Mais derivadas. g(x)f (x) f(x)g (x) g(x) 2 cf(x), com c R cf (x) x r, com r R. rx r 1

Tamanho: px
Começar a partir da página:

Download "Mais derivadas. g(x)f (x) f(x)g (x) g(x) 2 cf(x), com c R cf (x) x r, com r R. rx r 1"

Transcrição

1 Universiae e Brasília Departamento e Matemática Cálculo 1 Mais erivaas Neste teto vamos apresentar mais alguns eemplos importantes e funções eriváveis. Até o momento, temos a seguinte tabela e erivaas: função f(±g( erivaa f (±g ( (f g( f(g (+f (g( (f/g(, se g( 0 g(f ( f(g ( g( 2 cf(, com c R cf ( r, com r R sen( r r 1 cos( Vamos começar completano a tabela com as emais funções trigonométricas. Lembre que a erivaa o seno foi calculaa em um teto anterior, a partir os ites abaio sen(h cos(h 1 = 1, = 0, e a fórmula o seno a soma e ois arcos. Um argumento análogo àquele nos permite erivar a função cosseno: (cos( = cos(+h cos( h cos(cos(h sen(sen(h cos( = [ ( ( ] cos(h 1 sen(h = cos( sen( h = cos( 0 sen( 1 = sen(. Assim, as uas funções trigonométricas principais têm suas erivaas aas por sen( = cos(, cos( = sen(. A partir as uas erivaas acima poemos facilmente calcular a erivaa as emais funções trigonométricas, utilizano a regra para erivação e quocientes. 1

2 tan( = ( sen( = cos((sen( sen((cos( cos( cos 2 ( = cos2 (+sen 2 ( cos 2 ( = 1 cos 2 ( = sec2 (. Proceeno e maneira análoga para as três funções trignométricas restantes, o leitor não terá ificulae em verificar que o quaro completo é como abaio: função erivaa função erivaa sen( cos( cos( sen( tan( sec 2 ( sec( sec(tan( csc( csc(cot( cot( csc 2 ( Nunca é emais lembrar que somente a primeira linha a tabela acima precisa ser memorizaa, pois aí as emais serão consequências simples a regra o quociente. Eemplo 1. Vamos calcular a erivaa as funções abaio. f( = 1+tan(, g( = ( sen( cos( Para a primeira, usamos a regra o quociente para obter cos(. f ( = cos((1+tan( (1+tan((cos( cos 2 ( = cos(sec2 (+(1+tan(sen( cos 2 ( = sec 3 (+(1+tan(sec(tan(. Para erivar a função g, temos que aplicar primeiro a regra o prouto: g ( = ( ( sen( ( 1 sen( = 2 cos( + ( sen( cos( + ( cos( ( sen( +sen(. (1 Note que aina é necessário calcular a erivaa o quociente sen(/. Esta conta poe ser feita usano-se, novamente, a regra o quociente ( sen( = (sen( sen(( 2 = cos( sen( 2. Basta agora substituir a epressão acima em (1 para obter g (. 2

3 Eemplo 2. Vamos eterminar a equação a reta tangente ao gráfico e f( = sen(2 no ponto P 0 = (0,f(0. Lembre que ela é a (única reta que passa pelo ponto P 0 e tem inclinação igual a f (0. O primeiro passo é calcular a erivaa e sen(2. Em um primero momento, essa tarefa parece complicaa pois, apesar e sabermos que (sen( = cos(, a função que queremos erivar agora é sen(2 e não sen(. Porém, usano a fómula para o seno a soma e ois arcos, poemos escrever f( = sen(2 = (sen(cos(+sen(cos( = 2sen(cos(, e moo que a regra o prouto nos fornece ( f ( = 2 cos( sen(+sen( cos( = 2(cos 2 ( sen 2 ( = 2cos(2. Como a função f tem erivaa em toos os pontos, a reta tangente também eiste em qualquer ponto o gráfico. Para o ponto (0, f(0, essa reta tem equação aa por y f(0 = f (0( 0. Uma vez que f(0 = 0 e f (0 = 2cos(0 = 2, concluímos que a reta tangente ao gráfico e f no ponto (0,f(0 tem equação y = 2. Daqui em iante vamos nos concentrar em calcular a erivaa a função eponencial. A primeira observação é que, como e +h = e e h, temos e +h e e = = e e h 1 h, (2 e moo que o cálculo a erivaa poe ser feito ese que possamos calcular o último ite acima. O problema é que esta é uma ineterminação o tipo 0/0 particularmente complicaa, pois não há nenhum tipo e manipulação algébrica aparente que nos permite einar a ineterminação. Vamos então voltar aos primórios e calcular a fração para valores e h próimos e zero. h 1 0, 1 0, 01 0, 001 0, 0001 (e h 1/h 1, , , ,995 1,00005 Os aos apresentaos na tabela acima parecem inicar que a fração se aproima e 1. De fato, é possível mostrar que o ite em questão eiste e que e h 1 = 1. Lembrano agora a igualae em (2, concluímos que e = e. 3

4 Em outras palavras, a erivaa a função eponencial é a própria função eponencial. Conforme veremos algumas vezes nos tetos posteriores, essa é uma proprieae que fornece uma característica etremamente importante a função eponencial. Eemplo 3. Vamos eterminar a taa e variação a função f( = 2cos( 53 3e no ponto = 0. O primeiro passo é usar a regra o quociente para erivar f: f ( = 3e ( 2sen( 15 2 (2cos( 5 3 3e (3e 2 = 3e ( 2sen( cos(+5 3 (3e 2 = 2sen( 152 2cos(+5 3 3e. Como e 0 = 1, concluímos que a taa e variação em = 0 é f (0 = 2/3. Eemplo 4. Vimos que a erivaa a eponencial é a própria eponencial. Um erro comum no início os estuos sobre erivaa é escrever (e k = e k. Vamos ver neste eemplo que essa igualae é falsa para para too k 1. Para isso, vamos calcular a erivaa a função e k, one k R é um número que não epene e. Temos que e k(+h e k ek = = e k e kh 1 h = ke k e kh 1 kh. Fazeno a muança e variáveis z = kh no último ite acima, obtemos ek = ke k e z 1 z 0 z = ke k. Logo, qualquer que seja k R. ek = ke k, Eemplo 5. É sabio que, quano liamos com materiais raioativos, os núcleos atômicos instáveis emitem partículas e raiações eletromagnéticas, se transformano em núcleos mais estáveis. Por conta isso, a massa o material iminui com o passar o tempo. Esse fenômeno é conhecio como ecaimento raioativo. 4

5 Se enotarmos por Q(t a massa e material no instante t > 0, poe-se provar que a taa e variação a massa é proporcional à essa mesma quantiae. Desse moo, para alguma constante k > 0 (que epene o material em questão, vale a equação Q (t = kq(t t > 0. (3 É importante entener a razão o sinal negativo o lao ireito a igualae. Como a massa iminui com o tempo, a taa e variação a função Q é negativa. Uma vez que a massa é positiva, o sinal e menos garante que a erivaa é negativa. Observe que a função Q tem a proprieae e que a sua erivaa é um múltiplo ela mesma. Se olharmos então para o último eemplo, somos tentaos a inferir que a epressão e Q eve envolver uma função eponencial. De fato, aa qualquer constante c R, um cálculo simples mostra que a função Q(t = ce kt é tal que Q (t = (ce kt = c(e kt = c( ke kt = k(ce kt = kq(t. Deste moo, a equação (3 possui uma família e soluções aa por Q(t = ce kt. O fato e termos encontrao muitas soluções para um problema poe parecer estranho em um primeiro momento. Observe porém que, a maneira como foi colocao o problema, não temos elementos suficientes para eterminar a epressão eata e Q(t. É claro que ela epene e quanto material tínhamos no início o eperimento, e esse ao não nos foi fornecio. A solução completa o problema ficará a cargo o leitor, na tarefa seguinte. Tarefa Suponha que uma quantiae Q 0 > 0 e material raioativo comece a ecair. Nestas conições, para alguma constante k > 0, a massa Q(t e material no instante t 0 satisfaz Q (t = kq(t, t > 0, Q(0 = Q Verifique que, para too c R, a função Q(t = ce kt verifica a primeira equação acima. 2. Determine a valor e c para que a função Q efinia no item anterior satisfaça a conição inicial Q(0 = Q A meia-via o material é o tempo necessário para que a massa se reuza à matae a massa inicial. Mostre que esse tempo é igual a ln(2/k, e moo que ele não epene a quantiae inicial. 4. O que acontece com Q(t quanto t +? 5

A Regra da Cadeia Continuação das notas de aula do mês 11/03 Versão de 20 de Novembro de 2003

A Regra da Cadeia Continuação das notas de aula do mês 11/03 Versão de 20 de Novembro de 2003 A Regra a Caeia Continuação as notas e aula o mês /03 Versão e 20 e Novembro e 2003 Agora queremos entener o que acontece com a erivaa e uma composição e funções. Antes e mais naa, lembremos a notação

Leia mais

Regras de Derivação Notas de aula relativas ao mês 11/2003 Versão de 13 de Novembro de 2003

Regras de Derivação Notas de aula relativas ao mês 11/2003 Versão de 13 de Novembro de 2003 Regras e Derivação Notas e aula relativas ao mês 11/2003 Versão e 13 e Novembro e 2003 Já sabemos a efinição formal e erivaa, a partir o limite e suas interpretações como: f f a + h) f a) a) = lim, 1)

Leia mais

y f(x₁) Δy = f(x₁) - f(x₀) Δx =X₁-X₀ f(x₀) f(x0 + h) - f(x0) h f(x + h) - f(x) h f'(x) = lim 1 DEFINIÇÃO DE DERIVADAS 2 DIFERENCIABILIDADE h 0

y f(x₁) Δy = f(x₁) - f(x₀) Δx =X₁-X₀ f(x₀) f(x0 + h) - f(x0) h f(x + h) - f(x) h f'(x) = lim 1 DEFINIÇÃO DE DERIVADAS 2 DIFERENCIABILIDADE h 0 DEFINIÇÃO DE Graficamente, poemos efinir a erivaa e um ponto como a inclinação a reta tangente = f() ou a taa e variação instantânea e em relação a. Suponha que temos uma função f() e queremos saber a

Leia mais

1ª Avaliação 2012/1. lim. x 2x. x x x x x. lim lim lim lim. x x x. x x

1ª Avaliação 2012/1. lim. x 2x. x x x x x. lim lim lim lim. x x x. x x ª Avaliação 0/ ) Determine o limite a epressão: lim. 0 ( ) ( ) ( ) lim 0 ( ) ( 0) 4 lim lim lim lim 0 0 0 0 ( ) ) Derive a função g ( ). 4 4 g ( ) g ( ) g ( ) 4 4 g ( ) g ( ) g( ) g( ) 4 6 8 9 4 g( ) 4

Leia mais

CÁLCULO I. 1 Regras de Derivação. Objetivos da Aula. Aula n o 12: Regras de Derivação. Apresentar e aplicar as regras operacionais de derivação;

CÁLCULO I. 1 Regras de Derivação. Objetivos da Aula. Aula n o 12: Regras de Derivação. Apresentar e aplicar as regras operacionais de derivação; CÁLCULO I Prof. Marcos Diniz Prof. Anré Almeia Prof. Eilson Neri Júnior Aula n o 2: Regras e Derivação Objetivos a Aula Apresentar e aplicar as regras operacionais e erivação; Derivar funções utilizano

Leia mais

CÁLCULO I. 1 Regras de Derivação. Objetivos da Aula. Aula n o 12: Regras de Derivação. Apresentar e aplicar as regras operacionais de derivação;

CÁLCULO I. 1 Regras de Derivação. Objetivos da Aula. Aula n o 12: Regras de Derivação. Apresentar e aplicar as regras operacionais de derivação; CÁLCULO I Prof. Marcos Diniz Prof. Anré Almeia Prof. Eilson Neri Júnior Prof. Emerson Veiga Prof. Tiago Coelho Aula n o : Regras e Derivação Objetivos a Aula Apresentar e aplicar as regras operacionais

Leia mais

UNEMAT Universidade do Estado de Mato Grosso Campus Universitário de Sinop Departamento de Engenharia Civil Disciplina: Cálculo I. 1ª Avaliação 2013/1

UNEMAT Universidade do Estado de Mato Grosso Campus Universitário de Sinop Departamento de Engenharia Civil Disciplina: Cálculo I. 1ª Avaliação 2013/1 ) Calcule os limites abaio: (3,0) ª Avaliação 03/ a) + ( a) a lim a a + ( a) a ( a) ( + ) lim = lim = lim( + = + a a a a ) a a b) lim 0 + + + + + + lim = lim = lim 0 0 + + 0 ( ) ( + + ) = lim = lim = =

Leia mais

A Regra da Cadeia. 14 de novembro de u(x) = sen x. v(x) = cos x. w(x) = x 5

A Regra da Cadeia. 14 de novembro de u(x) = sen x. v(x) = cos x. w(x) = x 5 A Regra a Caeia 4 e novembro e 0. As operações algébricas entre funções (soma, prouto, etc) fornecem uma grane iversiae e novas funções para os iferentes casos que vimos até agora. Porém, existe uma outra

Leia mais

RESUMO DERIVADAS. A derivada nada mais é do que a inclinação da reta tangente a y=f(x) ou a taxa de variação instantânea de y em relação a x.

RESUMO DERIVADAS. A derivada nada mais é do que a inclinação da reta tangente a y=f(x) ou a taxa de variação instantânea de y em relação a x. RESUMO DERIVADAS DEFINIÇÃO A erivaa naa mais é o que a inclinação a reta tangente a y=f(x) ou a taxa e variação instantânea e y em relação a x. x 0 f(x +h) f(x ) f (x 0 ) = lim h 0 h 0 0 DIFERENCIABILIDADE

Leia mais

DERIVADAS., é igual ao valor da tangente trigonométrica do ângulo formado pela tangente geométrica à curva representativa de y = f (x)

DERIVADAS., é igual ao valor da tangente trigonométrica do ângulo formado pela tangente geométrica à curva representativa de y = f (x) Proessor Mauricio Lutz DERIVADAS A erivaa e uma unção y () num, é igual ao valor a tangente trigonométrica o ângulo ormao pela tangente geométrica à curva representativa e y (), no ponto, ou seja, a erivaa

Leia mais

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida CÁLCULO I Prof. Eilson Neri Júnior Prof. Anré Almeia Aula n o 08: Regra a Caeia. Derivação Implícita. Derivaa a Função Inversa. Objetivos a Aula Conhecer e aplicar a regra a caeia; Utilizar a notação e

Leia mais

CÁLCULO I. 1 Funções Exponenciais Gerais. Objetivos da Aula. Aula n o 25: Funções Logarítmicas e Exponenciais Gerais. Denir f(x) = log x

CÁLCULO I. 1 Funções Exponenciais Gerais. Objetivos da Aula. Aula n o 25: Funções Logarítmicas e Exponenciais Gerais. Denir f(x) = log x CÁLCULO I Prof. Eilson Neri Júnior Prof. Anré Almeia Aula n o 25: Funções Logarítmicas e Eponenciais Gerais Objetivos a Aula Denir f() = log Denir f() = a Funções Eponenciais Gerais Denição. Se a > 0 e

Leia mais

Projeto 3. 8 de abril de y max y min. Figura 1: Diagrama de um cabo suspenso.

Projeto 3. 8 de abril de y max y min. Figura 1: Diagrama de um cabo suspenso. Cabos suspensos Projeto 3 8 e abril e 009 A curva escrita por um cabo suspenso pelas suas etremiaes é enominaa curva catenária. y ma y min 0 Figura 1: Diagrama e um cabo suspenso. A equação que escreve

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBIOM, MEFT 1 o SEM. 2010/11 3 a FICHA DE EXERCÍCIOS

CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBIOM, MEFT 1 o SEM. 2010/11 3 a FICHA DE EXERCÍCIOS Instituto Superior Técnico Departamento e Matemática Secção e Álgebra e Análise CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBIOM, MEFT o SEM. / 3 a FICHA DE EXERCÍCIOS Primitivação é a operação inversa a

Leia mais

Derivadas de Funções Trigonométricas

Derivadas de Funções Trigonométricas UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Derivaas e Funções

Leia mais

Universidade Federal do Paraná Centro Politécnico ET-DMAT Prof. Maria Eugênia Martin. CM041- Cálculo I. Lista 5: Derivadas

Universidade Federal do Paraná Centro Politécnico ET-DMAT Prof. Maria Eugênia Martin. CM041- Cálculo I. Lista 5: Derivadas Universiae Feeral o Paraná Centro Politécnico ET-DMAT Pro. Maria Eugênia Martin CM04- Cálculo I Lista 5: Derivaas Eercício. O gráico ilustra a unção posição e um carro. Use a orma o gráico para eplicar

Leia mais

CAPÍTULO 7. ( p)= -1 p2. Segue que a reta tangente no ponto de abscissa p é y 1. f( x)- f() Exercícios f( x)= sen px. Exercícios

CAPÍTULO 7. ( p)= -1 p2. Segue que a reta tangente no ponto de abscissa p é y 1. f( x)- f() Exercícios f( x)= sen px. Exercícios CAPÍTULO 7 Eercícios 7 8 f 3-9 f sen p Eercícios 73 8 f ' ( p) - p Segue que a reta tangente no ponto e abscissa p é y - - ( - p) p p p Para y, - p e, portanto, p; ou seja, a reta tangente no ponto e abscissa

Leia mais

CÁLCULO I. Apresentar a técnica de derivação implícita; Resolver problemas envolvendo taxas relacionadas.

CÁLCULO I. Apresentar a técnica de derivação implícita; Resolver problemas envolvendo taxas relacionadas. CÁLCULO I Prof. Marcos Diniz Prof. Anré Almeia Prof. Eilson Neri Júnior Aula no 3: Derivação Implícita. Derivaa a Função Inversa. Taxas Relacionaas. Objetivos a Aula Apresentar a técnica e erivação implícita;

Leia mais

Regras Básicas de Derivação

Regras Básicas de Derivação Regras Básicas e Derivação. regra a soma: (u + kv) = u + kv, k constante 2. regra a iferença: (u + v) = u + v 3. regra o prouto: (u v) = u v + u v u u v u v 4. regra o quociente: = v v 2 5. regra a caeia:

Leia mais

a) Represente na forma de um intervalo ou de uma união disjunta de intervalos o domínio D da função definida pela expressão: f(x) = log 1 x 1 )

a) Represente na forma de um intervalo ou de uma união disjunta de intervalos o domínio D da função definida pela expressão: f(x) = log 1 x 1 ) Instituto Superior Técnico Departamento e Matemática Secção e Álgebra e Análise o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEFT, MEBiom o Sem. 20/2 2//20 Duração: h30mn.,5 val.) a) Represente na

Leia mais

Integrais indefinidas

Integrais indefinidas Integrais indefinidas que: Sendo f() e F() definidas em um intervalo I R, para todo I, dizemos F é uma antiderivada ou uma primitiva de f, em I, se F () = f() F() = é uma antiderivada (primitiv de f()

Leia mais

[ ] = 0, constante. Algumas Regras para Diferenciação. Algumas Regras para Diferenciação. d dx. A Regra da Constante:

[ ] = 0, constante. Algumas Regras para Diferenciação. Algumas Regras para Diferenciação. d dx. A Regra da Constante: UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I. A regra a constante

Leia mais

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida CÁLCULO I Prof. Eilson Neri Júnior Prof. Anré Almeia Aula n o 0: Derivaas e Orem Superior e Regra a Caeia Objetivos a Aula Definir e eterminar as erivaas e orem superior; Conhecer e aplicar a regra a caeia;

Leia mais

Professor Mauricio Lutz DERIVADAS

Professor Mauricio Lutz DERIVADAS DERIVADAS Eplorano a iéia e erivaa Vamos iniciar a eploração intuitiva a iéia e erivaa por meio a ieia e variação e uma unção: Observemos que, quano a variável inepenente passa por e vai até, o conjunto

Leia mais

Volume de um gás em um pistão

Volume de um gás em um pistão Universidade de Brasília Departamento de Matemática Cálculo Volume de um gás em um pistão Suponha que um gás é mantido a uma temperatura constante em um pistão. À medida que o pistão é comprimido, o volume

Leia mais

3 Cálculo Diferencial. Diferenciabilidade

3 Cálculo Diferencial. Diferenciabilidade 3 Cálculo Diferencial Diferenciabiliae EXERCÍCIOS RESOLVIDOS. Para caa uma as seguintes funções etermine o omínio e iferenciabiliae e calcule as respectivas erivaas: a, b e, c ln, e. a f ( = é iferenciável

Leia mais

Integral de Linha e Triedro de Frenet

Integral de Linha e Triedro de Frenet Cálculo III Departamento e Matemática - ICEx - UFMG Marcelo Terra Cunha Integral e Linha e Triero e Frenet Na aula anterior iniciamos o estuo as curvas parametrizaas. Em particular, interpretamos a erivaa

Leia mais

, α 1 α + 1 d dx (log x ) = 1 1. x dx = log x, x 0

, α 1 α + 1 d dx (log x ) = 1 1. x dx = log x, x 0 Instituto Superior Técnico Departamento e Matemática Secção e Álgebra e Análise CÁLCULO DIFERENCIAL E INTEGRAL I LEIC-TAGUS, LERCI, LEGI E LEE o SEM. 006/07 5 a FICHA DE EXERCÍCIOS PRIMITIVAÇÃO DE FUNÇÕES

Leia mais

Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Física. Referências bibliográficas: H S T.

Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Física. Referências bibliográficas: H S T. Universiae eeral o Paraná Setor e Ciências Eatas Departamento e ísica ísica III Prof. Dr. Ricaro Luiz Viana Referências bibliográficas: H. -4 S. -5 T. 18- Aula Lei e Coulomb Charles Augustin e Coulomb

Leia mais

(a) f(x) = x 3 x (b) f(x) = x (c) f(x) = 3 x (d) f (x) = 1 x x se x < 1 (1 x) 2 se 1 x. f f(a + h) f(a h) (a) = lim. = f(x 1 ) x 1 f (x 1 ).

(a) f(x) = x 3 x (b) f(x) = x (c) f(x) = 3 x (d) f (x) = 1 x x se x < 1 (1 x) 2 se 1 x. f f(a + h) f(a h) (a) = lim. = f(x 1 ) x 1 f (x 1 ). Ministério a Eucação Universiae Tecnológica Feeral o Paraná Campus Campo Mourão Wellington José Corrêa ā Lista e Cálculo Diferencial e Integral I Curso: Bacharelao em Ciências a Computação DAMAT, 205 Nome:

Leia mais

DERIVADA. A Reta Tangente

DERIVADA. A Reta Tangente DERIVADA A Reta Tangente Seja f uma função definida numa vizinança de a. Para definir a reta tangente de uma curva = f() num ponto P(a, f(a)), consideramos um ponto vizino Q(,), em que a e traçamos a S,

Leia mais

1ª Avaliação. A substituição de x por 9 leva a uma indeterminação do tipo 0/0. ( 3) ( x ) ( ) ( ) ( ) ( ) lim = lim = lim = lim. = x b x b.

1ª Avaliação. A substituição de x por 9 leva a uma indeterminação do tipo 0/0. ( 3) ( x ) ( ) ( ) ( ) ( ) lim = lim = lim = lim. = x b x b. ª Avaliação ) Encontre lim 9 9. A substituição e por 9 leva a uma ineterminação o tipo 0/0. ( ) + 9 lim lim lim lim 9 9 9 9 9 9 + 9 + 9 + lim 9 ( 9 ) 9 lim + + 9 + 6 9 ( + ) se 0 < < b ) Dao f, etermine

Leia mais

Derivadas das Funções Hiperbólicas Inversas

Derivadas das Funções Hiperbólicas Inversas UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Derivaas as Funções

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática Universidade Federal de Viçosa Centro de Ciências Eatas e Tecnológicas Departamento de Matemática MAT 040 Estudo Dirigido de Cálculo I 07/II Encontro 5 - /09/07: Eercício : Seja f a função cujo gráfico

Leia mais

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA DE ABRIL DE 2017

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA DE ABRIL DE 2017 ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA 21 17 DE ABRIL DE 2017 EQUAÇÕES DIFERENCIAIS Equações iferenciais são equações (algébricas) one figuram funções e erivaas e várias orens e funções.

Leia mais

Estudar o logaritmo natural. Fazer aplicações da primitiva da função logarítmica.

Estudar o logaritmo natural. Fazer aplicações da primitiva da função logarítmica. Aula O logaritmo natural Objetivos Estuar o logaritmo natural. Fazer aplicações a erivaa a função logarítmica. Fazer aplicações a primitiva a função logarítmica. Na aula passaa vimos a conhecia fórmula

Leia mais

Derivadas. Capítulo O problema da reta tangente

Derivadas. Capítulo O problema da reta tangente Capítulo 5 Derivadas Este capítulo é sobre derivada, um conceito fundamental do cálculo que é muito útil em problemas aplicados. Este conceito relaciona-se com o problema de determinar a reta tangente

Leia mais

LIMITES. Para iniciarmos o estudo de limites, analisemos os seguintes exemplos de sucessões numéricas:

LIMITES. Para iniciarmos o estudo de limites, analisemos os seguintes exemplos de sucessões numéricas: LIMITES O esenvolvimento o cálculo foi estimulao por ois problemas geométricos: achar as áreas e regiões planas e as retas tangentes à curva. Esses problemas requerem um processo e limite para sua solução.

Leia mais

Capítulo 5 Derivadas

Capítulo 5 Derivadas Departamento de Matemática - ICE - UFJF Disciplina MAT54 - Cálculo Capítulo 5 Derivadas Este capítulo é sobre derivada, um conceito fundamental do cálculo que é muito útil em problemas aplicados. Este

Leia mais

Derivadas de Funções Trigonométricas. Derivadas de Funções Trigonométricas ( ) ( ) ( ) [ x

Derivadas de Funções Trigonométricas. Derivadas de Funções Trigonométricas ( ) ( ) ( ) [ x UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Derivaas e Fnções

Leia mais

Universidade Federal do Espírito Santo Segunda Prova de Cálculo I Data: 04/10/2012 Prof. Lúcio Fassarella DMA/CEUNES/UFES. 2 x x = cos (x) 1

Universidade Federal do Espírito Santo Segunda Prova de Cálculo I Data: 04/10/2012 Prof. Lúcio Fassarella DMA/CEUNES/UFES. 2 x x = cos (x) 1 Universiae Feeral o Espírito Santo Seguna Prova e Cálculo I Data 4//22 Prof. Lúcio Fassarella DMA/CEUNES/UFES Aluno Matrícula Nota. (3 pontos) Calcule os ites (i) (ii) (iii) x! 2 x x + 22 = cos (x) x!

Leia mais

## RESOLUÇÃO DE EXERCÍCIOS DO MATERIAL BÁSICO DE ESTUDO ## , determine t 1 3. Isolando o vetor t : Temos o vetor t procurado!

## RESOLUÇÃO DE EXERCÍCIOS DO MATERIAL BÁSICO DE ESTUDO ## , determine t 1 3. Isolando o vetor t : Temos o vetor t procurado! ## RESOLUÇÃO DE EXERCÍCIOS DO MATERIAL BÁSICO DE ESTUDO ## LISTA DE EXERCÍCIOS Operações com Vetores na Forma Algébrica [Analítica] no R [página 7] 5) Daos os vetores u i j Inicialmente, antes e substituir

Leia mais

Regras do Produto e do Quociente. Regras do Produto e do Quociente

Regras do Produto e do Quociente. Regras do Produto e do Quociente UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Regras o Prouto e

Leia mais

CURSO DE CÁLCULO I PROF. MARCUS V. S. RODRIGUES

CURSO DE CÁLCULO I PROF. MARCUS V. S. RODRIGUES CURSO DE CÁLCULO I PROF. MARCUS V. S. RODRIGUES FORTALEZA - 009 Curso e Cálculo I Capítulo SUMÁRIO Capítulo Limite e continuiae.. Limites: Um conceito intuitivo.. Limites: Técnicas para calcular 9.. Limites:

Leia mais

Tópicos de Física Clássica I Aula 4 A identidade de Beltrami; a notação δ e alguns exemplos

Tópicos de Física Clássica I Aula 4 A identidade de Beltrami; a notação δ e alguns exemplos Tópicos e Física Clássica I Aula 4 A ientiae e Beltrami; a notação δ e alguns eemplos a c tort A seguna forma a equação e Euler-Lagrange Consiere F F [y), y ); ]. Então: F Agora consiere Da primeira equação

Leia mais

CÁLCULO I. 1 Primitivas. Objetivos da Aula. Aula n o 18: Primitivas. Denir primitiva de uma função; Calcular as primitivas elementares.

CÁLCULO I. 1 Primitivas. Objetivos da Aula. Aula n o 18: Primitivas. Denir primitiva de uma função; Calcular as primitivas elementares. CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 8: Primitivas. Objetivos da Aula Denir primitiva de uma função; Calcular as primitivas elementares. Primitivas Em alguns problemas, é necessário

Leia mais

Para ilustrar o conceito de limite, vamos supor que estejamos interessados em saber o que acontece à

Para ilustrar o conceito de limite, vamos supor que estejamos interessados em saber o que acontece à Limite I) Noção intuitiva de Limite Os limites aparecem em um grande número de situações da vida real: - O zero absoluto, por eemplo, a temperatura T C na qual toda a agitação molecular cessa, é a temperatura

Leia mais

Aula 18. Carlos Amaral Fonte: Cristiano Quevedo Andrea

Aula 18. Carlos Amaral Fonte: Cristiano Quevedo Andrea Aula 8 Carlos Amaral Fonte: Cristiano Queveo Anrea UTFPR - Universiae Tecnológica Feeral o Paraná DAELT - Departamento Acaêmico e Eletrotécnica Curitiba, Junho e Comparação entre técnicas e controle Técnica

Leia mais

Material Teórico - Redução ao Primeiro Quadrante e Funções Trigonométricas. Paridade das Funções Seno e Cosseno. Primeiro Ano do Ensino Médio

Material Teórico - Redução ao Primeiro Quadrante e Funções Trigonométricas. Paridade das Funções Seno e Cosseno. Primeiro Ano do Ensino Médio Material Teórico - Redução ao Primeiro Quadrante e Funções Trigonométricas Paridade das Funções Seno e Cosseno Primeiro Ano do Ensino Médio Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio

Leia mais

Resolução dos Exercícios Propostos no Livro

Resolução dos Exercícios Propostos no Livro Resolução dos Eercícios Propostos no Livro Eercício : Considere agora uma função f cujo gráfico é dado por y 0 O que ocorre com f() quando se aproima de por valores maiores que? E quando se aproima de

Leia mais

DERIVADAS DE FUNÇÕES REAIS DE UMA VARIÁVEL

DERIVADAS DE FUNÇÕES REAIS DE UMA VARIÁVEL BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL DERIVADAS DE FUNÇÕES REAIS DE UMA VARIÁVEL 1 a Eição Rio Grane Eitora a FURG 2016 Universiae Feeral o Rio

Leia mais

Lista de Férias. 6 Prove a partir da definição de limite que: a) lim. (x + 6) = 9. 1 Encontre uma expressão para a função inversa: b) lim

Lista de Férias. 6 Prove a partir da definição de limite que: a) lim. (x + 6) = 9. 1 Encontre uma expressão para a função inversa: b) lim Lista de Férias Bases Matemáticas/FUV Encontre uma epressão para a função inversa: + 3 a) 5 2 + e b) e c) 2 + 5 d) ln( + 3) 6 Prove a partir da definição de ite que: a) 3 ( + 6) = 9 b) = c) 2 = 4 2 d)

Leia mais

Acadêmico(a) Turma: Capítulo 7: Limites

Acadêmico(a) Turma: Capítulo 7: Limites Acadêmico(a) Turma: Capítulo 7: Limites 7.1. Noção Intuitiva de ite Considere a função f(), em que f() = 2 + 1. Para valores de que se aproima de 1, por valores maiores que 1 (Direita) e por valores menores

Leia mais

MÉTODOS DE DERIVAÇÃO

MÉTODOS DE DERIVAÇÃO MÉTODOS DE DERIVAÇÃO TE3 Fuametos Matemáticos para a Eearia Elétrica I Métoos e erivação DERIVADA DE UMA FUNÇÃO CONSTANTE Uma ução costate ão apreseta variação, portato sua erivaa é ula ( c) 5 4 Por eemplo:

Leia mais

Exercícios sobre Trigonometria

Exercícios sobre Trigonometria Universidade Federal Fluminense Campus do Valonguinho Instituto de Matemática e Estatística Departamento de Matemática Aplicada - GMA Prof Saponga uff Rua Mário Santos Braga s/n 400-40 Niterói, RJ Tels:

Leia mais

Concentração de medicamento no sangue

Concentração de medicamento no sangue Universidade de Brasília Departamento de Matemática Cálculo Concentração de medicamento no sangue função Suponha que a concentração de medicamento no sangue de um paciente seja dada pela C(t) = 3t 2t 2

Leia mais

Aula 26 A regra de L Hôpital.

Aula 26 A regra de L Hôpital. MÓDULO - AULA 6 Aula 6 A regra de L Hôpital Objetivo Usar a derivada para determinar certos ites onde as propriedades básicas de ites, vistas nas aulas 3, 4, e 5, não se aplicam Referência: Aulas 3, 4,

Leia mais

1 Definição de Derivada

1 Definição de Derivada Departamento de Computação é Matemática Cálculo I USP- FFCLRP Prof. Rafael A. Rosales 5 de março de 2014 Lista 5 Derivada 1 Definição de Derivada Eercício 1. O que é f (a)? Eplique com suas palavras o

Leia mais

CÁLCULO I. Apresentar e aplicar a Regra de L'Hospital.

CÁLCULO I. Apresentar e aplicar a Regra de L'Hospital. CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o : Limites Innitos e no Innito. Assíntotas. Regra de L'Hospital Objetivos da Aula Denir ite no innito e ites innitos; Apresentar alguns tipos

Leia mais

PARECER DA ASSOCIAÇÃO DE PROFESSORES DE MATEMÁTICA EXAME NACIONAL DO ENSINO SECUNDÁRIO. PROVA ESCRITA DE MATEMÁTICA 12º ano 435 e 635 2ª FASE 2006

PARECER DA ASSOCIAÇÃO DE PROFESSORES DE MATEMÁTICA EXAME NACIONAL DO ENSINO SECUNDÁRIO. PROVA ESCRITA DE MATEMÁTICA 12º ano 435 e 635 2ª FASE 2006 PARECER DA ASSOCIAÇÃO DE PROFESSORES DE MAEMÁICA EXAME NACIONAL DO ENSINO SECUNDÁRIO PROVA ESCRIA DE MAEMÁICA º ano e 6 ª FASE 006 A generaliae os alunos que realizaram esta prova e eame são os que iniciaram

Leia mais

30 a Aula AMIV LEAN, LEC Apontamentos

30 a Aula AMIV LEAN, LEC Apontamentos 30 a Aula 20041124 AMIV LEAN, LEC Apontamentos (RicaroCoutinho@mathistutlpt) 301 Equações iferenciais e orem n Comecemos com consierações gerais sobre equações e orem n; nomeaamente sobre a sua relação

Leia mais

Lista de Exercícios de Cálculo 3 Segunda Semana - 01/2016

Lista de Exercícios de Cálculo 3 Segunda Semana - 01/2016 Lista e Exercícios e Cálculo 3 Seguna Semana - 01/2016 Parte A 1. Se l tem equações paramétricas x = 5 3t, y = 2 + t, z = 1 + 9t, ache as equações paramétricas a reta que passa por P ( 6, 4, 3) e é paralela

Leia mais

O limite trigonométrico fundamental

O limite trigonométrico fundamental O ite trigonométrico fundamental Meta da aula Continuar a apresentação de ites de funções. Objetivo Ao final desta aula, você deverá ser capaz de: Calcular ites usando o ite trigonométrico fundamental.

Leia mais

MAT146 - Cálculo I - Derivada de funções polinomiais, regras de derivação e derivada de funções trigonométricas

MAT146 - Cálculo I - Derivada de funções polinomiais, regras de derivação e derivada de funções trigonométricas MAT146 - Cálculo I - Derivada de funções polinomiais, regras de derivação e derivada de funções trigonométricas Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira Vimos que uma função

Leia mais

(versão preliminar) exceto possivelmente para x = a. Dizemos que o limite de f(x) quando x tende para x = a é um numero L, e escrevemos

(versão preliminar) exceto possivelmente para x = a. Dizemos que o limite de f(x) quando x tende para x = a é um numero L, e escrevemos LIMITE DE FUNÇÕES REAIS JOSÉ ANTÔNIO G. MIRANDA versão preinar). Revisão: Limite e Funções Continuas Definição Limite de Seqüências). Dizemos que uma seqüência de números reais n convergente para um número

Leia mais

CÁLCULO LIMITE S ENGENHARIA

CÁLCULO LIMITE S ENGENHARIA CÁLCULO LIMITE S ENGENHARIA Confira as aulas em vídeo e eercícios 1 DEFINIÇÃO DE Imagine o seguinte eemplo: uma formiga está tentando chegar no ponto em = 3 andando pela curva definida pela função f()=²,

Leia mais

Funções monótonas. Pré-Cálculo. Atividade. Funções crescentes. Parte 3. Definição

Funções monótonas. Pré-Cálculo. Atividade. Funções crescentes. Parte 3. Definição Pré-Cálculo Departamento de Matemática Aplicada Universidade Federal Fluminense Funções monótonas Parte 3 Funções crescentes Pré-Cálculo 1 Atividade Pré-Cálculo 2 Dizemos que uma função f : D C é crescente

Leia mais

Derivada de algumas funções elementares

Derivada de algumas funções elementares Universidade de Brasília Departamento de Matemática Cálculo 1 Derivada de algumas funções elementares Vamos lembrar que a função f é derivável no ponto x = a se existe o limite f f(x) f(a) f(a+) f(a) (a).

Leia mais

TÉCNICAS DE DIFERENCIAÇÃO13

TÉCNICAS DE DIFERENCIAÇÃO13 TÉCNICAS DE DIFERENCIAÇÃO3 Gil da Costa Marques 3. Introdução 3. Derivada da soma ou da diferença de funções 3.3 Derivada do produto de funções 3.4 Derivada de uma função composta: a Regra da Cadeia 3.5

Leia mais

GABARITO. tg B = tg B = TC BC, com B = 60 e tg 60 = 3 BC BC. 3 = TC BC = TC 3. T Substituindo (2) em (1): TC. 3 = 3TC 160.

GABARITO. tg B = tg B = TC BC, com B = 60 e tg 60 = 3 BC BC. 3 = TC BC = TC 3. T Substituindo (2) em (1): TC. 3 = 3TC 160. Matemática Intensivo V. Eercícios 0) No triângulo abaio: teto adjacente ao ângulo. omo 5 e,8 km, vamos relacionar essas informações através da razão tangente: tg cat. oposto cat. adjacente y om: 5, cateto

Leia mais

LIMITE. Para uma melhor compreensão de limite, vamos considerar a função f dada por =

LIMITE. Para uma melhor compreensão de limite, vamos considerar a função f dada por = LIMITE Aparentemente, a idéia de se aproimar o máimo possível de um ponto ou valor, sem nunca alcançá-lo, é algo estranho. Mas, conceitos do tipo ite são usados com bastante freqüência. A produtividade

Leia mais

Derivadas de funções reais de variável real

Derivadas de funções reais de variável real Derivadas de funções reais de variável real O conceito de derivada tem grande importância pelas suas inúmeras aplicações em Matemática, em Física e em muitas outras ciências. Neste capítulo vamos dar a

Leia mais

Matemática B Intensivo V. 1

Matemática B Intensivo V. 1 Matemática Intensivo V. Eercícios 0) No triângulo abaio: teto adjacente ao ângulo. omo 5 e,8 km, vamos relacionar essas informações através da razão tangente: tg cat. oposto cat. adjacente y om: 5, cateto

Leia mais

UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 17. Assunto: Funções Implícitas, Teorema das Funções Implícitas

UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 17. Assunto: Funções Implícitas, Teorema das Funções Implícitas UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 17 Assunto: Funções Implícitas, Teorema as Funções Implícitas Palavras-chaves: funções, funções implícitas, erivação implícita Funções implícitas

Leia mais

Funções Elementares. Sadao Massago. Maio de Alguns conceitos e notações usados neste texto. Soma das funções pares é uma função par.

Funções Elementares. Sadao Massago. Maio de Alguns conceitos e notações usados neste texto. Soma das funções pares é uma função par. Funções Elementares Sadao Massago Maio de 0. Apresentação Neste teto, trataremos rapidamente sobre funções elementares. O teto não é material completo do assunto, mas é somente uma nota adicional para

Leia mais

a prova de Matemática da FUVEST 2ª fase

a prova de Matemática da FUVEST 2ª fase a prova e Matemática a FUVEST ª fase - 00 Matemática QUESTÃO 0 QUESTÃO 0 A iferença entre ois números inteiros positivos é 0. Ao multiplicar um pelo outro, um estuante cometeu um engano, teno iminuío em

Leia mais

13 Fórmula de Taylor

13 Fórmula de Taylor 13 Quando estudamos a diferencial vimos que poderíamos calcular o valor aproimado de uma função usando a sua reta tangente. Isto pode ser feito encontrandose a equação da reta tangente a uma função y =

Leia mais

, logo, x tg t é solução da equação dada. na equação dx tx. / 2 e daí dy xy, ou seja, y e

, logo, x tg t é solução da equação dada. na equação dx tx. / 2 e daí dy xy, ou seja, y e CAPÍTULO 0 Eercícios 0.. a) Substituindo tg t e sec t na equação, obtemos ù sec t tg t para todo t no intervalo, é, logo, tg t é solução da equação ûú dada. c) Substituindo t ()4 e 0 na equação t ( ),

Leia mais

Gráficos de Funções Trigonométricas

Gráficos de Funções Trigonométricas UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Gráficos de Funções

Leia mais

7. Diferenciação Implícita

7. Diferenciação Implícita 7. Diferenciação Implícita ` Sempre que temos uma função escrita na forma = f(), dizemos que é uma função eplícita de, pois podemos isolar a variável dependente de um lado e a epressão da função do outro.

Leia mais

Aula 4 Derivadas _ 1ª Parte

Aula 4 Derivadas _ 1ª Parte 1 CÁLCULO DIFERENCIAL E INTEGRAL I Aula 4 Derivadas _ 1ª Parte Professor Luciano Nóbrega UNIDADE 1 DERIVADA CONHECIMENTOS PRÉVIOS 2 y y 0 INCLINAÇÃO DA RETA A inclinação de uma reta ou, em outras palavras,

Leia mais

Uma breve introdução ao estudo de equações diferenciais 1

Uma breve introdução ao estudo de equações diferenciais 1 Uma breve introução ao estuo e equações iferenciais 1 2 Pero Fernanes Este texto tem o objetivo e apresentar os métoos e resolução os moelos mais básicos e equações iferenciais. A ieia é fornecer um treinamento

Leia mais

Universidade Federal de Viçosa

Universidade Federal de Viçosa Universidade Federal de Viçosa Ciências Eatas e Tecnológicas Departamento de Matemática MAT 4 - Lista - 07/. Determine o domínio a imagem as raízes e o estudo de sinal das funções a seguir: (a) f() = 4

Leia mais

Estudo Físico dos Gases

Estudo Físico dos Gases Estuo Físico os Gases eoria Cinética os Gases Gás é um estao a matéria; as partículas neste estao estão em movimento aleatório e caótico; São compressíveis; Os gases ocupam too o volume o recipiente e,

Leia mais

Taxas Trigonométricas

Taxas Trigonométricas Taas Trigonométricas Obs.: Com é mais difícil (confere a resolução). 1) A intensidade da componente F é p% da intensidade da força F. Então, p vale (a) sen(α) (b) 1sen(α) (c) cos(α) (d) 1cos(α) (e) cos(α)/1

Leia mais

Cálculo Numérico Computacional Exercícios. que coïncida com f até na terceira derivada:

Cálculo Numérico Computacional Exercícios. que coïncida com f até na terceira derivada: Cálculo Numérico Computacional Exercícios fórmula e Taylor T. Praciano-Pereira Dep. e Matemática Univ. Estaual Vale o Acaraú Sobral, 7 e fevereiro e 7 Relembrano: Fórmula e Taylor A equação a reta tangente

Leia mais

Cálculo I (2015/1) IM UFRJ Lista 2: Limites e Continuidade Prof. Milton Lopes e Prof. Marco Cabral Versão Exercícios de Limite

Cálculo I (2015/1) IM UFRJ Lista 2: Limites e Continuidade Prof. Milton Lopes e Prof. Marco Cabral Versão Exercícios de Limite Eercícios de Limite. Eercícios de Fiação Cálculo I (05/) IM UFRJ Lista : Limites e Continuidade Prof. Milton Lopes e Prof. Marco Cabral Versão 30.03.05 Fi.: Considere o gráco de = f() esboçada no gráco

Leia mais

Substituição trigonométrica hiperbólica. Esta é a última aula do segundo módulo da disciplina Cálculo II. Isso

Substituição trigonométrica hiperbólica. Esta é a última aula do segundo módulo da disciplina Cálculo II. Isso MÓDULO - AULA 30 Aula 30 Técnicas de integração Miscelânea Esta é a última aula do segundo módulo da disciplina Cálculo II. Isso significa que você está completando boa parte desta jornada. Você já enfrentou

Leia mais

Eletromagnetismo I. Preparo: Diego Oliveira. Aula 19. A Lei da Indução de Faraday

Eletromagnetismo I. Preparo: Diego Oliveira. Aula 19. A Lei da Indução de Faraday Eletromagnetismo I Prof. Dr. R.M.O Galvão - 2 Semestre 2014 Preparo: Diego Oliveira Aula 19 A Lei a Inução e Faraay Na aula passaa iscutimos a força eletromotriz ε = E l em um circuito e mostramos que

Leia mais

Cálculo I IM UFRJ Lista 1: Pré-Cálculo Prof. Marco Cabral Versão Para o Aluno. Tópicos do Pré-Cálculo

Cálculo I IM UFRJ Lista 1: Pré-Cálculo Prof. Marco Cabral Versão Para o Aluno. Tópicos do Pré-Cálculo Cálculo I IM UFRJ Lista : Pré-Cálculo Prof. Marco Cabral Versão 7.03.05 Para o Aluno O sucesso (ou insucesso) no Cálculo depende do conhecimento de tópicos do ensino médio que chamaremos de pré-cálculo.

Leia mais

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA 7 5 DE MARÇO DE 2018

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA 7 5 DE MARÇO DE 2018 ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA 7 5 DE MARÇO DE 08 Condições Suficientes de Diferenciabilidade Teorema Seja f(z) = u(, y) + iv(, y). Se u e v têm derivadas parciais contínuas em torno

Leia mais

MAT Cálculo Diferencial e Integral I Bacharelado em Matemática

MAT Cálculo Diferencial e Integral I Bacharelado em Matemática MAT- - Cálculo Diferencial e Integral I Bacharelado em Matemática - 200 a Lista de eercícios I. Limite de funções. Calcule os seguintes ites, caso eistam: 2 3 + 9 2 + 2 + 4 2 + 6 5 ) 2 3 2 2 2) + 4 + 8

Leia mais

Apostila de Cálculo I

Apostila de Cálculo I Limites Diz-se que uma variável tende a um número real a se a dierença em módulo de -a tende a zero. ( a ). Escreve-se: a ( tende a a). Eemplo : Se, N,,,4,... quando N aumenta, diminui, tendendo a zero.

Leia mais

MÓDULO 29. Trigonometria I. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. Fórmulas do arco duplo: 1) sen (2a) = 2) cos (2a) =

MÓDULO 29. Trigonometria I. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. Fórmulas do arco duplo: 1) sen (2a) = 2) cos (2a) = Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA MÓDULO 9 Trigonometria I Resumo das principais fórmulas da trigonometria Arcos Notáveis: Fórmulas do arco duplo: ) sen (a) ) cos (a) ) tg

Leia mais

A Forma Geométrica dos Cabos Suspensos Prof. Lúcio Fassarella

A Forma Geométrica dos Cabos Suspensos Prof. Lúcio Fassarella A Forma Geométrica os Cabos Suspensos Prof. Lúcio Fassarella - 008 - Problema: Determinar a forma eométrica e um cabo e comprimento L suspenso em suas extremiaes por postes e mesma altura H separaos por

Leia mais

Matemática A Semi-Extensivo V. 3

Matemática A Semi-Extensivo V. 3 Matemática A Semi-Etensivo V. Eercícios 0) 0 f: R R f() = c) f: R R f() = 0. Falsa alsa. CD = R, mas Im(f) = [, ). 0. Falsa alsa. Im(f) = [, ). 0. Falsa alsa. Já não é sobrejetora. 08. Verdadeira f( 5

Leia mais

Fazer aplicações da primitiva da função logarítmica.

Fazer aplicações da primitiva da função logarítmica. Aula O logaritmo natural Objetivos Estuar o logaritmo natural. Fazer aplicações a erivaa a função logarítmica. Fazer aplicações a primitiva a função logarítmica. Na aula passaa vimos a conhecia fórmula

Leia mais

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A Atualizada em A LISTA DE EXERCÍCIOS

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A Atualizada em A LISTA DE EXERCÍCIOS INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A Atualizada em 007. A LISTA DE EXERCÍCIOS 0. Esboce o gráfico de f, determine f ( ), f ( ) e, caso eista, f ( ) : a a+ a, >, e a) f (

Leia mais

Matemática Licenciatura - Semestre Curso: Cálculo Diferencial e Integral I Professor: Robson Sousa. Diferenciabilidade.

Matemática Licenciatura - Semestre Curso: Cálculo Diferencial e Integral I Professor: Robson Sousa. Diferenciabilidade. 1 Matemática Licenciatura - Semestre 2010.1 Curso: Cálculo Diferencial e Integral I Professor: Robson Sousa Diferenciabilidade Funções Trigonométricas Inicialmente, observe pela gura que para ângulos 0

Leia mais