Estudar o logaritmo natural. Fazer aplicações da primitiva da função logarítmica.

Tamanho: px
Começar a partir da página:

Download "Estudar o logaritmo natural. Fazer aplicações da primitiva da função logarítmica."

Transcrição

1 Aula O logaritmo natural Objetivos Estuar o logaritmo natural. Fazer aplicações a erivaa a função logarítmica. Fazer aplicações a primitiva a função logarítmica. Na aula passaa vimos a conhecia fórmula para o cálculo a primitiva a função y = r, que é aa por r = r+ + C, r. r + Resta-nos saber o que acontece quano r =, ou seja, o que evemos fazer para encontrar a primitiva ou antierivaa e y = =. Esta aula é eicaa a efinir e a estuar as proprieaes essa importante função chamaa logaritmo natural (ou neperiano) e inicaa por y = ln. O logaritmo natural O gráfico e y =, para t > 0, é conhecio o leitor t Fig.. 23

2 232 Cálculo - aula UFPA e está esboçao na figura., seno um ramo e uma hipérbole equilátera. Para > a integral t t representa a área sob a curva y = e acima o eio ot, entre os valores t t = e t =. Veja figura.2. Fig..2 Para 0 < < a integral acima poe ser escrita como t t = t t, e assim, neste caso, esta última integral representa a área sob a curva, limitaa inferiormente pelo eio ot, entre t = e t =, preceia o sinal negativo. Veja a figura.3. Se =, a integral á zero. Fig..3 Poemos, então, efinir a função logaritmo natural a seguinte maneira. Definição 2. Definimos a função logaritmo natural, ln : (0, + ) R por ln = t, para t > 0. t

3 UFPA Cálculo - aula 233 Deve-se observar que a integral t t eiste, pois a função t é contínua para t > 0, one se conclui que a integral que efine a função logaritmo está bem efinia, lembrano que qualquer função contínua, efinia em intervalos fechaos e limitaos, é integrável. Esta maneira, aparentemente não-natural, e efinir a função logaritmo natural tornar-se-á clara à meia que formos avançano no seu estuo. Em virtue o teorema funamental o Cálculo, temos que ln é erivável e (ln ) = (ln) () =, para > 0. Portanto, o logaritmo natural é uma primitiva ou antierivaa e, somente para > 0. Uma primitiva no caso em que 0 será construía futuramente. Listaremos, a seguir, algumas proprieaes a função logaritmo natural as quais começarão a tornar claro o porquê e chamarmos tal função e logaritmo. Proprieae. ln = 0, porque ln = Proprieae 2. Se >, então ln > 0. t = 0. t Isto é claramente verae em virtue e integrais e funções positivas serem positivas e assim t representará a área sob o gráfico t e t e acima o eio o, para t variano e até. Proprieae 3. Se 0 < <, então ln < 0. Isto se segue o fato ln = t t = t t. e e que a integral t t representa a área sob o gráfico e t e acima o eio o, para t variano e até. Proprieae 4. (ln ) = Isto se segue os seguintes fatos: Se > 0, temos que = e assim (ln ) = (ln ) =.

4 234 Cálculo - aula UFPA Se < 0, temos que = e aí (ln ) = (ln( )). Fazeno u = > 0, e usano a regra a caeia, obtemos (ln( )) = u (ln u) u = u ( ) = u =. Proprieae 5 ln uv = ln u + ln v Inicialmente, observemos que (ln(a)) = a (a), em virtue a regra a caeia. Dessa forma, (ln(a)) = a a =. Isto nos iz que as funções ln e ln(a) possuem erivaas iguais. Conseqüentemente, ln(a) = ln + K, para alguma constante K. Daí, quano =, obteremos Conseqüentemente, ln a = ln + K = 0 + K = K. ln(a) = ln a + ln. Fazeno a = u e = v, obtemos a fórmula pretenia. ( u ) Proprieae 6. ln = ln u ln v v Esta proprieae segue-se a anterior a seguinte maneira: ( u ) ( u ) ln u = ln v v = ln + ln v, v one Proprieae 7. ln ( ) = ln v v ( u ) ln = ln u ln v. v Na proprieae anterior, façamos u = para obter ( ) ln = ln ln v = ln v. v

5 UFPA Cálculo - aula 235 Proprieae 8. Se r for um número racional e um número positivo, então ln( r ) = r ln. Pela regra a caeia (ln(r )) = r (rr ) = r = (r ln ). Deste moo, como as funções ln r e r ln possuem erivaas iguais, elas iferem por uma constante, ou seja, eiste uma constante K tal que ln( r ) = r ln + K. Fazeno =, obtém-se ln = r ln + K e ese que ln = 0, concluímos que K = 0 e então ln( r ) = r ln. Proprieae 9. A função ln é crescente. Basta observar que (ln ) = > 0 ese que > 0. A proprieae segue-se o fato e que, se a erivaa e uma função for positiva, então ela será crescente. Proprieae 0. O gráfico a função ln é côncavo para baio. Basta observar que 2 (ln ) = 2 Proprieae. 2 < ln 2 < (ln ) = ( ) = 2 < 0. Observemos a figura.4 e conclua que a área sob o gráfico e f() =, entre = e = 2, e acima o eio o é maior o que a área o retângulo com base [, 2] e altura 2, que é que, por sua vez, é 2 menor que a área o retângulo e base [, 2] e altura, a qual é. Fig..4

6 236 Cálculo - aula UFPA Mais precisamente, 2 < Portanto, Proprieae lim ln = + + <, ou seja 2 2 < <. < ln 2 <. Seja k um inteiro positivo qualquer. Então, para > 2 2k, teremos ln > ln(2 2k ) pois a função ln é crescente. Assim, ln > ln(2 2k ) = 2k ln 2 > 2k ( ) = k. 2 Portanto, como +, temos que ln ecee qualquer número inteiro positivo k, o que implica que Proprieae 3. lim ln = 0 + lim ln = +. + Façamos u = e observemos que 0+ se, e somente se, u +. Portanto lim ln = 0 + lim ln u + ( ) = lim ( ln u) = lim ln u =. u u + u + Proprieae 4. g () = ln g() + C g() Isto se segue a Regra a Caeia e o seguinte fato (ln g() ) = g () g() bastano observar que g () g() = (ln g() ) = ln g() + C. Esta proprieae poe ser reescrita como: Façamos u = g(), o que nos permite concluir que u = g () e aí g () u g() = = ln u + C = ln g() + C. u

7 UFPA Cálculo - aula 237 Observemos que as proprieaes o logaritmo listaas até agora nos fazem tirar algumas conclusões importantes que serão utilizaas na aula 2 e verificar que o seu gráfico é esboçao na figura.5. Fig..5 Na figura.6 encontra-se esboçao o gráfico a função ln. Fig..6 Antes e resolvermos alguns eercícios, introuziremos uma técnica em que usamos a erivaa o logaritmo, com algumas e suas proprieaes, a fim e facilitar o cálculo a erivaa e funções que, sem essa ajua, tornaria o nosso trabalho bastante áruo. Tal técnica é chamaa erivação logarítmica. 2 Derivação logarítmica Ilustremos esse métoo por meio e eemplos. Eemplo 0. Derivemos a função y = ( 3 2 ) 3 (cos 2) 4. Calculano o logaritmo e ambos os membros a epressão acima, obtém-se ln y = ln( 3 2 ) 3 + ln(cos 2) 4. Daí, ln y = 3 ln( 3 2 ) + 4 ln(cos 2)

8 238 Cálculo - aula UFPA e erivano ambos os seus membros y y = 3 3 ( 6) cos 2 ( sen 2) (2) = 8 3 8tg2. 2 Conseqüentemente ( ) 8 y = ( 3 2 ) 3 (cos 2) 4 + 8tg Eemplo. Calcule a erivaa e logo, y = ( 2 ) 2. ( + 2 ) 2 Usano a erivação logarítmica, obtemos ln y = ln + 2 ln( 2 ) 2 ln( + 2 ). y y = + 2 ( 2) (2) = e, após algumas manipulações algébricas, obtém-se y = ( )( 2 ) ( + 2 ) 3/2. Com a introução a função logaritmo poemos consierar uma nova técnica e integração chamaa integração por frações parciais. 3 Integração por frações parciais A técnica e integração por frações parciais consiste em eterminar primitivas e funções racionais ecompono tal tipo e funções em soma e funções racionais mais simples e cujas primitivas sejam calculaas facilmente. Comecemos com um eemplo simples. Eemplo 2. Calculemos a integral 2. A iéia é ecompor a função racional 2 = A + 2 B + na forma

9 UFPA Cálculo - aula 239 em que A e B são constantes a ser eterminaas. Dessa última igualae obtém-se 2 = A + B + = A( + ) + B( ) ( )( + ) Daí, por uma simples comparação, tem-se A + B = 0 A B = = (A + B) + A B. 2 que é um sistema linear cuja solução é A = 2 e B = 2. Portanto, 2 = Integrano ambos os membros essa última igualae 2 = 2 2 +, one 2 = 2 ln ln + + C. 2 Se quisermos simplificar esta última epressão, obteremos = ln 2 [ K + /2], em que C = ln K. Verifique a valiez essa última igualae. Eemplo 3. Calculemos a integral Usemos um proceimento semelhante àquele o eemplo anterior e escrevamos = A + B + 2 observano que = ( )( + 2). Após um cálculo simples chegamos a A = 2 3 e B = 7 3. Assim = = 2 3 ln + 7 ln C. 3

10 240 Cálculo - aula UFPA Eemplo 4. Em alguns casos o polinômio que figura no enominaor não poe ser ecomposto em fatores e primeiro grau reais, pois as suas raízes são compleas. Em virtue isso, evemos usar outra estratégia. Vejamos o que acontece com a integral Observemos que o trinômio o seguno grau não possui raízes reais pois o seu iscriminante é negativo. Verifique isso. No entanto, ele poe ser escrito na forma = = ( + ) 2 + e a integral em estuo se apresenta como = ( + ) 2 +. Neste ponto o estuante eve recorar a integral u = arctan u + C. u 2 + Portanto, fazeno u = + tem-se u = e assim = ( + ) 2 + = u = arctan u + C = u 2 + u = arctan u + C = arctan( + ) + C. u 2 + Eemplo 5. Vejamos a integral + ( + ) 2 +. O que fazer com essa integral? Observe que poemos fazer a muança e variáveis u = + e obter + ( + ) 2 + = u u 2 + u = 2u 2 u 2 + u. Nesta última integral o numeraor o integrano é eatamente a erivaa a função que figura no enominaor, e moo que + ( + ) 2 + = 2u 2 u 2 + u = 2 ln(u2 + ) + C = 2 ln(u2 + ) + C = 2 ln( ) + C.

11 UFPA Cálculo - aula 24 4 Eercícios resolvios. Calcule a erivaa e ln(5 + 3). Solução. Usano a regra a caeia (ln(5 + 3)) = (5 + 3) = Calcule a erivaa e ln. Solução. Usano a regra a caeia 3. Calcule a integral ( ln ) = (ln ) 2 = 2 (ln ) 2 (ln ) = 2 (ln ) 2 = 2 ln Solução. Basta observar que fazeno g() = 2 + obtemos g () = 2. Daí 2 ( = + ) 2 + = ln C = ln( 2 + ) + C. 4. Calcule a integral tg. Solução. Observemos que tg = sen cos = sen cos. Fazeno g() = cos tem-se g () = sen e assim sen cos tg = cos = = ln cos + C. cos Calcule Solução. Para calcular a integral acima basta acompanhar os cálculos abaio, justificano as passagens = = 6 ln C.

12 242 Cálculo - aula UFPA 6. Calcule ln, > 0. Solução. Calculemos essa integral usano a técnica e integração por partes. Para isso, façamos u = ln e v =, e moo que u = e v =. ln = ln = ln + C. 7. Calcule ln. Solução. Faça u = ln, o que nos á u = e assim ln = 8. Calcule a integral Solução. Escrevamos 2 9. uu = u2 2 + C = (ln )2 2 + C. 2 9 = ( 3)( + 3) = A 3 + B + 3. Assim, = A( + 3) + B( 3) e aí A = 6 e B = 6. Portanto, 9. Calcule a integral 2 9 = = 6 ln C 6 = 6 ln C ( + 2)( + 3). Solução. ( + 2)( + 3) = A B.Assim, = A( + 3) B( + 2) e aí A = 2 e B = 3. Logo, = 2 ( + 2)( + 3) = 2 ln ln C = ln ( + 3) 3 ( + 2) 2 + C

13 UFPA Cálculo - aula Calcule a integral 5 2 ( + ) 5 Solução. 2 ( + ) = A + B + C. Assim, 5 = A( + ) B( + ) + C 2 e aí A = 6, B = 5 e C = 6. Conseqüentemente, ( + ) = Eercícios propostos. Encontre as erivaas as funções. (a) y = ln( + 3) 2 (b) y = (ln( + 3)) 2 (c) y = ln(sen 5) () y = ln( ) (e) y = ln (f) y = ln Calcule as seguintes primitivas. (a) 7 8 (b) 9 (c) ln sen 3 () cos (e) 3 ln (f) (g) ( ) = 6 ln ln + + C = 6 ln C. 3. Encontre a área sob a curva y = e = 4. e acima o eio o, entre = 2

14 244 Cálculo - aula UFPA 4. Calcule a integral (2 + 3) Resolva a equação 2 ln = ln(2). 6. Calcule a integral Mostre que ln <, para too > 0.

15 UFPA Cálculo - aula Respostas os eercícios propostos. (a) y = (b) y ln ( + 3) = (c) y cos (5 ) = 5 sin (5 ) () y = + 2 (e) y = ln (f) y = (a) 7 ln + C (b) 9 ln ( 9 ) + C (c) ln (ln ) + C () 3 ln ( cos (3 )) + C 3. ln (e) 2 ln + C (f) 2 (ln )2 + C (g) 2 ln( + ) + C 4 ln(2 + 3) + 3 4(2 + 3) + C 8 ln 7 7. Sugestão: use o que você sabe sobre máimos e mínimos. Nesta aula você apreneu: O que é o logaritmo natural. a fazer aplicação a erivaa a função logarítmica. a fazer aplicação a primitiva a função logarítmica.

16 246 Cálculo - aula UFPA 7 Apênice História os logaritmos Os logaritmos surgiram como um instrumento para simplificar cálculos em que figuravam números muito granes, principalmente aqueles oriunos e meições astronômicas. As proprieaes que simplificavam tais cálculos eram aquelas que transformavam multiplicações em aições e ivisões em subtrações. Muito embora a formalização os logaritmos tenha sio realizaa por John Napier (550-67), um escocês proprietário e terras, que foi o primeiro a publicar, em 64, uma tábua e logaritmos, a sua essência, ao que parece, foi levaa em conta pelos antigos babilônios que consieravam uma tabela em um tablete atao aproimaamente e 888 a.c., aa por Tabela O leitor que analisar e maneira acuraa esta tabela verificará que ela se estene obeeceno a uma regra geral, e moo que a tabela 2 a seguir é uma etensão a tabela Tabela Learn from the Masters, Eitors Frank Swetz, John Fauvel, Otto Bekken, Bengt Johansson, Victor Katz, The Mathematical Association of America, 995

17 UFPA Cálculo - aula 247 e assim, caso queiramos calcular o prouto 32 64, basta observar que 32 correspone ao 5 e 64 correspone ao 6. Somam-se = e verifica-se a linha corresponente ao, na qual figura Assim, = Este foi, essencialmente, o proceimento usao por Napier, que usa progressões aritméticas e progressões geométricas, assuntos bem conhecios os matemáticos o século XVI. Vejamos como proceer. Consieremos uma progressão aritmética começano com 0 e com razão a > 0 e uma progressão geométrica começano com e com razão r > 0 e vejamos a tabela 3, a seguir, Tabela 3 0 r a 2a 3a 4a 5a 6a 7a 8a 9a r 2 r 3 r 4 r 5 r 6 r 7 r 8 r 9.. em que se eibe uma corresponência biunívoca entre os elementos as uas colunas aa por 0, a r, 2a r 2, na r n para too n = 0,, 2, Assim, as funções f e g efinias por f(na) = r n e g(r n ) = na são funções inversas uma a outra, e moo que g(r n ) + g(r m ) = na + ma = (m + n)a = g(r n r m ), ou e maneira mais concisa g() + g(y) = g(y). Também ou ( ) r g(r n ) g(r m n ) = na ma = (n m)a = g, r m g() g(y) = g ( ). y

18 248 Cálculo - aula UFPA Poe-se constatar, sem muita ificulae, que toas as regras o logaritmo se verificam, ou seja, g naa mais é o que a função logaritmo conhecia com base r seno a inversa e uma potência. Somente na écaa e 650 foi verificao por Isaac Newton ( ), em seu Waste Book ( ), que a área abaio a hipérbole satisfaz as proprieaes o logaritmo. Posteriormente, em 668, Mercator encontra o logaritmo como uma série aa por log( + ) = Evientemente que o uso os logaritmos como instrumento e cálculo está completamente ultrapassao, ao o avento as calculaoras, computaores, etc. No entanto, sua relevância perura em virtue a função logarítmica, que se presta, em parceria com a função eponencial, a iversas aplicações práticas importantes. Isto ficará eviente, por eemplo, em várias aulas sobre equações iferenciais.

Fazer aplicações da primitiva da função logarítmica.

Fazer aplicações da primitiva da função logarítmica. Aula O logaritmo natural Objetivos Estuar o logaritmo natural. Fazer aplicações a erivaa a função logarítmica. Fazer aplicações a primitiva a função logarítmica. Na aula passaa vimos a conhecia fórmula

Leia mais

Mais derivadas. g(x)f (x) f(x)g (x) g(x) 2 cf(x), com c R cf (x) x r, com r R. rx r 1

Mais derivadas. g(x)f (x) f(x)g (x) g(x) 2 cf(x), com c R cf (x) x r, com r R. rx r 1 Universiae e Brasília Departamento e Matemática Cálculo 1 Mais erivaas Neste teto vamos apresentar mais alguns eemplos importantes e funções eriváveis. Até o momento, temos a seguinte tabela e erivaas:

Leia mais

y f(x₁) Δy = f(x₁) - f(x₀) Δx =X₁-X₀ f(x₀) f(x0 + h) - f(x0) h f(x + h) - f(x) h f'(x) = lim 1 DEFINIÇÃO DE DERIVADAS 2 DIFERENCIABILIDADE h 0

y f(x₁) Δy = f(x₁) - f(x₀) Δx =X₁-X₀ f(x₀) f(x0 + h) - f(x0) h f(x + h) - f(x) h f'(x) = lim 1 DEFINIÇÃO DE DERIVADAS 2 DIFERENCIABILIDADE h 0 DEFINIÇÃO DE Graficamente, poemos efinir a erivaa e um ponto como a inclinação a reta tangente = f() ou a taa e variação instantânea e em relação a. Suponha que temos uma função f() e queremos saber a

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBIOM, MEFT 1 o SEM. 2010/11 3 a FICHA DE EXERCÍCIOS

CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBIOM, MEFT 1 o SEM. 2010/11 3 a FICHA DE EXERCÍCIOS Instituto Superior Técnico Departamento e Matemática Secção e Álgebra e Análise CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBIOM, MEFT o SEM. / 3 a FICHA DE EXERCÍCIOS Primitivação é a operação inversa a

Leia mais

CÁLCULO I. 1 Regras de Derivação. Objetivos da Aula. Aula n o 12: Regras de Derivação. Apresentar e aplicar as regras operacionais de derivação;

CÁLCULO I. 1 Regras de Derivação. Objetivos da Aula. Aula n o 12: Regras de Derivação. Apresentar e aplicar as regras operacionais de derivação; CÁLCULO I Prof. Marcos Diniz Prof. Anré Almeia Prof. Eilson Neri Júnior Aula n o 2: Regras e Derivação Objetivos a Aula Apresentar e aplicar as regras operacionais e erivação; Derivar funções utilizano

Leia mais

CÁLCULO I. 1 Regras de Derivação. Objetivos da Aula. Aula n o 12: Regras de Derivação. Apresentar e aplicar as regras operacionais de derivação;

CÁLCULO I. 1 Regras de Derivação. Objetivos da Aula. Aula n o 12: Regras de Derivação. Apresentar e aplicar as regras operacionais de derivação; CÁLCULO I Prof. Marcos Diniz Prof. Anré Almeia Prof. Eilson Neri Júnior Prof. Emerson Veiga Prof. Tiago Coelho Aula n o : Regras e Derivação Objetivos a Aula Apresentar e aplicar as regras operacionais

Leia mais

DERIVADAS., é igual ao valor da tangente trigonométrica do ângulo formado pela tangente geométrica à curva representativa de y = f (x)

DERIVADAS., é igual ao valor da tangente trigonométrica do ângulo formado pela tangente geométrica à curva representativa de y = f (x) Proessor Mauricio Lutz DERIVADAS A erivaa e uma unção y () num, é igual ao valor a tangente trigonométrica o ângulo ormao pela tangente geométrica à curva representativa e y (), no ponto, ou seja, a erivaa

Leia mais

UNEMAT Universidade do Estado de Mato Grosso Campus Universitário de Sinop Departamento de Engenharia Civil Disciplina: Cálculo I. 1ª Avaliação 2013/1

UNEMAT Universidade do Estado de Mato Grosso Campus Universitário de Sinop Departamento de Engenharia Civil Disciplina: Cálculo I. 1ª Avaliação 2013/1 ) Calcule os limites abaio: (3,0) ª Avaliação 03/ a) + ( a) a lim a a + ( a) a ( a) ( + ) lim = lim = lim( + = + a a a a ) a a b) lim 0 + + + + + + lim = lim = lim 0 0 + + 0 ( ) ( + + ) = lim = lim = =

Leia mais

CÁLCULO I. 1 Funções Exponenciais Gerais. Objetivos da Aula. Aula n o 25: Funções Logarítmicas e Exponenciais Gerais. Denir f(x) = log x

CÁLCULO I. 1 Funções Exponenciais Gerais. Objetivos da Aula. Aula n o 25: Funções Logarítmicas e Exponenciais Gerais. Denir f(x) = log x CÁLCULO I Prof. Eilson Neri Júnior Prof. Anré Almeia Aula n o 25: Funções Logarítmicas e Eponenciais Gerais Objetivos a Aula Denir f() = log Denir f() = a Funções Eponenciais Gerais Denição. Se a > 0 e

Leia mais

A Regra da Cadeia. 14 de novembro de u(x) = sen x. v(x) = cos x. w(x) = x 5

A Regra da Cadeia. 14 de novembro de u(x) = sen x. v(x) = cos x. w(x) = x 5 A Regra a Caeia 4 e novembro e 0. As operações algébricas entre funções (soma, prouto, etc) fornecem uma grane iversiae e novas funções para os iferentes casos que vimos até agora. Porém, existe uma outra

Leia mais

A Regra da Cadeia Continuação das notas de aula do mês 11/03 Versão de 20 de Novembro de 2003

A Regra da Cadeia Continuação das notas de aula do mês 11/03 Versão de 20 de Novembro de 2003 A Regra a Caeia Continuação as notas e aula o mês /03 Versão e 20 e Novembro e 2003 Agora queremos entener o que acontece com a erivaa e uma composição e funções. Antes e mais naa, lembremos a notação

Leia mais

Regras Básicas de Derivação

Regras Básicas de Derivação Regras Básicas e Derivação. regra a soma: (u + kv) = u + kv, k constante 2. regra a iferença: (u + v) = u + v 3. regra o prouto: (u v) = u v + u v u u v u v 4. regra o quociente: = v v 2 5. regra a caeia:

Leia mais

, α 1 α + 1 d dx (log x ) = 1 1. x dx = log x, x 0

, α 1 α + 1 d dx (log x ) = 1 1. x dx = log x, x 0 Instituto Superior Técnico Departamento e Matemática Secção e Álgebra e Análise CÁLCULO DIFERENCIAL E INTEGRAL I LEIC-TAGUS, LERCI, LEGI E LEE o SEM. 006/07 5 a FICHA DE EXERCÍCIOS PRIMITIVAÇÃO DE FUNÇÕES

Leia mais

1ª Avaliação 2012/1. lim. x 2x. x x x x x. lim lim lim lim. x x x. x x

1ª Avaliação 2012/1. lim. x 2x. x x x x x. lim lim lim lim. x x x. x x ª Avaliação 0/ ) Determine o limite a epressão: lim. 0 ( ) ( ) ( ) lim 0 ( ) ( 0) 4 lim lim lim lim 0 0 0 0 ( ) ) Derive a função g ( ). 4 4 g ( ) g ( ) g ( ) 4 4 g ( ) g ( ) g( ) g( ) 4 6 8 9 4 g( ) 4

Leia mais

LIMITES. Para iniciarmos o estudo de limites, analisemos os seguintes exemplos de sucessões numéricas:

LIMITES. Para iniciarmos o estudo de limites, analisemos os seguintes exemplos de sucessões numéricas: LIMITES O esenvolvimento o cálculo foi estimulao por ois problemas geométricos: achar as áreas e regiões planas e as retas tangentes à curva. Esses problemas requerem um processo e limite para sua solução.

Leia mais

Professor Mauricio Lutz DERIVADAS

Professor Mauricio Lutz DERIVADAS DERIVADAS Eplorano a iéia e erivaa Vamos iniciar a eploração intuitiva a iéia e erivaa por meio a ieia e variação e uma unção: Observemos que, quano a variável inepenente passa por e vai até, o conjunto

Leia mais

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida CÁLCULO I Prof. Eilson Neri Júnior Prof. Anré Almeia Aula n o 08: Regra a Caeia. Derivação Implícita. Derivaa a Função Inversa. Objetivos a Aula Conhecer e aplicar a regra a caeia; Utilizar a notação e

Leia mais

3 Cálculo Diferencial. Diferenciabilidade

3 Cálculo Diferencial. Diferenciabilidade 3 Cálculo Diferencial Diferenciabiliae EXERCÍCIOS RESOLVIDOS. Para caa uma as seguintes funções etermine o omínio e iferenciabiliae e calcule as respectivas erivaas: a, b e, c ln, e. a f ( = é iferenciável

Leia mais

RESUMO DERIVADAS. A derivada nada mais é do que a inclinação da reta tangente a y=f(x) ou a taxa de variação instantânea de y em relação a x.

RESUMO DERIVADAS. A derivada nada mais é do que a inclinação da reta tangente a y=f(x) ou a taxa de variação instantânea de y em relação a x. RESUMO DERIVADAS DEFINIÇÃO A erivaa naa mais é o que a inclinação a reta tangente a y=f(x) ou a taxa e variação instantânea e y em relação a x. x 0 f(x +h) f(x ) f (x 0 ) = lim h 0 h 0 0 DIFERENCIABILIDADE

Leia mais

Acadêmico(a) Turma: Capítulo 4: Derivada. A derivada por ser entendida como taxa de variação instantânea de uma função e expressa como:

Acadêmico(a) Turma: Capítulo 4: Derivada. A derivada por ser entendida como taxa de variação instantânea de uma função e expressa como: 1 Acaêmico(a) Turma: Capítulo 4: Derivaa 4.1 Definição A erivaa por ser entenia como taxa e variação instantânea e uma função e expressa como: f (x) = y = y x Eq. 1 Assim f (x) é chamao e erivaa a função

Leia mais

Regras de Derivação Notas de aula relativas ao mês 11/2003 Versão de 13 de Novembro de 2003

Regras de Derivação Notas de aula relativas ao mês 11/2003 Versão de 13 de Novembro de 2003 Regras e Derivação Notas e aula relativas ao mês 11/2003 Versão e 13 e Novembro e 2003 Já sabemos a efinição formal e erivaa, a partir o limite e suas interpretações como: f f a + h) f a) a) = lim, 1)

Leia mais

a) Represente na forma de um intervalo ou de uma união disjunta de intervalos o domínio D da função definida pela expressão: f(x) = log 1 x 1 )

a) Represente na forma de um intervalo ou de uma união disjunta de intervalos o domínio D da função definida pela expressão: f(x) = log 1 x 1 ) Instituto Superior Técnico Departamento e Matemática Secção e Álgebra e Análise o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEFT, MEBiom o Sem. 20/2 2//20 Duração: h30mn.,5 val.) a) Represente na

Leia mais

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida CÁLCULO I Prof. Eilson Neri Júnior Prof. Anré Almeia Aula n o 0: Derivaas e Orem Superior e Regra a Caeia Objetivos a Aula Definir e eterminar as erivaas e orem superior; Conhecer e aplicar a regra a caeia;

Leia mais

FUNÇÃO EXPONENCIAL. e) f(x) = 10 x. 1) Se a > 1 2) Se 0 < a < 1. Observamos que nos dois casos, a imagem da função exponencial é: Im = R + *.

FUNÇÃO EXPONENCIAL. e) f(x) = 10 x. 1) Se a > 1 2) Se 0 < a < 1. Observamos que nos dois casos, a imagem da função exponencial é: Im = R + *. FUNÇÃO EXPONENCIAL Definição: Dado um número real a, com a > 0 e a, chamamos função eponencial de base a a função f de R R que associa a cada real o número a. Podemos escrever, também: f: R R a Eemplos

Leia mais

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA DE ABRIL DE 2017

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA DE ABRIL DE 2017 ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA 21 17 DE ABRIL DE 2017 EQUAÇÕES DIFERENCIAIS Equações iferenciais são equações (algébricas) one figuram funções e erivaas e várias orens e funções.

Leia mais

CÁLCULO I. Apresentar a técnica de derivação implícita; Resolver problemas envolvendo taxas relacionadas.

CÁLCULO I. Apresentar a técnica de derivação implícita; Resolver problemas envolvendo taxas relacionadas. CÁLCULO I Prof. Marcos Diniz Prof. Anré Almeia Prof. Eilson Neri Júnior Aula no 3: Derivação Implícita. Derivaa a Função Inversa. Taxas Relacionaas. Objetivos a Aula Apresentar a técnica e erivação implícita;

Leia mais

Funções Elementares. Sadao Massago. Maio de Alguns conceitos e notações usados neste texto. Soma das funções pares é uma função par.

Funções Elementares. Sadao Massago. Maio de Alguns conceitos e notações usados neste texto. Soma das funções pares é uma função par. Funções Elementares Sadao Massago Maio de 0. Apresentação Neste teto, trataremos rapidamente sobre funções elementares. O teto não é material completo do assunto, mas é somente uma nota adicional para

Leia mais

UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 17. Assunto: Funções Implícitas, Teorema das Funções Implícitas

UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 17. Assunto: Funções Implícitas, Teorema das Funções Implícitas UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 17 Assunto: Funções Implícitas, Teorema as Funções Implícitas Palavras-chaves: funções, funções implícitas, erivação implícita Funções implícitas

Leia mais

Projeto 3. 8 de abril de y max y min. Figura 1: Diagrama de um cabo suspenso.

Projeto 3. 8 de abril de y max y min. Figura 1: Diagrama de um cabo suspenso. Cabos suspensos Projeto 3 8 e abril e 009 A curva escrita por um cabo suspenso pelas suas etremiaes é enominaa curva catenária. y ma y min 0 Figura 1: Diagrama e um cabo suspenso. A equação que escreve

Leia mais

CAPÍTULO 7. ( p)= -1 p2. Segue que a reta tangente no ponto de abscissa p é y 1. f( x)- f() Exercícios f( x)= sen px. Exercícios

CAPÍTULO 7. ( p)= -1 p2. Segue que a reta tangente no ponto de abscissa p é y 1. f( x)- f() Exercícios f( x)= sen px. Exercícios CAPÍTULO 7 Eercícios 7 8 f 3-9 f sen p Eercícios 73 8 f ' ( p) - p Segue que a reta tangente no ponto e abscissa p é y - - ( - p) p p p Para y, - p e, portanto, p; ou seja, a reta tangente no ponto e abscissa

Leia mais

[ ] = 0, constante. Algumas Regras para Diferenciação. Algumas Regras para Diferenciação. d dx. A Regra da Constante:

[ ] = 0, constante. Algumas Regras para Diferenciação. Algumas Regras para Diferenciação. d dx. A Regra da Constante: UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I. A regra a constante

Leia mais

f (x) Antiderivadas de f (x) ; 3 8x ; 8

f (x) Antiderivadas de f (x) ; 3 8x ; 8 INTEGRAIS Definição: Uma fnção F é ma antierivaa e f em m intervalo I se F' ) f ) para too em I Chamaremos tamém F ) ma antierivaa e f ) eterminação e F, o F ), é chamao ANTIDIFERENCIAÇÃO O processo e

Leia mais

Derivadas das Funções Hiperbólicas Inversas

Derivadas das Funções Hiperbólicas Inversas UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Derivaas as Funções

Leia mais

1ª Avaliação. A substituição de x por 9 leva a uma indeterminação do tipo 0/0. ( 3) ( x ) ( ) ( ) ( ) ( ) lim = lim = lim = lim. = x b x b.

1ª Avaliação. A substituição de x por 9 leva a uma indeterminação do tipo 0/0. ( 3) ( x ) ( ) ( ) ( ) ( ) lim = lim = lim = lim. = x b x b. ª Avaliação ) Encontre lim 9 9. A substituição e por 9 leva a uma ineterminação o tipo 0/0. ( ) + 9 lim lim lim lim 9 9 9 9 9 9 + 9 + 9 + lim 9 ( 9 ) 9 lim + + 9 + 6 9 ( + ) se 0 < < b ) Dao f, etermine

Leia mais

Cálculo de primitivas ou de antiderivadas

Cálculo de primitivas ou de antiderivadas Aula 0 Cálculo de primitivas ou de antiderivadas Objetivos Calcular primitivas de funções usando regras elementares de primitivação. Calcular primitivas de funções pelo método da substituição. Calcular

Leia mais

Derivadas de Funções Trigonométricas

Derivadas de Funções Trigonométricas UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Derivaas e Funções

Leia mais

## RESOLUÇÃO DE EXERCÍCIOS DO MATERIAL BÁSICO DE ESTUDO ## , determine t 1 3. Isolando o vetor t : Temos o vetor t procurado!

## RESOLUÇÃO DE EXERCÍCIOS DO MATERIAL BÁSICO DE ESTUDO ## , determine t 1 3. Isolando o vetor t : Temos o vetor t procurado! ## RESOLUÇÃO DE EXERCÍCIOS DO MATERIAL BÁSICO DE ESTUDO ## LISTA DE EXERCÍCIOS Operações com Vetores na Forma Algébrica [Analítica] no R [página 7] 5) Daos os vetores u i j Inicialmente, antes e substituir

Leia mais

CURSO DE CÁLCULO I PROF. MARCUS V. S. RODRIGUES

CURSO DE CÁLCULO I PROF. MARCUS V. S. RODRIGUES CURSO DE CÁLCULO I PROF. MARCUS V. S. RODRIGUES FORTALEZA - 009 Curso e Cálculo I Capítulo SUMÁRIO Capítulo Limite e continuiae.. Limites: Um conceito intuitivo.. Limites: Técnicas para calcular 9.. Limites:

Leia mais

Universidade Federal do Paraná Centro Politécnico ET-DMAT Prof. Maria Eugênia Martin. CM041- Cálculo I. Lista 5: Derivadas

Universidade Federal do Paraná Centro Politécnico ET-DMAT Prof. Maria Eugênia Martin. CM041- Cálculo I. Lista 5: Derivadas Universiae Feeral o Paraná Centro Politécnico ET-DMAT Pro. Maria Eugênia Martin CM04- Cálculo I Lista 5: Derivaas Eercício. O gráico ilustra a unção posição e um carro. Use a orma o gráico para eplicar

Leia mais

Matemática 2 Engenharia Eletrotécnica e de Computadores

Matemática 2 Engenharia Eletrotécnica e de Computadores Matemática Engenharia Eletrotécnica e de Computadores Eercícios Compilados por: Alzira Faria Ana Cristina Meira Ana Júlia Viamonte Carla Pinto Jorge Mendonça Teórico-prática. Indique o domínio das funções:

Leia mais

Integral de Linha e Triedro de Frenet

Integral de Linha e Triedro de Frenet Cálculo III Departamento e Matemática - ICEx - UFMG Marcelo Terra Cunha Integral e Linha e Triero e Frenet Na aula anterior iniciamos o estuo as curvas parametrizaas. Em particular, interpretamos a erivaa

Leia mais

Limites, derivadas e máximos e mínimos

Limites, derivadas e máximos e mínimos Limites, derivadas e máimos e mínimos Psicologia eperimental Definição lim a f ( ) b Eemplo: Seja f()=5-3. Mostre que o limite de f() quando tende a 1 é igual a 2. Propriedades dos Limites Se L, M, a,

Leia mais

DERIVADA. A Reta Tangente

DERIVADA. A Reta Tangente DERIVADA A Reta Tangente Seja f uma função definida numa vizinança de a. Para definir a reta tangente de uma curva = f() num ponto P(a, f(a)), consideramos um ponto vizino Q(,), em que a e traçamos a S,

Leia mais

(a) f(x) = x 3 x (b) f(x) = x (c) f(x) = 3 x (d) f (x) = 1 x x se x < 1 (1 x) 2 se 1 x. f f(a + h) f(a h) (a) = lim. = f(x 1 ) x 1 f (x 1 ).

(a) f(x) = x 3 x (b) f(x) = x (c) f(x) = 3 x (d) f (x) = 1 x x se x < 1 (1 x) 2 se 1 x. f f(a + h) f(a h) (a) = lim. = f(x 1 ) x 1 f (x 1 ). Ministério a Eucação Universiae Tecnológica Feeral o Paraná Campus Campo Mourão Wellington José Corrêa ā Lista e Cálculo Diferencial e Integral I Curso: Bacharelao em Ciências a Computação DAMAT, 205 Nome:

Leia mais

Cálculo I IM UFRJ Lista 1: Pré-Cálculo Prof. Marco Cabral Versão Para o Aluno. Tópicos do Pré-Cálculo

Cálculo I IM UFRJ Lista 1: Pré-Cálculo Prof. Marco Cabral Versão Para o Aluno. Tópicos do Pré-Cálculo Cálculo I IM UFRJ Lista : Pré-Cálculo Prof. Marco Cabral Versão 7.03.05 Para o Aluno O sucesso (ou insucesso) no Cálculo depende do conhecimento de tópicos do ensino médio que chamaremos de pré-cálculo.

Leia mais

FUNÇÃO EXPONENCIAL. e) f(x) = 10 x. 1) Se a > 1 2) Se 0 < a < 1. Observamos que nos dois casos, a imagem da função exponencial é: Im = R + *.

FUNÇÃO EXPONENCIAL. e) f(x) = 10 x. 1) Se a > 1 2) Se 0 < a < 1. Observamos que nos dois casos, a imagem da função exponencial é: Im = R + *. FUNÇÃO EXPONENCIAL Definição: Dado um número real a, tal que 0 < a?, chamamos função eponencial de ase a a função f de R R que associa a cada real o número a. Podemos escrever, tamém: f: R R a Eemplos

Leia mais

Uma breve introdução ao estudo de equações diferenciais 1

Uma breve introdução ao estudo de equações diferenciais 1 Uma breve introução ao estuo e equações iferenciais 1 2 Pero Fernanes Este texto tem o objetivo e apresentar os métoos e resolução os moelos mais básicos e equações iferenciais. A ieia é fornecer um treinamento

Leia mais

Exercícios de Cálculo p. Informática, Ex 1-1 Nas alíneas seguintes use os termos inteiro, racional, irracional, para classificar

Exercícios de Cálculo p. Informática, Ex 1-1 Nas alíneas seguintes use os termos inteiro, racional, irracional, para classificar Eercícios de Cálculo p. Informática, 2006-07 Números Reais. E - Nas alíneas seguintes use os termos inteiro, racional, irracional, para classificar o número dado: 7 a) b) 6 7 c) 2.(3) = 2.33 d) 2 3 e)

Leia mais

Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Física. Referências bibliográficas: H S T.

Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Física. Referências bibliográficas: H S T. Universiae eeral o Paraná Setor e Ciências Eatas Departamento e ísica ísica III Prof. Dr. Ricaro Luiz Viana Referências bibliográficas: H. -4 S. -5 T. 18- Aula Lei e Coulomb Charles Augustin e Coulomb

Leia mais

13 Fórmula de Taylor

13 Fórmula de Taylor 13 Quando estudamos a diferencial vimos que poderíamos calcular o valor aproimado de uma função usando a sua reta tangente. Isto pode ser feito encontrandose a equação da reta tangente a uma função y =

Leia mais

Instituto Politécnico de Bragança Escola Superior de Tecnologia e Gestão. Análise Matemática I 2003/04

Instituto Politécnico de Bragança Escola Superior de Tecnologia e Gestão. Análise Matemática I 2003/04 Instituto Politécnico de Bragança Escola Superior de Tecnologia e Gestão Análise Matemática I 00/0 Ficha Prática nº Parte III Função Eponencial Função Logaritmo Funções trigonométricas directas e inversas

Leia mais

Lista de Exercícios 2 1

Lista de Exercícios 2 1 Universidade Federal de Ouro Preto Departamento de Matemática MTM - CÁLCULO DIFERENCIAL E INTEGRAL I Lista de Eercícios Mostre, utilizando a definição formal, que os ites abaio eistem e são iguais ao valor

Leia mais

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA 7 5 DE MARÇO DE 2018

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA 7 5 DE MARÇO DE 2018 ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA 7 5 DE MARÇO DE 08 Condições Suficientes de Diferenciabilidade Teorema Seja f(z) = u(, y) + iv(, y). Se u e v têm derivadas parciais contínuas em torno

Leia mais

Derivada da Função Exponencial Natural. Usando a Regra da Diferença, temos. f x d dx e x x d dx e x d dx x e x 1. f x d dx e x 1 d dx e x d x.

Derivada da Função Exponencial Natural. Usando a Regra da Diferença, temos. f x d dx e x x d dx e x d dx x e x 1. f x d dx e x 1 d dx e x d x. 64 CÁLCULO TEC Visual. usa um escopo e inclinação para ilustrar essa fórmula. Derivaa a Função Eponencial Natural e e Assim, a função eponencial f e tem a proprieae e ser sua própria erivaa. O significao

Leia mais

RCB104 Módulo Exatas: Cálculo I

RCB104 Módulo Exatas: Cálculo I Avaliação e Estudo Dirigido RCB104 Módulo Eatas: Cálculo I Avaliação: 6 de julho todo conteúdo Roteiro de aulas: estudo dirigido Profa Dra Silvana Giuliatti Departamento de Genética FMRP silvana@fmrp.usp.br

Leia mais

Integrais indefinidas

Integrais indefinidas Integrais indefinidas que: Sendo f() e F() definidas em um intervalo I R, para todo I, dizemos F é uma antiderivada ou uma primitiva de f, em I, se F () = f() F() = é uma antiderivada (primitiv de f()

Leia mais

PARECER DA ASSOCIAÇÃO DE PROFESSORES DE MATEMÁTICA EXAME NACIONAL DO ENSINO SECUNDÁRIO. PROVA ESCRITA DE MATEMÁTICA 12º ano 435 e 635 2ª FASE 2006

PARECER DA ASSOCIAÇÃO DE PROFESSORES DE MATEMÁTICA EXAME NACIONAL DO ENSINO SECUNDÁRIO. PROVA ESCRITA DE MATEMÁTICA 12º ano 435 e 635 2ª FASE 2006 PARECER DA ASSOCIAÇÃO DE PROFESSORES DE MAEMÁICA EXAME NACIONAL DO ENSINO SECUNDÁRIO PROVA ESCRIA DE MAEMÁICA º ano e 6 ª FASE 006 A generaliae os alunos que realizaram esta prova e eame são os que iniciaram

Leia mais

Módulo 1 Limites. 1. Introdução

Módulo 1 Limites. 1. Introdução Módulo 1 Limites 1. Introdução Nesta disciplina você vai estudar o cálculo diferencial e integral e suas aplicações em diversos problemas relacionados à Economia. O conceito de limite é conceito mais básico

Leia mais

FUNÇÕES. a < 0. a = 0. a > 0. b < 0 b = 0 b > 0

FUNÇÕES. a < 0. a = 0. a > 0. b < 0 b = 0 b > 0 FUNÇÕES As principais definições, teorias e propriedades sobre funções podem ser encontradas em seu livro-teto (Guidorizzi, vol1, Stewart vol1...); Assim, não vamos aqui nos alongar na teoria que pode

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A ESCOLA SECUNDÁRIA COM º CICLO D. DINIS º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema III Trigonometria e Números Compleos TPC nº. Seja f = + ln (entregar até 7/0/009).. Determine f ( ), usando a definição

Leia mais

UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática Mestrado em Ensino de Matemática

UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática  Mestrado em Ensino de Matemática UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática www.pg.im.ufrj.br/pemat Mestrado em Ensino de Matemática Seleção 0 Etapa Questão. Considere f : [, ] R a função cujo gráfico

Leia mais

Unidade 5 Diferenciação Incremento e taxa média de variação

Unidade 5 Diferenciação Incremento e taxa média de variação Unidade 5 Diferenciação Incremento e taa média de variação Consideremos uma função f dada por y f ( ) Quando varia de um valor inicial de para um valor final de, temos o incremento em O símbolo matemático

Leia mais

QUESTÕES COMENTADAS DE MECÂNICA

QUESTÕES COMENTADAS DE MECÂNICA QUESTÕES COMENTDS DE MECÂNIC Prof. Inácio Benvegnú Morsch CEMCOM Depto. Eng. Civil UFGS ) Calcule as reações em para a viga isostática representaa na figura () kn/m,5 m Solução: Este cálculo fica simplificao

Leia mais

Regras do Produto e do Quociente. Regras do Produto e do Quociente

Regras do Produto e do Quociente. Regras do Produto e do Quociente UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Regras o Prouto e

Leia mais

Acadêmico(a) Turma: Capítulo 7: Limites

Acadêmico(a) Turma: Capítulo 7: Limites Acadêmico(a) Turma: Capítulo 7: Limites 7.1. Noção Intuitiva de ite Considere a função f(), em que f() = 2 + 1. Para valores de que se aproima de 1, por valores maiores que 1 (Direita) e por valores menores

Leia mais

Conceitos: Função. Domínio, contradomínio e imagem de uma função. Funções potência, exponencial e

Conceitos: Função. Domínio, contradomínio e imagem de uma função. Funções potência, exponencial e Matemática II 05/6 Curso: Gestão Departamento de Matemática ESTG-IPBragança Ficha Prática : Revisões: Funções, Derivadas. Primitivas -------------------------------------------------------------------------------------------------------------------

Leia mais

Curso de Verão Exemplos para o curso de

Curso de Verão Exemplos para o curso de Curso de Verão 006 Programa de Pós-Graduação em Matemática Aplicada DCCE - Departamento de Ciência da Computação e Estatística Universidade Estadual Paulista - UNESP Instituto de Biociências, Letras e

Leia mais

2. Tipos de funções. Funções pares e ímpares Uma função f é par se é simétrica em relação ao eixo y, isto é, f( x) = f(x).

2. Tipos de funções. Funções pares e ímpares Uma função f é par se é simétrica em relação ao eixo y, isto é, f( x) = f(x). 1. Algumas funções básicas 2. Tipos de funções Funções pares e ímpares Uma função f é par se é simétrica em relação ao eio y, isto é, f( ) = f(). Eemplos: A função f() = n onde n inteiro positivo é par?

Leia mais

Eletromagnetismo I. Preparo: Diego Oliveira. Aula 19. A Lei da Indução de Faraday

Eletromagnetismo I. Preparo: Diego Oliveira. Aula 19. A Lei da Indução de Faraday Eletromagnetismo I Prof. Dr. R.M.O Galvão - 2 Semestre 2014 Preparo: Diego Oliveira Aula 19 A Lei a Inução e Faraay Na aula passaa iscutimos a força eletromotriz ε = E l em um circuito e mostramos que

Leia mais

O objeto fundamental deste curso são as funções de uma variável real. As funções surgem quando uma quantidade depende de outra.

O objeto fundamental deste curso são as funções de uma variável real. As funções surgem quando uma quantidade depende de outra. Universidade Federal Fluminense Departamento de Análise GAN0045 Matemática para Economia Professora Ana Maria Luz 00. Unidade Revisão de função de uma variável real O objeto fundamental deste curso são

Leia mais

, logo, x tg t é solução da equação dada. na equação dx tx. / 2 e daí dy xy, ou seja, y e

, logo, x tg t é solução da equação dada. na equação dx tx. / 2 e daí dy xy, ou seja, y e CAPÍTULO 0 Eercícios 0.. a) Substituindo tg t e sec t na equação, obtemos ù sec t tg t para todo t no intervalo, é, logo, tg t é solução da equação ûú dada. c) Substituindo t ()4 e 0 na equação t ( ),

Leia mais

30 a Aula AMIV LEAN, LEC Apontamentos

30 a Aula AMIV LEAN, LEC Apontamentos 30 a Aula 20041124 AMIV LEAN, LEC Apontamentos (RicaroCoutinho@mathistutlpt) 301 Equações iferenciais e orem n Comecemos com consierações gerais sobre equações e orem n; nomeaamente sobre a sua relação

Leia mais

Derivadas. Capítulo O problema da reta tangente

Derivadas. Capítulo O problema da reta tangente Capítulo 5 Derivadas Este capítulo é sobre derivada, um conceito fundamental do cálculo que é muito útil em problemas aplicados. Este conceito relaciona-se com o problema de determinar a reta tangente

Leia mais

Aula 18. Carlos Amaral Fonte: Cristiano Quevedo Andrea

Aula 18. Carlos Amaral Fonte: Cristiano Quevedo Andrea Aula 8 Carlos Amaral Fonte: Cristiano Queveo Anrea UTFPR - Universiae Tecnológica Feeral o Paraná DAELT - Departamento Acaêmico e Eletrotécnica Curitiba, Junho e Comparação entre técnicas e controle Técnica

Leia mais

Estudo Físico dos Gases

Estudo Físico dos Gases Estuo Físico os Gases eoria Cinética os Gases Gás é um estao a matéria; as partículas neste estao estão em movimento aleatório e caótico; São compressíveis; Os gases ocupam too o volume o recipiente e,

Leia mais

CONTINUIDADE DE FUNÇÕES REAIS DE UMA VARIÁVEL

CONTINUIDADE DE FUNÇÕES REAIS DE UMA VARIÁVEL BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL CONTINUIDADE DE FUNÇÕES REAIS DE UMA VARIÁVEL a Edição Rio Grande Editora da FURG 206 Universidade Federal

Leia mais

Cálculo Diferencial e Integral I - LEIC

Cálculo Diferencial e Integral I - LEIC INSTITUTO SUPERIOR TÉCNICO Departamento de Matemática de Janeiro de Cálculo Diferencial e Integral I - LEIC ō Teste - Versão - Resolução. Indique uma primitiva para a função definida em ], e [ pela epressão

Leia mais

Exercícios sobre Polinômios

Exercícios sobre Polinômios uff Universidade Federal Fluminense Campus do Valonguinho Instituto de Matemática e Estatística Departamento de Matemática Aplicada - GMA Eercícios sobre Polinômios Prof Saponga Rua Mário Santos Braga

Leia mais

Exames Nacionais. Prova Escrita de Matemática A 2008 VERSÃO ano de Escolaridade Prova 635/1.ª Fase. Grupo I

Exames Nacionais. Prova Escrita de Matemática A 2008 VERSÃO ano de Escolaridade Prova 635/1.ª Fase. Grupo I EXAME NACIONAL DO ENSINO SECUNDÁRIO Decreto-Lei n. 74/004, e 6 e Março Prova Escrita e Matemática A. ano e Escolariae Prova 6/.ª Fase Duração a Prova: 0 minutos. Tolerância: 0 minutos 008 VERSÃO Para responer

Leia mais

s: damasceno.info.

s:  damasceno.info. Matemática II 9. Pro.: Luiz Gonzaga Damasceno E-mails: amasceno@yahoo.com.br amasceno@uol.com.br amasceno@hotmail.com http://www.amasceno.ino www.amasceno.ino amasceno.ino - Derivação implícita. Consiere

Leia mais

Exercício- teste 1. Matemática II 2 o Semestre de 2009/2010. a) Provar que n (2i 1) = n 2

Exercício- teste 1. Matemática II 2 o Semestre de 2009/2010. a) Provar que n (2i 1) = n 2 o Semestre de 009/00 Eercício- teste a) Provar que n (i ) = n i= Usamos indução em n para provar que a fórmula acima é correcta n= n = Claramente temos que (i ) = () = = Hipótese Indutiva j N, onde j n,

Leia mais

Capítulo 5 Derivadas

Capítulo 5 Derivadas Departamento de Matemática - ICE - UFJF Disciplina MAT54 - Cálculo Capítulo 5 Derivadas Este capítulo é sobre derivada, um conceito fundamental do cálculo que é muito útil em problemas aplicados. Este

Leia mais

Tópicos de Física Clássica I Aula 4 A identidade de Beltrami; a notação δ e alguns exemplos

Tópicos de Física Clássica I Aula 4 A identidade de Beltrami; a notação δ e alguns exemplos Tópicos e Física Clássica I Aula 4 A ientiae e Beltrami; a notação δ e alguns eemplos a c tort A seguna forma a equação e Euler-Lagrange Consiere F F [y), y ); ]. Então: F Agora consiere Da primeira equação

Leia mais

Exercício 1. Exercício 2. Exercício 3. Considere a função f que para valores de x é de nida pela relação f(x) = x(sin /x).

Exercício 1. Exercício 2. Exercício 3. Considere a função f que para valores de x é de nida pela relação f(x) = x(sin /x). E Eercício 1 Considere a função f que para valores de é denida pela relação f() = (sin /). 1.1 Mostre que a função f é contínua em R\{}. 1.2 Sabendo que f é contínua no ponto = determine o valor de f().

Leia mais

CÁLCULO I. 1 Primitivas. Objetivos da Aula. Aula n o 18: Primitivas. Denir primitiva de uma função; Calcular as primitivas elementares.

CÁLCULO I. 1 Primitivas. Objetivos da Aula. Aula n o 18: Primitivas. Denir primitiva de uma função; Calcular as primitivas elementares. CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 8: Primitivas. Objetivos da Aula Denir primitiva de uma função; Calcular as primitivas elementares. Primitivas Em alguns problemas, é necessário

Leia mais

Ficha de Trabalho de Matemática do 8º ano Soluções da ficha de preparação para a ficha de avaliação de Matemática Lições nº,, = 1 10

Ficha de Trabalho de Matemática do 8º ano Soluções da ficha de preparação para a ficha de avaliação de Matemática Lições nº,, = 1 10 Escola Secunária com ºCEB e Lousaa Ficha e Trabalho e Matemática o 8º ano 00 Soluções a ficha e preparação para a ficha e avaliação e Matemática Lições nº,, Resolve caa uma as equações seguintes: 4 5 Resposta:

Leia mais

Sônia Pinto de Carvalho

Sônia Pinto de Carvalho s Funções Hiperbólicas Sônia Pinto e Carvalho Introução Quano fiz o curso e Cálculo I fui apresentaa às funções hiperbólicas através e sua efinição eponencial. Lembro-me que, na época, achei muito engraçao

Leia mais

Leis de Newton. 1.1 Sistemas de inércia

Leis de Newton. 1.1 Sistemas de inércia Capítulo Leis e Newton. Sistemas e inércia Supomos a existência e sistemas e referência, os sistemas e inércia, nos quais as leis e Newton são válias. Um sistema e inércia é um sistema em relação ao qual

Leia mais

Na sala e computaores Preparação Divia os alunos em uplas e se achar pertinente, peça para levar lápis e papel para anotações. Requerimentos técnicos

Na sala e computaores Preparação Divia os alunos em uplas e se achar pertinente, peça para levar lápis e papel para anotações. Requerimentos técnicos Guia o Professor Móulo IV Ativiae - Fazeno um Plano e Vôo Apresentação: Nesta ativiae será proposto que o aluno faça um plano e vôo observano certas regras. Para isso, será preciso calcular a istância

Leia mais

Cálculo Diferencial e Integral I - Turma C 26 de Junho de 2015

Cálculo Diferencial e Integral I - Turma C 26 de Junho de 2015 Cálculo Diferencial e Inegral I - Turma C 6 e Junho e 5 Quesão................................................................................ 7 Calcule as inegrais abaixo: ( ) πx (a) ( poins) x cos Soluion:

Leia mais

DERIVADAS DE FUNÇÕES REAIS DE UMA VARIÁVEL

DERIVADAS DE FUNÇÕES REAIS DE UMA VARIÁVEL BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL DERIVADAS DE FUNÇÕES REAIS DE UMA VARIÁVEL 1 a Eição Rio Grane Eitora a FURG 2016 Universiae Feeral o Rio

Leia mais

CE065 - ELEMENTOS BÁSICOS DE ESTATÍSTICA 2ª. PARTE

CE065 - ELEMENTOS BÁSICOS DE ESTATÍSTICA 2ª. PARTE CE65 - ELEMENTOS BÁSICOS DE ESTATÍSTICA ª. PARTE. FUNÇÕES.- Sistema de Coordenadas Cartesianas ou Plano Cartesiano A localização de pontos num plano é bastante antiga na Matemática e data aproimadamente

Leia mais

Cálculo diferencial. Motivação - exemplos de aplicações à física

Cálculo diferencial. Motivação - exemplos de aplicações à física Cálculo diferencial Motivação - eemplos de aplicações à física Considere-se um ponto móvel sobre um eio orientado, cuja posição em relação à origem é dada, em função do tempo, pela função s. st posição

Leia mais

Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Cálculo Aula 1 Professor: Carlos Sérgio. Revisão de Funções

Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Cálculo Aula 1 Professor: Carlos Sérgio. Revisão de Funções Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Cálculo - 01. Aula 1 Professor: Carlos Sérgio Revisão de Funções Sistema cartesiano ortogonal O Sistema de Coordenadas Cartesianas,

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO 2018 CADERNO 1

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO 2018 CADERNO 1 PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) ª FASE 5 DE JUNHO 08 CADERNO... P00/00 Seja X a variável aleatória: Número de vezes que sai a face numerada com

Leia mais

CÁLCULO I. 1 A Função Logarítmica Natural. Objetivos da Aula. Aula n o 22: A Função Logaritmo Natural. Denir a função f(x) = ln x;

CÁLCULO I. 1 A Função Logarítmica Natural. Objetivos da Aula. Aula n o 22: A Função Logaritmo Natural. Denir a função f(x) = ln x; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 22: A Função Logaritmo Natural Objetivos da Aula Denir a função f(x) = ln x; Calcular limites, derivadas e integral envolvendo a função

Leia mais

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ FUNDAMENTOS DE MATEMÁTICA PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR - 30/11/2014 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES:

Leia mais

Matemática A Semi-Extensivo V. 3

Matemática A Semi-Extensivo V. 3 Matemática A Semi-Etensivo V. Eercícios 0) 0 f: R R f() = c) f: R R f() = 0. Falsa alsa. CD = R, mas Im(f) = [, ). 0. Falsa alsa. Im(f) = [, ). 0. Falsa alsa. Já não é sobrejetora. 08. Verdadeira f( 5

Leia mais

Calcular a derivada e a integral da função exponencial.

Calcular a derivada e a integral da função exponencial. Aula 2 A função exponencial e a função logarítmica Objetivos Estudar a função exponencial. Calcular a derivada e a integral da função exponencial. Como vimos na aula, a função logarítmica ln : 0, ) R é

Leia mais