coelho Álgebra Linear - a lista de exercícios Prof. - Juliana Coelho - Considere as matrizes abaixo e faça o que se pede: M N O 7 P Q R 8 4 T S a b a Determine quais destas matrizes são simétricas. E antisimétricas?

Leia mais

6 Valores e Vectores Próprios de Transformações Lineares

6 Valores e Vectores Próprios de Transformações Lineares Nova School of Business and Economics Prática Álgebra Linear 6 Valores e Vectores Próprios de Transformações Lineares 1 Definição Valor próprio de uma transformação linear ( ) Número real (ou complexo)

Leia mais

Exponencial de uma matriz

Exponencial de uma matriz Exponencial de uma matriz Ulysses Sodré Londrina-PR, 21 de Agosto de 2001; Arquivo: expa.tex Conteúdo 1 Introdução à exponencial de uma matriz 2 2 Polinômio característico, autovalores e autovetores 2

Leia mais

UNIVERSIDADE FEDERAL DE MINAS GERAIS (UFMG) ADÉLIO DANIEL DE SOUSA FREITAS

UNIVERSIDADE FEDERAL DE MINAS GERAIS (UFMG) ADÉLIO DANIEL DE SOUSA FREITAS UNIVERSIDADE FEDERAL DE MINAS GERAIS (UFMG) ADÉLIO DANIEL DE SOUSA FREITAS O ESTUDO DA DIAGONALIZAÇÃO DE MATRIZES SIMETRICAS DE 2º ORDEM. BELO HORIZONTE 2012 ADÉLIO DANIEL DE SOUSA FREITAS O ESTUDO DA

Leia mais

1 Auto vetores e autovalores

1 Auto vetores e autovalores Auto vetores e autovalores Os autovalores de uma matriz de uma matriz n n são os n números que resumem as propriedades essenciais daquela matriz. Como esses n números realmente caracterizam a matriz sendo

Leia mais